
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Object-Oriented Database

Prof. Walid Aref

14 October 2016

Object-Oriented Databases

• Goal: Provide same benefits as object-

oriented programming

– Abstraction

– Reuse

– Natural data modeling

• A number of commercial systems

– Gemstone (1986)

– Informix, ObjectDB, O2, …

Fall 2016 Chris Clifton - CS34800 2

©Jan-16 Christopher W. Clifton 220

Object-Oriented Databases

• Often programming language model

– No separate query language

– “Persistent Stores”

• But this gives up many of the advantages
of Relational DB

– Query optimization

– Efficient concurrency control (we’ll discuss
later)

– Data independence

Fall 2016 Chris Clifton - CS34800 3

Announcements

• Assignment 3 is out

– Due 10/24

– Expect Project 3 right after that

• Midterm 2 11/9

• Midterm course evaluations open to 10/21

– https://my.cs.purdue.edu/courses

– Your chance to provide anonymous feedback

on how I can improve

Fall 2016 Chris Clifton - CS34800 5

https://my.cs.purdue.edu/courses

©Jan-16 Christopher W. Clifton 320

CS34800

Information Systems

Object-Relational Database

Prof. Chris Clifton

17 October 2016

Solution: Object-Relational DB

• Incorporate key features into relational model

– User-defined data types

– User-defined operations on those data types

• Postgres: Research project at Berkeley

– Now available open source

• IBM bought Informix, Oracle included object-

relational features

– And almost nothing left of pure object-oriented

DB

Fall 2016 Chris Clifton - CS34800 7

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan22.8Database System Concepts - 6th Edition

Object-Relational Data Models

 Extend the relational data model by including object orientation and

constructs to deal with added data types.

 Allow attributes of tuples to have complex types, including non-atomic

values such as nested relations.

 Preserve relational foundations, in particular the declarative access to

data, while extending modeling power.

 Upward compatibility with existing relational languages.

Complex Data Types

• Goal: Intuitive modeling of complex data
– Abstraction

• Basic idea: Non-atomic domains
– Cell can contain something other than “atomic” (indivisible) value

– Example of non-atomic domain: set of integers, or set of tuples

• What part of the relational model does this violate?
A. Everything represented as a relation (table)

B. First normal form

C. Relational algebra

D. Declarative query language

• “Standardized” in SQL:1999
– But most commercial systems vary from standard

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan22.11Database System Concepts - 6th Edition

Array and Multiset Types in SQL

 Example of array and multiset declaration:

create type Publisher as

(name varchar(20),

branch varchar(20));

create type Book as

(title varchar(20),

author_array varchar(20) array [10],

pub_date date,

publisher Publisher,

keyword-set varchar(20) multiset);

create table books of Book;

©Silberschatz, Korth and Sudarshan22.12Database System Concepts - 6th Edition

Creation of Collection Values

 Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]

 Multisets

multiset [‘computer’, ‘database’, ‘SQL’]

 To create a tuple of the type defined by the books relation:
(‘Compilers’, array[`Smith’,`Jones’],

new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

 To insert the preceding tuple into the relation books

insert into books
values

(‘Compilers’, array[`Smith’,`Jones’],
new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’]);

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan22.13Database System Concepts - 6th Edition

Example of a Nested Relation

 Example: library information system

 Each book has

 title,

 a list (array) of authors,

 Publisher, with subfields name and branch, and

 a set of keywords

 Non-1NF relation books

 Idea: Model as cells that contain relations

©Silberschatz, Korth and Sudarshan22.14Database System Concepts - 6th Edition

4NF Decomposition of Nested Relation

 Suppose for simplicity that

title uniquely identifies a

book

 In real world ISBN is a

unique identifier

 Decompose books into

4NF using the schemas:

 (title, author, position)

 (title, keyword)

 (title, pub-name, pub-

branch)

 4NF design requires users

to include joins in their

queries.

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan22.15Database System Concepts - 6th Edition

Querying Collection-Valued Attributes

 To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

 We can access individual elements of an array by using indices

 E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts’

 To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author_array) as A (author)

 To retain ordering information we add a with ordinality clause

select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as

A (author, position)

©Silberschatz, Korth and Sudarshan22.16Database System Concepts - 6th Edition

Unnesting

 The transformation of a nested relation into a form with fewer (or no)

relation-valued attributes us called unnesting.

 E.g.

select title, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K.keyword

from books as B, unnest(B.author_array) as A (author),

unnest (B.keyword_set) as K (keyword)

 Result relation flat_books

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan22.17Database System Concepts - 6th Edition

Nesting

 Nesting is the opposite of unnesting, creating a collection-valued attribute

 Nesting can be done in a manner similar to aggregation, but using the

function colect() in place of an aggregation operation, to create a multiset

 To nest the flat_books relation on the attribute keyword:

select title, author, Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set

from flat_books

groupby title, author, publisher

 To nest on both authors and keywords:

select title, collect (author) as author_set,
Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set
from flat_books
group by title, publisher

©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 6th Edition

Nesting (Cont.)

 Another approach to creating nested relations is to use subqueries in

the select clause, starting from the 4NF relation books4

select title,
array (select author

from authors as A
where A.title = B.title
order by A.position) as author_array,

Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword

from keywords as K
where K.title = B.title) as keyword_set

from books4 as B

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan22.19Database System Concepts - 6th Edition

Structured Types in SQL

 Structured types (a.k.a. user-defined types) can be declared and used in SQL

create type Name as

(firstname varchar(20),

lastname varchar(20))

final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))

not final

 Note: final and not final indicate whether subtypes can be created

 Structured types can be used to create tables with composite attributes

create table person (
name Name,
address Address,
dateOfBirth date)

 Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 6th Edition

Structured Types (cont.)

 User-defined row types

create type PersonType as (

name Name,

address Address,

dateOfBirth date)

not final

 Can then create a table whose rows are a user-defined type

create table customer of CustomerType

 Alternative using unnamed row types.

create table person_r(

name row(firstname varchar(20),
lastname varchar(20)),

address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),

dateOfBirth date)

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 6th Edition

Methods

 Can add a method declaration with a structured type.

method ageOnDate (onDate date)

returns interval year

 Method body is given separately.

create instance method ageOnDate (onDate date)

returns interval year

for CustomerType

begin

return onDate - self.dateOfBirth;

end

 We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)

from customer

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 6th Edition

Constructor Functions

 Constructor functions are used to create values of structured types

 E.g.

create function Name(firstname varchar(20), lastname varchar(20))

returns Name

begin

set self.firstname = firstname;

set self.lastname = lastname;

end

 To create a value of type Name, we use

new Name(‘John’, ‘Smith’)

 Normally used in insert statements

insert into Person values

(new Name(‘John’, ‘Smith),

new Address(’20 Main St’, ‘New York’, ‘11001’),

date ‘1960-8-22’);

©Jan-16 Christopher W. Clifton 1120

What Object-Oriented feature

is missing from ORDBMS?

A. Declarative queries

B. Abstract data types

C. Inheritance

D. User-defined types

E. Methods

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 6th Edition

Type Inheritance
 Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

 Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

 Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 6th Edition

Table Inheritance

 Tables created from subtypes can further be specified as subtables

 E.g. create table people of Person;
create table students of Student under people;
create table teachers of Teacher under people;

 Tuples added to a subtable are automatically visible to queries on the
supertable

 E.g. query on people also sees students and teachers.

 Similarly updates/deletes on people also result in updates/deletes
on subtables

 To override this behaviour, use “only people” in query

 Conceptually, multiple inheritance is possible with tables

 e.g. teaching_assistants under students and teachers

 But is not supported in SQL currently

 So we cannot create a person (tuple in people) who is both a
student and a teacher

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 6th Edition

Consistency Requirements for Subtables

 Consistency requirements on subtables and supertables.

 Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and teachers)

 Additional constraint in SQL:1999:

All tuples corresponding to each other (that is, with the same values

for inherited attributes) must be derived from one tuple (inserted into

one table).

 That is, each entity must have a most specific type

 We cannot have a tuple in people corresponding to a tuple each

in students and teachers

©Jan-16 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 6th Edition

Object-Identity and Reference Types

 Define a type Department with a field name and a field head which is a

reference to the type Person, with table people as scope:

create type Department (

name varchar (20),

head ref (Person) scope people)

 We can then create a table departments as follows

create table departments of Department

 We can omit the declaration scope people from the type declaration

and instead make an addition to the create table statement:

create table departments of Department

(head with options scope people)

 Referenced table must have an attribute that stores the identifier, called

the self-referential attribute

create table people of Person

ref is person_id system generated;

