
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Object-Oriented Database

Prof. Walid Aref

14 October 2016

Object-Oriented Databases

• Goal: Provide same benefits as object-

oriented programming

– Abstraction

– Reuse

– Natural data modeling

• A number of commercial systems

– Gemstone (1986)

– Informix, ObjectDB, O2, …

Fall 2016 Chris Clifton - CS34800 2

©Jan-16 Christopher W. Clifton 220

Object-Oriented Databases

• Often programming language model

– No separate query language

– “Persistent Stores”

• But this gives up many of the advantages
of Relational DB

– Query optimization

– Efficient concurrency control (we’ll discuss
later)

– Data independence

Fall 2016 Chris Clifton - CS34800 3

Announcements

• Assignment 3 is out

– Due 10/24

– Expect Project 3 right after that

• Midterm 2 11/9

• Midterm course evaluations open to 10/21

– https://my.cs.purdue.edu/courses

– Your chance to provide anonymous feedback

on how I can improve

Fall 2016 Chris Clifton - CS34800 5

https://my.cs.purdue.edu/courses

©Jan-16 Christopher W. Clifton 320

CS34800

Information Systems

Object-Relational Database

Prof. Chris Clifton

17 October 2016

Solution: Object-Relational DB

• Incorporate key features into relational model

– User-defined data types

– User-defined operations on those data types

• Postgres: Research project at Berkeley

– Now available open source

• IBM bought Informix, Oracle included object-

relational features

– And almost nothing left of pure object-oriented

DB

Fall 2016 Chris Clifton - CS34800 7

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan22.8Database System Concepts - 6th Edition

Object-Relational Data Models

 Extend the relational data model by including object orientation and

constructs to deal with added data types.

 Allow attributes of tuples to have complex types, including non-atomic

values such as nested relations.

 Preserve relational foundations, in particular the declarative access to

data, while extending modeling power.

 Upward compatibility with existing relational languages.

Complex Data Types

• Goal: Intuitive modeling of complex data
– Abstraction

• Basic idea: Non-atomic domains
– Cell can contain something other than “atomic” (indivisible) value

– Example of non-atomic domain: set of integers, or set of tuples

• What part of the relational model does this violate?
A. Everything represented as a relation (table)

B. First normal form

C. Relational algebra

D. Declarative query language

• “Standardized” in SQL:1999
– But most commercial systems vary from standard

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan22.11Database System Concepts - 6th Edition

Array and Multiset Types in SQL

 Example of array and multiset declaration:

create type Publisher as

(name varchar(20),

branch varchar(20));

create type Book as

(title varchar(20),

author_array varchar(20) array [10],

pub_date date,

publisher Publisher,

keyword-set varchar(20) multiset);

create table books of Book;

©Silberschatz, Korth and Sudarshan22.12Database System Concepts - 6th Edition

Creation of Collection Values

 Array construction

array [‘Silberschatz’,`Korth’,`Sudarshan’]

 Multisets

multiset [‘computer’, ‘database’, ‘SQL’]

 To create a tuple of the type defined by the books relation:
(‘Compilers’, array[`Smith’,`Jones’],

new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’])

 To insert the preceding tuple into the relation books

insert into books
values

(‘Compilers’, array[`Smith’,`Jones’],
new Publisher (`McGraw-Hill’,`New York’),
multiset [`parsing’,`analysis’]);

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan22.13Database System Concepts - 6th Edition

Example of a Nested Relation

 Example: library information system

 Each book has

 title,

 a list (array) of authors,

 Publisher, with subfields name and branch, and

 a set of keywords

 Non-1NF relation books

 Idea: Model as cells that contain relations

©Silberschatz, Korth and Sudarshan22.14Database System Concepts - 6th Edition

4NF Decomposition of Nested Relation

 Suppose for simplicity that

title uniquely identifies a

book

 In real world ISBN is a

unique identifier

 Decompose books into

4NF using the schemas:

 (title, author, position)

 (title, keyword)

 (title, pub-name, pub-

branch)

 4NF design requires users

to include joins in their

queries.

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan22.15Database System Concepts - 6th Edition

Querying Collection-Valued Attributes

 To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

 We can access individual elements of an array by using indices

 E.g.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = `Database System Concepts’

 To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book

select B.title, A.author
from books as B, unnest (B.author_array) as A (author)

 To retain ordering information we add a with ordinality clause

select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as

A (author, position)

©Silberschatz, Korth and Sudarshan22.16Database System Concepts - 6th Edition

Unnesting

 The transformation of a nested relation into a form with fewer (or no)

relation-valued attributes us called unnesting.

 E.g.

select title, A as author, publisher.name as pub_name,

publisher.branch as pub_branch, K.keyword

from books as B, unnest(B.author_array) as A (author),

unnest (B.keyword_set) as K (keyword)

 Result relation flat_books

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan22.17Database System Concepts - 6th Edition

Nesting

 Nesting is the opposite of unnesting, creating a collection-valued attribute

 Nesting can be done in a manner similar to aggregation, but using the

function colect() in place of an aggregation operation, to create a multiset

 To nest the flat_books relation on the attribute keyword:

select title, author, Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set

from flat_books

groupby title, author, publisher

 To nest on both authors and keywords:

select title, collect (author) as author_set,
Publisher (pub_name, pub_branch) as publisher,

collect (keyword) as keyword_set
from flat_books
group by title, publisher

©Silberschatz, Korth and Sudarshan22.18Database System Concepts - 6th Edition

Nesting (Cont.)

 Another approach to creating nested relations is to use subqueries in

the select clause, starting from the 4NF relation books4

select title,
array (select author

from authors as A
where A.title = B.title
order by A.position) as author_array,

Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword

from keywords as K
where K.title = B.title) as keyword_set

from books4 as B

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan22.19Database System Concepts - 6th Edition

Structured Types in SQL

 Structured types (a.k.a. user-defined types) can be declared and used in SQL

create type Name as

(firstname varchar(20),

lastname varchar(20))

final

create type Address as
(street varchar(20),
city varchar(20),
zipcode varchar(20))

not final

 Note: final and not final indicate whether subtypes can be created

 Structured types can be used to create tables with composite attributes

create table person (
name Name,
address Address,
dateOfBirth date)

 Dot notation used to reference components: name.firstname

©Silberschatz, Korth and Sudarshan22.20Database System Concepts - 6th Edition

Structured Types (cont.)

 User-defined row types

create type PersonType as (

name Name,

address Address,

dateOfBirth date)

not final

 Can then create a table whose rows are a user-defined type

create table customer of CustomerType

 Alternative using unnamed row types.

create table person_r(

name row(firstname varchar(20),
lastname varchar(20)),

address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),

dateOfBirth date)

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan22.21Database System Concepts - 6th Edition

Methods

 Can add a method declaration with a structured type.

method ageOnDate (onDate date)

returns interval year

 Method body is given separately.

create instance method ageOnDate (onDate date)

returns interval year

for CustomerType

begin

return onDate - self.dateOfBirth;

end

 We can now find the age of each customer:

select name.lastname, ageOnDate (current_date)

from customer

©Silberschatz, Korth and Sudarshan22.22Database System Concepts - 6th Edition

Constructor Functions

 Constructor functions are used to create values of structured types

 E.g.

create function Name(firstname varchar(20), lastname varchar(20))

returns Name

begin

set self.firstname = firstname;

set self.lastname = lastname;

end

 To create a value of type Name, we use

new Name(‘John’, ‘Smith’)

 Normally used in insert statements

insert into Person values

(new Name(‘John’, ‘Smith),

new Address(’20 Main St’, ‘New York’, ‘11001’),

date ‘1960-8-22’);

©Jan-16 Christopher W. Clifton 1120

What Object-Oriented feature

is missing from ORDBMS?

A. Declarative queries

B. Abstract data types

C. Inheritance

D. User-defined types

E. Methods

©Silberschatz, Korth and Sudarshan22.24Database System Concepts - 6th Edition

Type Inheritance
 Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

 Using inheritance to define the student and teacher types
create type Student

under Person
(degree varchar(20),
department varchar(20))

create type Teacher
under Person
(salary integer,
department varchar(20))

 Subtypes can redefine methods by using overriding method in place of
method in the method declaration

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan22.26Database System Concepts - 6th Edition

Table Inheritance

 Tables created from subtypes can further be specified as subtables

 E.g. create table people of Person;
create table students of Student under people;
create table teachers of Teacher under people;

 Tuples added to a subtable are automatically visible to queries on the
supertable

 E.g. query on people also sees students and teachers.

 Similarly updates/deletes on people also result in updates/deletes
on subtables

 To override this behaviour, use “only people” in query

 Conceptually, multiple inheritance is possible with tables

 e.g. teaching_assistants under students and teachers

 But is not supported in SQL currently

 So we cannot create a person (tuple in people) who is both a
student and a teacher

©Silberschatz, Korth and Sudarshan22.27Database System Concepts - 6th Edition

Consistency Requirements for Subtables

 Consistency requirements on subtables and supertables.

 Each tuple of the supertable (e.g. people) can correspond to at

most one tuple in each of the subtables (e.g. students and teachers)

 Additional constraint in SQL:1999:

All tuples corresponding to each other (that is, with the same values

for inherited attributes) must be derived from one tuple (inserted into

one table).

 That is, each entity must have a most specific type

 We cannot have a tuple in people corresponding to a tuple each

in students and teachers

©Jan-16 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan22.28Database System Concepts - 6th Edition

Object-Identity and Reference Types

 Define a type Department with a field name and a field head which is a

reference to the type Person, with table people as scope:

create type Department (

name varchar (20),

head ref (Person) scope people)

 We can then create a table departments as follows

create table departments of Department

 We can omit the declaration scope people from the type declaration

and instead make an addition to the create table statement:

create table departments of Department

(head with options scope people)

 Referenced table must have an attribute that stores the identifier, called

the self-referential attribute

create table people of Person

ref is person_id system generated;

