PURDUE

CS34800
Information Systems

Object-Oriented Database
Prof. Walid Aref
14 October 2016

Indiana

Center for
J Database
}Systems

§
c—/"
-

J
>/ A

[

Object-Oriented Databases

L

%
« Goal: Provide same benefits as object-

oriented programming
— Abstraction

— Reuse

— Natural data modeling

* A number of commercial systems
— Gemstone (1986)
— Informix, ObjectDB, 02, ...

Fall 2016 Chris Clifton - CS34800 2

© 2016 Christopher W. Clifton

Object-Oriented Databases

AL %

Often programming language model

— No separate query language

— “Persistent Stores”

But this gives up many of the advantages

of Relational DB

— Query optimization

— Efficient concurrency control (we’ll discuss
later)

— Data independence

Fall 2016 Chris Clifton - CS34800

%

bES Announcements

Assignment 3 is out
— Due 10/24
— Expect Project 3 right after that

Midterm 2 11/9

Midterm course evaluations open to 10/21
— https://my.cs.purdue.edu/courses

— Your chance to provide anonymous feedback
on how | can improve

Fall 2016 Chris Clifton - CS34800

© 2016 Christopher W. Clifton

https://my.cs.purdue.edu/courses

PURDUE

CS34800
Information Systems

Object-Relational Database
Prof. Chris Clifton
17 October 2016

Indiana

Center for
J Database

}Systemsﬁ,ﬁ
P

>/ ,Jk_/»‘/ -
o

s

=i Solution: Object-Relational DB
— %
* Incorporate key features into relational model
— User-defined data types
— User-defined operations on those data types
» Postgres: Research project at Berkeley
— Now available open source
» IBM bought Informix, Oracle included object-
relational features
— And almost nothing left of pure object-oriented
DB

Fall 2016 Chris Clifton - CS34800 7

© 2016 Christopher W. Clifton

E Object-Relational Data Models

B Extend the relational data model by including object orientation and
constructs to deal with added data types.

m Allow attributes of tuples to have complex types, including non-atomic
values such as nested relations.

m Preserve relational foundations, in particular the declarative access to
data, while extending modeling power.

m Upward compatibility with existing relational languages.

Database System Concepts - 6t Edition 22.8 ©Silberschatz, Korth and Sudarshan

Complex Data Types

» Goal: Intuitive modeling of complex data
— Abstraction
» Basicidea: Non-atomic domains
— Cell can contain something other than “atomic” (indivisible) value
— Example of non-atomic domain: set of integers, or set of tuples
* What part of the relational model does this violate?
A. Everything represented as a relation (table)
B. First normal form
C. Relational algebra
D. Declarative query language
+ “Standardized” in SQL:1999
— But most commercial systems vary from standard

© 2016 Christopher W. Clifton

i

m Example of array and multiset declaration:
create type Publisher as

(name varchar(20),
branch varchar(20));
create type Book as
(title varchar(20),

author_array varchar(20) array [10],
pub_date date,

publisher Publisher,
keyword-set varchar(20) multiset);

create table books of Book;

Database System Concepts - 6t Edition 22.11

- Array and Multiset Types in SQL

©Silberschatz, Korth and Sudarshan

i

B Array construction
array [‘Silberschatz’,"Korth’,” Sudarshan’]

m Multisets
multiset [‘computer’, ‘database’, ‘SQL’]

m To create a tuple of the type defined by the books relation:
(‘Compilers’, array[Smith’,"Jones’],
new Publisher ("McGraw-Hill',"New York’),
multiset [‘parsing’,"analysis’])

® To insert the preceding tuple into the relation books
insert into books
values
(‘Compilers’, array[Smith’,"Jones’],
new Publisher ("McGraw-Hill',"New York’),
multiset [parsing’, analysis’]);

Database System Concepts - 6t" Edition 22.12

- Creation of Collection Values

©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Example of a Nested Relation

title,

m Example: library information system
® Each book has

a list (array) of authors,

Publisher, with subfields name and branch, and

a set of keywords

® Non-1NF relation books

Idea: Model as cells that contain relations

title author_array publisher keyword_set
(name, branch)
Compilers | [Smith, Jones] | (McGraw-Hill, NewYork) | {parsing, analysis}
Networks | [Jones, Frick] (Oxford, London) {Internet, Web}

Database System Concepts - 6t Edition

22.13

©Silberschatz, Korth and Sudarshan

g 4NF Decomposition of Nested Relation

book

m Suppose for simplicity that
title uniquely identifies a

In real world ISBN is a
unique identifier

m Decompose books into
4ANF using the schemas:

(title, author, position)
(title, keyword)

(title, pub-name, pub-
branch)

B 4ANF design requires users
to include joins in their
queries.

Database System Concepts - 6" Edition

| title | author | position |
Compilers | Smith 1
Compilers | Jones 2
Networks | Jones 1
Networks | Frick 2
authors
| title | keyword |
Compilers | parsing
Compilers | analysis
Networks | Internet
Networks | Web
keywords
| title | pub_name | pub_branch |
Compilers | McGraw-Hill | New York
Networks Oxford London
books4

22.14

©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

E‘.,.;.- Querying Collection-Valued Attributes

|

To find all books that have the word “database” as a keyword,

select title
from books
where ‘database’ in (unnest(keyword-set))

® We can access individual elements of an array by using indices
E.qg.: If we know that a particular book has three authors, we could write:

select author_array[1], author_array[2], author_array[3]
from books
where title = "Database System Concepts’
® To get a relation containing pairs of the form “title, author_name” for each
book and each author of the book
select B.title, A.author
from books as B, unnest (B.author_array) as A (author)
® To retain ordering information we add a with ordinality clause
select B.title, A.author, A.position
from books as B, unnest (B.author_array) with ordinality as
A (author, position)

Database System Concepts - 6t Edition 22.15 ©Silberschatz, Korth and Sudarshan

E‘ Unnesting

B The transformation of a nested relation into a form with fewer (or no)
relation-valued attributes us called unnesting.

m Eg.
select title, A as author, publisher.name as pub_name,
publisher.branch as pub_branch, K.keyword
from books as B, unnest(B.author_array) as A (author),
unnest (B.keyword_set) as K (keyword)

m Result relation flat_books

| title | author | pub_name | pub_branch | keyword |

Compilers Smith McGraw-Hill New York parsing
Compilers | Jones McGraw-Hill New York parsing
Compilers Smith McGraw-Hill New York analysis
Compilers Jones McGraw-Hill New York analysis

Networks Jones Oxford London Internet
Networks Frick Oxford London Internet
Networks Jones Oxford London Web
Networks Frick Oxford London Web

Database System Concepts - 6t" Edition 22.16 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Nesting

Nesting is the opposite of unnesting, creating a collection-valued attribute

Nesting can be done in a manner similar to aggregation, but using the
function colect() in place of an aggregation operation, to create a multiset

B To nest the flat_books relation on the attribute keyword:

select title, author, Publisher (pub_name, pub_branch) as publisher,
collect (keyword) as keyword_set
from flat_books
groupby title, author, publisher
B To nest on both authors and keywords:
select title, collect (author) as author_set,
Publisher (pub_name, pub_branch) as publisher,
collect (keyword) as keyword_set
from flat_books
group by title, publisher

Database System Concepts - 6t Edition 22.17 ©Silberschatz, Korth and Sudarshan

ﬂ Nesting (Cont.)

® Another approach to creating nested relations is to use subqueries in
the select clause, starting from the 4NF relation books4

select title,
array (select author
from authors as A
where A.title = B.title
order by A.position) as author_array,
Publisher (pub-name, pub-branch) as publisher,
multiset (select keyword
from keywords as K
where K.title = B.title) as keyword_set
from books4 as B

Database System Concepts - 6t" Edition 22.18 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Structured Types in SQL

B Structured types (a.k.a. user-defined types) can be declared and used in SQL
create type Name as

(firstname varchar(20),
lastname varchar(20))
final

create type Address as
(street varchar(20),
city varchar(20),

zipcode varchar(20))
not final
Note: final and not final indicate whether subtypes can be created

B Structured types can be used to create tables with composite attributes
create table person (
name Name,
address Address,
dateOfBirth date)
® Dot notation used to reference components: nhame.firstname

Database System Concepts - 6t Edition 22.19 ©Silberschatz, Korth and Sudarshan

~ Structured Types (cont.)

m User-defined row types

create type PersonType as (
name Name,
address Address,
dateOfBirth date)
not final

® Can then create a table whose rows are a user-defined type
create table customer of CustomerType

m Alternative using unnamed row types.

create table person_r(
name row(firstname varchar(20),
lastname varchar(20)),
address row(street varchar(20),
city varchar(20),
zipcode varchar(20)),
dateOfBirth date)

Database System Concepts - 6t" Edition 22.20 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Methods

e

B Can add a method declaration with a structured type.
method ageOnDate (onDate date)
returns interval year
® Method body is given separately.
create instance method ageOnDate (onDate date)
returns interval year
for CustomerType
begin
return onDate - self.dateOfBirth;
end
® We can now find the age of each customer:
select name.lastname, ageOnDate (current_date)
from customer

Database System Concepts - 6t Edition 22.21 ©Silberschatz, Korth and Sudarshan

ﬂ Constructor Functions

m Constructor functions are used to create values of structured types

E.g.
create function Name(firstname varchar(20), lastname varchar(20))
returns Name
begin
set self.firstname = firstname;
set self.lasthame = lastname;
end

m To create a value of type Name, we use
new Name(‘John’, ‘Smith’)

® Normally used in insert statements
insert into Person values
(new Name(‘John’, ‘Smith),
new Address('20 Main St’, ‘New York’, “11001’),
date ‘1960-8-22);

Database System Concepts - 6t" Edition 22.22 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

™
e 1A

A.
B. Abstract data types
C. Inheritance

D. User-defined types
E. Methods

#=== \What Object-Oriented feature

=T

IS missing from ORDBMS?

Declarative queries

Ze

Type Inheritance

Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

Using inheritance to define the student and teacher types
create type Student
under Person
(degree varchar(20),
department varchar(20))
create type 7eacher
under Person
(salary integer,
department varchar(20))

Subtypes can redefine methods by using overriding method in place of
method in the method declaration

Database System Concepts - 6t" Edition 22.24 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

11

E Table Inheritance

Ze

®m Tables created from subtypes can further be specified as subtables

E.g. create table people of Person;
create table students of Student under people;
create table teachers of Teacher under people;

® Tuples added to a subtable are automatically visible to queries on the
supertable

E.g. query on people also sees students and teachers.

Similarly updates/deletes on people also result in updates/deletes
on subtables

To override this behaviour, use “only people”in query

m Conceptually, multiple inheritance is possible with tables
e.g. teaching_assistants under students and teachers
But is not supported in SQL currently

» SO we cannot create a person (tuple in people) who is both a
student and a teacher

Database System Concepts - 6t Edition 22.26 ©Silberschatz, Korth and Sudarshan

E!ll Consistency Requirements for Subtables
m Consistency requirements on subtables and supertables.

Each tuple of the supertable (e.g. people) can correspond to at
most one tuple in each of the subtables (e.g. students and teachers)

Additional constraintin SQL:1999:

All tuples corresponding to each other (that is, with the same values
for inherited attributes) must be derived from one tuple (inserted into
one table).

» Thatis, each entity must have a most specific type

» We cannot have a tuple in people corresponding to a tuple each
in students and teachers

Database System Concepts - 6t" Edition 22.27 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

5

Object-ldentity and Reference Types

Define a type Department with a field name and a field head which is a
reference to the type Person, with table people as scope:

create type Department (
name varchar (20),
head ref (Person) scope people)

We can then create a table departments as follows
create table departments of Department

We can omit the declaration scope people from the type declaration
and instead make an addition to the create table statement:
create table departments of Department
(head with options scope people)

Referenced table must have an attribute that stores the identifier, called
the self-referential attribute

create table people of Person
refis person_id system generated,;

Database System Concepts - 6t Edition 22.28 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

13

