
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Normalization

Prof. Chris Clifton

3 October 2016

Normalization

Goal = BCNF = Boyce-Codd Normal Form =
all FD’s follow from the fact “key  everything.”
• Formally, R is in BCNF if for every nontrivial FD for

R, say X  A, then X is a superkey.
– “Nontrivial” = right-side attribute not in left side.

Why?
1. Guarantees no redundancy due to FD’s.

2. Guarantees no update anomalies = one occurrence
of a fact is updated, not all.

3. Guarantees no deletion anomalies = valid fact is lost
when tuple is deleted.

Fall 2016 Chris Clifton - CS34800 3

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan8.5Database System Concepts - 6th Edition

First Normal Form

 Domain is atomic if its elements are considered to be indivisible units

 Examples of non-atomic domains:

 Set of names, composite attributes

 Identification numbers like CS101 that can be broken up into

parts

 A relational schema R is in first normal form if the domains of all

attributes of R are atomic

 Non-atomic values complicate storage and encourage redundant

(repeated) storage of data

 Example: Set of accounts stored with each customer, and set of

owners stored with each account

 We assume all relations are in first normal form (and revisit this in

Chapter 22: Object Based Databases)

©Silberschatz, Korth and Sudarshan8.6Database System Concepts - 6th Edition

First Normal Form (Cont’d)

 Atomicity is actually a property of how the elements of the domain are

used.

 Example: Strings would normally be considered indivisible

 Suppose that students are given roll numbers which are strings of

the form CS0012 or EE1127

 If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.

 Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan8.7Database System Concepts - 6th Edition

Boyce-Codd Normal Form

    is trivial (i.e.,   )

  is a superkey for R

A relation schema R is in BCNF with respect to a set F of

functional dependencies if for all functional dependencies in F+ of

the form

  

where   R and   R, at least one of the following holds:

Example schema not in BCNF:

instr_dept (ID, name, salary, dept_name, building, budget)

because dept_name building, budget
holds on instr_dept, but dept_name is not a superkey

©Silberschatz, Korth and Sudarshan8.8Database System Concepts - 6th Edition

Decomposing a Schema into BCNF

 Suppose we have a schema R and a non-trivial dependency  
causes a violation of BCNF.

We decompose R into:

• ( U )

• (R - ( - ))

 In our example,

  = dept_name

  = building, budget

and inst_dept is replaced by

 ( U ) = (dept_name, building, budget)

 (R - ( - )) = (ID, name, salary, dept_name)

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan8.9Database System Concepts - 6th Edition

BCNF and Dependency Preservation

 Constraints, including functional dependencies, are costly to check in

practice unless they pertain to only one relation

 If it is sufficient to test only those dependencies on each individual

relation of a decomposition in order to ensure that all functional

dependencies hold, then that decomposition is dependency

preserving.

 Because it is not always possible to achieve both BCNF and

dependency preservation, we consider a weaker normal form, known

as third normal form.

©Silberschatz, Korth and Sudarshan8.10Database System Concepts - 6th Edition

Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:

   in F+

at least one of the following holds:

    is trivial (i.e.,   )

  is a superkey for R

 Each attribute A in  –  is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the first two

conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure dependency

preservation (will see why later).

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan8.11Database System Concepts - 6th Edition

Goals of Normalization

 Let R be a relation scheme with a set F of functional dependencies.

 Decide whether a relation scheme R is in “good” form.

 In the case that a relation scheme R is not in “good” form,

decompose it into a set of relation scheme {R1, R2, ..., Rn} such that

 each relation scheme is in good form

 the decomposition is a lossless-join decomposition

 Preferably, the decomposition should be dependency preserving.

©Silberschatz, Korth and Sudarshan8.12Database System Concepts - 6th Edition

Lossless-join Decomposition

 For the case of R = (R1, R2), we require that for all possible relations r

on schema R

r = R1 (r) R2 (r)

 A decomposition of R into R1 and R2 is lossless join if at least one of

the following dependencies is in F+:

 R1  R2  R1

 R1  R2  R2

 The above functional dependencies are a sufficient condition for

lossless join decomposition; the dependencies are a necessary

condition only if all constraints are functional dependencies

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan8.13Database System Concepts - 6th Edition

Example

 R = (A, B, C)

F = {A  B, B  C)

 Can be decomposed in two different ways

 R1 = (A, B), R2 = (B, C)

 Lossless-join decomposition:

R1  R2 = {B} and B  BC

 Dependency preserving

 R1 = (A, B), R2 = (A, C)

 Lossless-join decomposition:

R1  R2 = {A} and A AB

 Not dependency preserving

(cannot check B  C without computing R1 R2)

©Silberschatz, Korth and Sudarshan8.14Database System Concepts - 6th Edition

Dependency Preservation

 Let Fi be the set of dependencies F + that include only attributes in

Ri.

 A decomposition is dependency preserving, if

(F1  F2  …  Fn)
+ = F +

 If it is not, then checking updates for violation of functional

dependencies may require computing joins, which is

expensive.

©Jan-16 Christopher W. Clifton 720

Fall 2016 Chris Clifton - CS34800 17

Decomposition to Reach

BCNF

Setting: relation R, given FD’s F.

Suppose relation R has BCNF violation X  B.

• We need only look among FD’s of F for a BCNF
violation, not those that follow from F.

• Proof: If Y  A is a BCNF violation and follows
from F, then the computation of Y+ used at least
one FD X  B from F.
– X must be a subset of Y.

– Thus, if Y is not a superkey, X cannot be a superkey
either, and X  B is also a BCNF violation.

Algorithm for BCNF

1. Compute X+.
– Cannot be all attributes – why?

2. Decompose R into X+ and (R–X+)  X.

3. Find the FD’s for the decomposed relations.
– Project the FD’s from F = calculate all consequents of

F that involve only attributes from X+ or only from
(RX+)  X.

R X+X

Fall 2016 Chris Clifton - CS34800 18

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan8.20Database System Concepts - 6th Edition

BCNF Decomposition Algorithm

result := {R };

done := false;

compute F +;

while (not done) do

if (there is a schema Ri in result that is not in BCNF)

then begin

let    be a nontrivial functional dependency that

holds on Ri such that   Ri is not in F +,

and    = ;

result := (result – Ri)  (Ri – )  (, );
end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

©Silberschatz, Korth and Sudarshan8.21Database System Concepts - 6th Edition

Example of BCNF Decomposition

 R = (A, B, C)

F = {A  B

B  C}
Key = {A}

 R is not in BCNF (B  C but B is not superkey)

 Decomposition

 R1 = (B, C)

 R2 = (A,B)

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan8.22Database System Concepts - 6th Edition

Example of BCNF Decomposition

 class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)

 Functional dependencies:

 course_id→ title, dept_name, credits

 building, room_number→capacity

 course_id, sec_id, semester, year→building, room_number,
time_slot_id

 A candidate key {course_id, sec_id, semester, year}.

 BCNF Decomposition:

 course_id→ title, dept_name, credits holds

 but course_id is not a superkey.

 We replace class by:

 course(course_id, title, dept_name, credits)

 class-1 (course_id, sec_id, semester, year, building,
room_number, capacity, time_slot_id)

©Silberschatz, Korth and Sudarshan8.23Database System Concepts - 6th Edition

BCNF Decomposition (Cont.)

 course is in BCNF

 How do we know this?

 building, room_number→capacity holds on class-1

 but {building, room_number} is not a superkey for class-1.

 We replace class-1 by:

 classroom (building, room_number, capacity)

 section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)

 classroom and section are in BCNF.

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan8.26Database System Concepts - 6th Edition

Testing for Dependency Preservation

 To check if a dependency    is preserved in a decomposition
of R into R1, R2, …, Rn we apply the following test (with attribute

closure done with respect to F)

 result = 

while (changes to result) do

for each Ri in the decomposition

t = (result  Ri)
+  Ri

result = result  t

 If result contains all attributes in , then the functional

dependency

   is preserved.

 We apply the test on all dependencies in F to check if a

decomposition is dependency preserving

 This procedure takes polynomial time, instead of the exponential

time required to compute F+ and (F1  F2  …  Fn)
+

©Silberschatz, Korth and Sudarshan8.27Database System Concepts - 6th Edition

Example

 R = (A, B, C)

F = {A  B

B  C}
Key = {A}

 R is not in BCNF

 Decomposition R1 = (A, B), R2 = (B, C)

 R1 and R2 in BCNF

 Lossless-join decomposition

 Dependency preserving

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan8.28Database System Concepts - 6th Edition

Testing for BCNF

 To check if a non-trivial dependency  causes a violation of BCNF

1. compute + (the attribute closure of ), and

2. verify that it includes all attributes of R, that is, it is a superkey of R.

 Simplified test: To check if a relation schema R is in BCNF, it suffices
to check only the dependencies in the given set F for violation of BCNF,
rather than checking all dependencies in F+.

 If none of the dependencies in F causes a violation of BCNF, then
none of the dependencies in F+ will cause a violation of BCNF
either.

 However, simplified test using only F is incorrect when testing a
relation in a decomposition of R

 Consider R = (A, B, C, D, E), with F = { A  B, BC  D}

 Decompose R into R1 = (A,B) and R2 = (A,C,D, E)

 Neither of the dependencies in F contain only attributes from
(A,C,D,E) so we might be mislead into thinking R2 satisfies
BCNF.

 In fact, dependency AC  D in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan8.29Database System Concepts - 6th Edition

Testing Decomposition for BCNF

 To check if a relation Ri in a decomposition of R is in BCNF,

 Either test Ri for BCNF with respect to the restriction of F to Ri

(that is, all FDs in F+ that contain only attributes from Ri)

 or use the original set of dependencies F that hold on R, but with

the following test:

– for every set of attributes   Ri, check that + (the

attribute closure of ) either includes no attribute of Ri- ,

or includes all attributes of Ri.

 If the condition is violated by some    in F, the
dependency

  (+ - )  Ri

can be shown to hold on Ri, and Ri violates BCNF.

 We use above dependency to decompose Ri

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan8.30Database System Concepts - 6th Edition

BCNF and Dependency Preservation

 R = (J, K, L)

F = {JK  L

L  K }
Two candidate keys = JK and JL

 R is not in BCNF

 Any decomposition of R will fail to preserve

JK  L

This implies that testing for JK  L requires a join

It is not always possible to get a BCNF decomposition that is

dependency preserving

CS34800

Information Systems

Populating a Database

Prof. Chris Clifton

5 October 2016

©Jan-16 Christopher W. Clifton 1320

Four Ways

• Create table from result of query

• Insert query result into a table

• Insert “a tuple at a time”

• “Bulk Loader”

Fall 2016 Chris Clifton - CS34800 32

Creating table from query

• CREATE TABLE course_instructors AS

SELECT course_name, name, phone

FROM courses, instructors

WHERE courses.instructor_id = instructors.id;

Fall 2016 Chris Clifton - CS34800 33

course_title instructor_id room

instructor_id name phone

instructors

courses

©Jan-16 Christopher W. Clifton 1420

Populating table from query

• CREATE TABLE course_instructors (
course_name varchar(30),
instructor_name varchar(30),
phone number(10));

• INSERT INTO course_instructors
SELECT course_name, name, phone
FROM courses, instructors
WHERE courses.instructor_id = instructors.id;

Fall 2016 Chris Clifton - CS34800 34

course_title instructor_id room

instructor_id name phone

instructors

courses

Insert tuple-by-tuple

• CREATE TABLE course_instructors (

course_name varchar(30),

instructor_name varchar(30),

phone number(10));

• INSERT INTO course_instructors

values(‘Information Systems’,

‘Chris Clifton’,

46005) ;

Fall 2016 Chris Clifton - CS34800 35

©Jan-16 Christopher W. Clifton 1520

Bulk Loader

• Various utilities, vendor-specific

• Oracle: SQL*Loader (sqlldr)

– (and others)

– We won’t cover in class

• More generic – create a file of insert

statements

– sqlplus “@filename”

Fall 2016 Chris Clifton - CS34800 36

CS34800

Information Systems

Normalization

Prof. Chris Clifton

5 October 2016

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan8.38Database System Concepts - 6th Edition

How good is BCNF?

 There are database schemas in BCNF that do not seem to be

sufficiently normalized

 Consider a relation

inst_info (ID, child_name, phone)

 where an instructor may have more than one phone and can have

multiple children

ID child_name phone

99999

99999

99999

99999

David

David

William

Willian

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_info

©Silberschatz, Korth and Sudarshan8.39Database System Concepts - 6th Edition

 There are no non-trivial functional dependencies and therefore the

relation is in BCNF

 Insertion anomalies – i.e., if we add a phone 981-992-3443 to 99999,

we need to add two tuples

(99999, David, 981-992-3443)

(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan8.40Database System Concepts - 6th Edition

 Therefore, it is better to decompose inst_info into:

This suggests the need for higher normal forms, such as Fourth

Normal Form (4NF), which we shall see later.

How good is BCNF? (Cont.)

ID child_name

99999

99999

99999

99999

David

David

William

Willian

inst_child

ID phone

99999

99999

99999

99999

512-555-1234

512-555-4321

512-555-1234

512-555-4321

inst_phone

3NF

One FD structure causes problems:
• If you decompose, you can’t check all the FD’s only

in the decomposed relations.
• If you don’t decompose, you violate BCNF.
Abstractly: AB  C and C  B.
• Example 1: title city  theatre and
theatre  city.

• Example 2: street city  zip,
zip  city.

Keys: {A, B} and {A, C}, but C  B has a left side that
is not a superkey.

• Suggests decomposition into BC and AC.
– But you can’t check the FD AB  C in only these relations.

Fall 2016 Chris Clifton - CS34800 41

©Jan-16 Christopher W. Clifton 1820

Fall 2016 Chris Clifton - CS34800 42

Example

A = street, B = city, C = zip.

Join:

street zip

545 Tech Sq. 02138

545 Tech Sq. 02139

city zip

Cambridge 02138

Cambridge 02139

city street zip

Cambridge 545 Tech Sq. 02138

Cambridge 545 Tech Sq. 02139

zip  city

street city  zip

Fall 2016 Chris Clifton - CS34800 43

“Elegant” Workaround

Define the problem away.

• A relation R is in 3NF iff (if and only if)
for every nontrivial FD X  A, either:

1. X is a superkey, or

2. A is prime = member of at least one
key.

• Thus, the canonical problem goes away:
you don’t have to decompose because all
attributes are prime.

©Jan-16 Christopher W. Clifton 1920

What 3NF Gives You

There are two important properties of a decomposition:

1. We should be able to recover from the decomposed
relations the data of the original.

– Recovery involves projection and join, which we shall defer until
we’ve discussed relational algebra.

2. We should be able to check that the FD’s for the original
relation are satisfied by checking the projections of those
FD’s in the decomposed relations.

• Without proof, we assert that it is always possible to
decompose into BCNF and satisfy (1).

• Also without proof, we can decompose into 3NF and satisfy
both (1) and (2).

• But it is not possible to decompose into BNCF and get both
(1) and (2).

– Street-city-zip is an example of this point.

Fall 2016 Chris Clifton - CS34800 44

3NF Synthesis

• Given a canonical cover FC for F

• Schema S = 

•  A→BFc

– If there is no Ri  S such that AB  Ri

• S = S + AB

• If there is no Ri  S containing a candidate

key for R

– S = S + (any candidate key for R)

Chris Clifton - CS34800Fall 2016 45

©Jan-16 Christopher W. Clifton 2020

Fall 2016 Chris Clifton - CS34800 47

Multivalued Dependencies

The multivalued dependency X  Y holds

in a relation R if whenever we have two

tuples of R that agree in all the attributes

of X, then we can swap their Y

components and get two new tuples that

are also in R.

X Y others

4NF

Eliminate redundancy due to multiplicative effect of
MVD’s.

• Roughly: treat MVD’s as FD's for decomposition, but
not for finding keys.

• Formally: R is in Fourth Normal Form if whenever
MVD
X  Y is nontrivial (Y is not a subset of X, and X
 Y is not all attributes), then X is a superkey.
– Remember, X  Y implies X  Y, so 4NF is more

stringent
than BCNF.

• Decompose R, using
4NF violation X  Y,
into XY and X  (R—Y).

R YX

Fall 2016 Chris Clifton - CS34800 51

©Jan-16 Christopher W. Clifton 2120

4NF Decomposition

• Schema S = R, D+ be the closure of the

functional and multivalued dependencies

• While  Ri  S not in 4NF w.r.t. D+

– Choose a nontrivial multivalued dependency

A B that holds on Ri, where A  Ri  D+,

and A  B = 

– S = (S – Ri)  (Ri-B)  (A,B)

Chris Clifton - CS34800Fall 2016 53

CS34800

Information Systems

Normalization

Prof. Chris Clifton

7 October 2016

©Jan-16 Christopher W. Clifton 2220

Scheduling Interviews

Chris Clifton - CS34800 56

Applicant ScheduleInterview

Talk datename School

@Submitted

Writer

name Inst

LetterApplication

Prof

name room

time

Interviews

CV Statement

