
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Application Connection to DBMS

Prof. Chris Clifton

24 October 2016

©Silberschatz, Korth and Sudarshan9.2Database System Concepts - 6th Edition

Application Programs and User Interfaces

 Most database users do not use a query language like SQL

 An application program acts as the intermediary between users and

the database

 Applications split into

 front-end

 middle layer

 backend

 Front-end: user interface

 Forms

 Graphical user interfaces

 Many interfaces are Web-based

©Jan-16 Christopher W. Clifton 220

©Silberschatz, Korth and Sudarshan9.3Database System Concepts - 6th Edition

Application Architecture Evolution

 Three distinct era’s of application architecture

 mainframe (1960’s and 70’s)

 personal computer era (1980’s)

 We era (1990’s onwards)

©Silberschatz, Korth and Sudarshan9.4Database System Concepts - 6th Edition

Web Interface

 Web browsers have become the de-facto standard user interface to

databases

 Enable large numbers of users to access databases from

anywhere

 Avoid the need for downloading/installing specialized code, while

providing a good graphical user interface

 Javascript, Flash and other scripting languages run in

browser, but are downloaded transparently

 Examples: banks, airline and rental car reservations, university

course registration and grading, an so on.

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan9.5Database System Concepts - 6th Edition

The World Wide Web

 The Web is a distributed information system based on hypertext.

 Most Web documents are hypertext documents formatted via the

HyperText Markup Language (HTML)

 HTML documents contain

 text along with font specifications, and other formatting instructions

 hypertext links to other documents, which can be associated with

regions of the text.

 forms, enabling users to enter data which can then be sent back to

the Web server

©Silberschatz, Korth and Sudarshan9.6Database System Concepts - 6th Edition

Uniform Resources Locators

 In the Web, functionality of pointers is provided by Uniform Resource
Locators (URLs).

 URL example:

http://www.acm.org/sigmod

 The first part indicates how the document is to be accessed

 “http” indicates that the document is to be accessed using the
Hyper Text Transfer Protocol.

 The second part gives the unique name of a machine on the
Internet.

 The rest of the URL identifies the document within the machine.

 The local identification can be:

 The path name of a file on the machine, or

 An identifier (path name) of a program, plus arguments to be
passed to the program

– E.g., http://www.google.com/search?q=silberschatz

http://a/
http://www.google.com/search?q=silberschatz

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan9.7Database System Concepts - 6th Edition

HTML and HTTP

 HTML provides formatting, hypertext link, and image display features

 including tables, stylesheets (to alter default formatting), etc.

 HTML also provides input features

 Select from a set of options

– Pop-up menus, radio buttons, check lists

 Enter values

– Text boxes

 Filled in input sent back to the server, to be acted upon by an

executable at the server

 HyperText Transfer Protocol (HTTP) used for communication with the

Web server

©Silberschatz, Korth and Sudarshan9.8Database System Concepts - 6th Edition

Web Servers

 A Web server can easily serve as a front end to a variety of

information services.

 The document name in a URL may identify an executable

program, that, when run, generates a HTML document.

 When an HTTP server receives a request for such a

document, it executes the program, and sends back the

HTML document that is generated.

 The Web client can pass extra arguments with the name of

the document.

 To install a new service on the Web, one simply needs to create

and install an executable that provides that service.

 The Web browser provides a graphical user interface to the

information service.

 Common Gateway Interface (CGI): a standard interface between

web and application server

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan9.9Database System Concepts - 6th Edition

Three-Layer Web Architecture

©Silberschatz, Korth and Sudarshan9.10Database System Concepts - 6th Edition

Two-Layer Web Architecture

 Multiple levels of indirection have overheads

Alternative: two-layer architecture

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan9.11Database System Concepts - 6th Edition

HTTP and Sessions

 The HTTP protocol is connectionless

 That is, once the server replies to a request, the server

closes the connection with the client, and forgets all about

the request

 In contrast, Unix logins, and JDBC/ODBC connections

stay connected until the client disconnects

 retaining user authentication and other information

 Motivation: reduces load on server

 operating systems have tight limits on number of open

connections on a machine

 Information services need session information

 E.g., user authentication should be done only once per

session

 Solution: use a cookie

©Silberschatz, Korth and Sudarshan9.12Database System Concepts - 6th Edition

Sessions and Cookies

 A cookie is a small piece of text containing identifying

information

 Sent by server to browser

 Sent on first interaction, to identify session

 Sent by browser to the server that created the cookie on

further interactions

 part of the HTTP protocol

 Server saves information about cookies it issued, and can

use it when serving a request

 E.g., authentication information, and user preferences

 Cookies can be stored permanently or for a limited time

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan9.13Database System Concepts - 6th Edition

Servlets

 Java Servlet specification defines an API for communication

between the Web/application server and application program

running in the server

 E.g., methods to get parameter values from Web forms,

and to send HTML text back to client

 Application program (also called a servlet) is loaded into the

server

 Each request spawns a new thread in the server

 thread is closed once the request is serviced

©Silberschatz, Korth and Sudarshan9.14Database System Concepts - 6th Edition

Example Servlet Code

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PersonQueryServlet extends HttpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");

out.println("<BODY>");

….. BODY OF SERVLET (next slide) …

out.println("</BODY>");

out.close();

}

}

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan9.15Database System Concepts - 6th Edition

Example Servlet Code

String persontype = request.getParameter("persontype");

String number = request.getParameter("name");

if(persontype.equals("student")) {

... code to find students with the specified name ...

... using JDBC to communicate with the database ..

out.println("<table BORDER COLS=3>");

out.println(" <tr> <td>ID</td> <td>Name: </td>" + " <td>Department</td> </tr>");

for(... each result ...){

... retrieve ID, name and dept name

... into variables ID, name and deptname

out.println("<tr> <td>" + ID + "</td>" + "<td>" + name + "</td>" + "<td>" + deptname
+ "</td></tr>");

};

out.println("</table>");

}

else {

... as above, but for instructors ...

}

©Silberschatz, Korth and Sudarshan9.16Database System Concepts - 6th Edition

Servlet Sessions

 Servlet API supports handling of sessions

 Sets a cookie on first interaction with browser, and uses it to

identify session on further interactions

 To check if session is already active:

 if (request.getSession(false) == true)

 .. then existing session

 else .. redirect to authentication page

 authentication page

 check login/password

 request.getSession(true): creates new session

 Store/retrieve attribute value pairs for a particular session

 session.setAttribute(“userid”, userid)

 session.getAttribute(“userid”)

©Jan-16 Christopher W. Clifton 920

©Silberschatz, Korth and Sudarshan9.17Database System Concepts - 6th Edition

Servlet Support

 Servlets run inside application servers such as

 Apache Tomcat, Glassfish, JBoss

 BEA Weblogic, IBM WebSphere and Oracle Application Servers

 Application servers support

 deployment and monitoring of servlets

 Java 2 Enterprise Edition (J2EE) platform supporting objects,

parallel processing across multiple application servers, etc

©Silberschatz, Korth and Sudarshan9.18Database System Concepts - 6th Edition

Server-Side Scripting

 Server-side scripting simplifies the task of connecting a database to

the Web

 Define an HTML document with embedded executable code/SQL

queries.

 Input values from HTML forms can be used directly in the

embedded code/SQL queries.

 When the document is requested, the Web server executes the

embedded code/SQL queries to generate the actual HTML

document.

 Numerous server-side scripting languages

 JSP, PHP

 General purpose scripting languages: VBScript, Perl, Python

©Jan-16 Christopher W. Clifton 1020

©Silberschatz, Korth and Sudarshan9.19Database System Concepts - 6th Edition

Java Server Pages (JSP)

 A JSP page with embedded Java code

<html>

<head> <title> Hello </title> </head>

<body>

<% if (request.getParameter(“name”) == null)

{ out.println(“Hello World”); }

else { out.println(“Hello, ” + request.getParameter(“name”)); }

%>

</body>

</html>

 JSP is compiled into Java + Servlets

 JSP allows new tags to be defined, in tag libraries

 such tags are like library functions, can are used for example to
build rich user interfaces such as paginated display of large
datasets

©Silberschatz, Korth and Sudarshan9.20Database System Concepts - 6th Edition

PHP

 PHP is widely used for Web server scripting

 Extensive libaries including for database access using ODBC

<html>

<head> <title> Hello </title> </head>

<body>

<?php if (!isset($_REQUEST[‘name’]))

{ echo “Hello World”; }

else { echo “Hello, ” + $_REQUEST[‘name’]; }

?>

</body>

</html>

©Jan-16 Christopher W. Clifton 1120

©Silberschatz, Korth and Sudarshan9.21Database System Concepts - 6th Edition

Client Side Scripting

 Browsers can fetch certain scripts (client-side scripts) or

programs along with documents, and execute them in “safe

mode” at the client site

 Javascript

 Macromedia Flash and Shockwave for animation/games

 VRML

 Applets

 Client-side scripts/programs allow documents to be active

 E.g., animation by executing programs at the local site

 E.g., ensure that values entered by users satisfy some

correctness checks

 Permit flexible interaction with the user.

 Executing programs at the client site speeds up

interaction by avoiding many round trips to server

©Silberschatz, Korth and Sudarshan9.22Database System Concepts - 6th Edition

Client Side Scripting and Security

 Security mechanisms needed to ensure that malicious scripts

do not cause damage to the client machine

 Easy for limited capability scripting languages, harder for

general purpose programming languages like Java

 E.g., Java’s security system ensures that the Java applet

code does not make any system calls directly

 Disallows dangerous actions such as file writes

 Notifies the user about potentially dangerous actions, and

allows the option to abort the program or to continue

execution.

©Jan-16 Christopher W. Clifton 1220

©Silberschatz, Korth and Sudarshan9.23Database System Concepts - 6th Edition

Javascript

 Javascript very widely used

 forms basis of new generation of Web applications (called Web
2.0 applications) offering rich user interfaces

 Javascript functions can

 check input for validity

 modify the displayed Web page, by altering the underling
document object model (DOM) tree representation of the
displayed HTML text

 communicate with a Web server to fetch data and modify the
current page using fetched data, without needing to reload/refresh
the page

 forms basis of AJAX technology used widely in Web 2.0
applications

 E.g. on selecting a country in a drop-down menu, the list of
states in that country is automatically populated in a linked
drop-down menu

©Silberschatz, Korth and Sudarshan9.24Database System Concepts - 6th Edition

Javascript

 Example of Javascript used to validate form input

<html> <head>
<script type="text/javascript">

function validate() {
var credits=document.getElementById("credits").value;
if (isNaN(credits)|| credits<=0 || credits>=16) {

alert("Credits must be a number greater than 0 and less than 16");
return false

}
}

</script>

</head> <body>
<form action="createCourse" onsubmit="return validate()">

Title: <input type="text" id="title" size="20">

Credits: <input type="text" id="credits" size="2">

<Input type="submit" value="Submit">

</form>

</body> </html>

©Jan-16 Christopher W. Clifton 1320

©Silberschatz, Korth and Sudarshan9.25Database System Concepts - 6th Edition

Application Architectures

 Application layers

 Presentation or user interface

 model-view-controller (MVC) architecture

– model: business logic

– view: presentation of data, depends on display device

– controller: receives events, executes actions, and returns a view

to the user

 business-logic layer

 provides high level view of data and actions on data

– often using an object data model

 hides details of data storage schema

 data access layer

 interfaces between business logic layer and the underlying database

 provides mapping from object model of business layer to relational

model of database

©Silberschatz, Korth and Sudarshan9.26Database System Concepts - 6th Edition

Business Logic Layer

 Provides abstractions of entities

 e.g. students, instructors, courses, etc

 Enforces business rules for carrying out actions

 E.g. student can enroll in a class only if she has completed

prerequsites, and has paid her tuition fees

 Supports workflows which define how a task involving multiple

participants is to be carried out

 E.g. how to process application by a student applying to a

university

 Sequence of steps to carry out task

 Error handling

 e.g. what to do if recommendation letters not received on time

 Workflows discussed in Section 26.2

©Jan-16 Christopher W. Clifton 1420

©Silberschatz, Korth and Sudarshan9.27Database System Concepts - 6th Edition

Object-Relational Mapping

 Allows application code to be written on top of object-oriented data
model, while storing data in a traditional relational database

 alternative: implement object-oriented or object-relational
database to store object model

 has not been commercially successful

 Schema designer has to provide a mapping between object data and
relational schema

 e.g. Java class Student mapped to relation student, with
corresponding mapping of attributes

 An object can map to multiple tuples in multiple relations

 Application opens a session, which connects to the database

 Objects can be created and saved to the database using
session.save(object)

 mapping used to create appropriate tuples in the database

 Query can be run to retrieve objects satisfying specified predicates

©Silberschatz, Korth and Sudarshan9.28Database System Concepts - 6th Edition

Object-Relational Mapping and Hibernate

(Cont.)

 The Hibernate object-relational mapping system is widely used

 public domain system, runs on a variety of database systems

 supports a query language that can express complex queries

involving joins

 translates queries into SQL queries

 allows relationships to be mapped to sets associated with objects

 e.g. courses taken by a student can be a set in Student object

 See book for Hibernate code example

 The Entity Data Model developed by Microsoft

 provides an entity-relationship model directly to application

 maps data between entity data model and underlying storage,

which can be relational

 Entity SQL language operates directly on Entity Data Model

©Jan-16 Christopher W. Clifton 1520

©Silberschatz, Korth and Sudarshan9.29Database System Concepts - 6th Edition

Web Services

 Allow data on Web to be accessed using remote procedure call

mechanism

 Two approaches are widely used

 Representation State Transfer (REST): allows use of standard

HTTP request to a URL to execute a request and return data

 returned data is encoded either in XML, or in JavaScript

Object Notation (JSON)

 Big Web Services:

 uses XML representation for sending request data, as well as

for returning results

 standard protocol layer built on top of HTTP

 See Section 23.7.3

©Silberschatz, Korth and Sudarshan5.33Database System Concepts - 6th Edition

Accessing SQL From a Programming Language

 API (application-program interface) for a program to interact with a

database server

 Application makes calls to

 Connect with the database server

 Send SQL commands to the database server

 Fetch tuples of result one-by-one into program variables

 Various tools:

 JDBC (Java Database Connectivity) works with Java

 ODBC (Open Database Connectivity) works with C, C++, C#,

and Visual Basic. Other API’s such as ADO.NET sit on top of

ODBC

 Embedded SQL

©Jan-16 Christopher W. Clifton 1620

©Silberschatz, Korth and Sudarshan5.34Database System Concepts - 6th Edition

Embedded SQL

 The SQL standard defines embeddings of SQL in a variety of

programming languages such as C, C++, Java, Fortran, and PL/1,

 A language to which SQL queries are embedded is referred to as a

host language, and the SQL structures permitted in the host

language comprise embedded SQL.

 The basic form of these languages follows that of the System R

embedding of SQL into PL/1.

 EXEC SQL statement is used to identify embedded SQL request to

the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

 In some languages, like COBOL, the semicolon is replaced with

END-EXEC

 In Java embedding uses # SQL { …. };

©Silberschatz, Korth and Sudarshan5.35Database System Concepts - 6th Edition

ODBC

 Open DataBase Connectivity (ODBC) standard

 standard for application program to communicate with a

database server.

 application program interface (API) to

 open a connection with a database,

 send queries and updates,

 get back results.

 Applications such as GUI, spreadsheets, etc. can use ODBC

©Jan-16 Christopher W. Clifton 1720

©Silberschatz, Korth and Sudarshan5.36Database System Concepts - 6th Edition

JDBC

 JDBC is a Java API for communicating with database systems

supporting SQL.

 JDBC supports a variety of features for querying and updating data,

and for retrieving query results.

 JDBC also supports metadata retrieval, such as querying about

relations present in the database and the names and types of

relation attributes.

 Model for communicating with the database:

 Open a connection

 Create a “statement” object

 Execute queries using the Statement object to send queries and

fetch results

 Exception mechanism to handle errors

JDBC

1. Connect to the database

2. Issue query

3. Process results

4. Close connection

37CS34800

©Jan-16 Christopher W. Clifton 1820

JDBC Connection

(the hardest part)

• import java.sql.*

• Connection conn =

DriverManager.getConnection{“jdbc:oracle

:thin:@claros.cs.purdue.edu:1524:strep”,

”clifton”, “password”);

– Contents of first argument vary by DBMS

• http://docs.oracle.com/database/121/TDPJD/toc.htm

• http://docs.oracle.com/javase/7/docs/api/

CS34800 38

Executing SQL

• Build a statement

– ps = conn.prepareStatement(“select dummy,

? From dual”);

– ps.setString(1, “stuff”);

• Execute the statement

– ps.executeQuery();

– Also executes for update

CS34800 39

http://docs.oracle.com/database/121/TDPJD/toc.htm
http://docs.oracle.com/javase/7/docs/api/

©Jan-16 Christopher W. Clifton 1920

Working with Results

• ResultSet rs = ps.executeQuery();

• While (! rs. isAfterLast()) {
i = rs.getInt(1);
s = rs.getString(2);
rs.next();

}

• Can also update, delete, insert rows in the
ResultSet

– Explicitly save back

CS34800 40

CS34800

Information Systems

JDBC Updates

Prof. Chris Clifton

26 October 2016

©Jan-16 Christopher W. Clifton 2020

Updates:

SQL Insert/Update Statements

• Statement execute method

– boolean typeOfResult =

stmt.execute(“insert into tab values (‘a’, 3)”);

– typeOfResult indicates if a ResultSet

• Better: Statement executeUpdate method

– int executeUpdate(“insert into tab values(‘a’,

3)”);

– Returns number of rows inserted or updated

CS34800 43

Approach 2: Update in place:

Edit a ResultSet
• PreparedStatement ps = conn.prepareStatement(“select *

from tab”,
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_UPDATABLE,
ResultSet.CLOSE_CURSORS_AT_COMMIT);

• ResultSet rs = stmt.executeQuery();

• rs.updateString(“s”, “Chris”);
– Updates the FirstName column at the current row in the

ResultSet

• rs.updateRow();
– Saves updates to the current row to the database

• rs.moveToInsertRow();
– Edit data using rs.update…

– rs.insertRow();

CS34800 44

ResultSet.TYPE_SCROLL_INSENSITIVE

©Jan-16 Christopher W. Clifton 2120

Batch Updates

• stmt.addBatch(“insert into tab values(‘a’,

3)”);

stmt.addBatch(“insert into tab values(‘c’,

4)”);

• stmt.executeBatch();

CS34800 45

SQLException

• Almost any of these can throw a

SQLException

– Start with getMessage()…

– Can do some interesting things with errors

when they occur (e.g., violation of constraints)

CS34800 46

©Jan-16 Christopher W. Clifton 2220

©Silberschatz, Korth and Sudarshan9.47Database System Concepts - 6th Edition

SQL Injection

 Suppose query is constructed using

 "select * from instructor where name = ’" + name + "’"

 Suppose the user, instead of entering a name, enters:

 X’ or ’Y’ = ’Y

 then the resulting statement becomes:

 "select * from instructor where name = ’" + "X’ or ’Y’ = ’Y" + "’"

 which is:

 select * from instructor where name = ’X’ or ’Y’ = ’Y’

 User could have even used

 X’; update instructor set salary = salary + 10000; --

 Prepared statement internally uses:

"select * from instructor where name = ’X\’ or \’Y\’ = \’Y’

 Always use prepared statements, with user inputs as parameters

 Is the following prepared statemen secure?

 conn.prepareStatement("select * from instructor where name = ’" + name + "’“)

