PURDUE

CS34800
Information Systems

Indexing & Hashing
Prof. Chris Clifton
31 October 2016

Indiana

Center for
J Database

}Systemsﬁ,ﬁ
P

>/ ,Jk_/»‘/ -
o

s

P First:
Triggers - Limitations

« Many database functions do not quite work
as expected
— One example: Trigger on a table that modifies
that table
» Often published “work-arounds”

« You may run into one of these on Project 3
Question 5b
— Will send out a “hint” this afternoon

— This will only be 5 points (i.e., we only expect A-
level students to get this part.)

CS34800 2

© 2016 Christopher W. Clifton

bR Indexing and Hashing
« Goal: Faster access to data
— Faster than scanning the whole table

« Search Key: attribute/column for which faster
search enabled

— Not the same as keys for database design
» Index: Tree structure allowing faster search
— Logarithmic time

» Hashing: Group data into “buckets” based on
value of search key

— If all goes well, constant time access

CS34800 3

E Ordered Indices

-

® |n an ordered index, index entries are stored sorted on the search key
value. E.g., author catalog in library.

B Primary index: in a sequentially ordered file, the index whose search
key specifies the sequential order of the file.

Also called clustering index

The search key of a primary index is usually but not necessarily the
primary key.

m Secondary index: an index whose search key specifies an order
different from the sequential order of the file. Also called
non-clustering index.

® Index-sequential file: ordered sequential file with a primary index.

Database System Concepts - 6t" Edition 11.5 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

value in the file.

Dense Index Files

m E.g.index on ID attribute of instructor relation

B Dense index — Index record appears for every search-key

Database System Concepts - 6" Edition

11.7

10101 10101 |Srinivasan | Comp. Sci. | 65000 —7
12121 12121 (Wu Finance 90000 i
15151 15151 |Mozart Music 40000 ‘7
22222 22222 |Einstein Physics 95000 ‘7
32343 32343 |El Said History 60000 _7
33456 33456 |Gold Physics 87000 -7
45565 45565 |Katz Comp. Sci. | 75000 —7
58583 58583 | Califieri History 62000 —7
76543 76543 |Singh Finance 80000 -7
76766 76766 |Crick Biology 72000 —7
83821 83821 |Brandt Comp. Sci. | 92000 _>
98345 98345 |Kim Elec. Eng. 80000 _7
L
Database System Concepts - 6t Edition 11.6 ©Silberschatz, Korth and Sudarshan
s Dense Index Files (Cont.)
® Dense index on dept_name, with instructor file sorted on
dept_name
Biology 76766 | Crick Biology 72000 7
Comp. Sci. 10101 | Srinivasan| Comp. Sci. 65000 7
Elec. Eng. 45565 | Katz Comp. Sci. 75000 i
Finance \ 83821 | Brandt | Comp. Sci. | 92000 1
History \\ 98345 | Kim Elec. Eng. | 80000 | 1«
Music \ 12121 | Wu Finance 90000 | 1«
Physics \ \ 76543 | Singh Finance 80000 _7
32343 | ElSaid | History 60000 | 1«
\ 58583 | Califieri History 62000 ﬁ7
15151 | Mozart Music 40000 _7
22222 | Einstein | Physics 95000 _7
33465 | Gold Physics 87000 _%_

©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

g Sparse Index Files

B Sparse Index: contains index records for only some search-key
values.

Applicable when records are sequentially ordered on search-key
B To locate a record with search-key value K we:
Find index record with largest search-key value < K

Search file sequentially starting at the record to which the index
record points

10101 10101 |Srinivasan| Comp. Sci.| 65000 1

32343 12121 |[Wu Finance 90000 -7

76766 15151 |Mozart | Music 40000 1
22222 |Einstein | Physics 95000 -g
32343 |El Said History 60000 i
33456 |Gold Physics 87000 ~7
45565 |Katz Comp. Sci.| 75000 _?
58583 |Califieri | History 62000 _7
76543 |Singh Finance 80000 —7
76766 |Crick Biology 72000 —7
83821 |Brandt Comp. Sci.| 92000 —7
98345 |Kim Elec. Eng. | 80000 _7

Database System Concepts - 6t Edition 11.8 ©Silberschatz, Korth and Sudarshan

g Secondary Indices

m Frequently, one wants to find all the records whose values in
a certain field (which is not the search-key of the primary
index) satisfy some condition.

Example 1: In the instructor relation stored sequentially by
ID, we may want to find all instructors in a particular
department

Example 2: as above, but where we want to find all
instructors with a specified salary or with salary in a
specified range of values

B We can have a secondary index with an index record for
each search-key value

Database System Concepts - 6t" Edition 11.12 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ﬂ Secondary Indices Example

=

40000 10101 | Srinivasan | Comp. Sci. | 65000 —P
60000 / 12121 |Wu Finance 90000 —P
62000 15151 | Mozart Music 40000 =
65000 | 22222 |Einstein | Physics 95000 | <
72000 | 32343 |EISaid | History | 60000 |
ggggg = 33456 | Gold Physics | 87000 —:;
87000 45565 |Katz Comp. Sci. | 75000 =+
90000 58583 |Califieri | History 62000 ==
92000 76543 | Singh Finance 80000 =l
95000 76766 | Crick Biology 72000 _:>
83821 |Brandt Comp. Sci. | 92000 _7
98345 |Kim Elec. Eng. 80000 _?

Secondary index on salary field of instructor

®m Index record points to a bucket that contains pointers to all the
actual records with that particular search-key value.

B Secondary indices have to be dense

Database System Concepts - 6t Edition 11.13 ©Silberschatz, Korth and Sudarshan

E‘.!L. Primary and Secondary Indices

Indices offer substantial benefits when searching for records.

BUT: Updating indices imposes overhead on database
modification --when a file is modified, every index on the file
must be updated,

B Sequential scan using primary index is efficient, but a
sequential scan using a secondary index is expensive

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus
about 100 nanoseconds for memory access

Database System Concepts - 6t" Edition 11.14 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

ayes Static Hashing

B A bucket is a unit of storage containing one or more records (a
bucket is typically a disk block).

® In a hash file organization we obtain the bucket of a record directly
from its search-key value using a hash function.

® Hash function h is a function from the set of all search-key values K
to the set of all bucket addresses B.

m Hash function is used to locate records for access, insertion as well
as deletion.

m Records with different search-key values may be mapped to the
same bucket; thus entire bucket has to be searched sequentially to
locate a record.

Database System Concepts - 6t Edition 11.17 ©Silberschatz, Korth and Sudarshan

ﬂ Example of Hash File Organization

=

Hash file organization of instructor file, using dept_name as key
(See figure in next slide.)

There are 10 buckets,
The binary representation of the ith character is assumed to be the
integer i.

® The hash function returns the sum of the binary representations of
the characters modulo 10

E.g. h(Music) = 1 h(History) = 2
h(Physics)= 3 h(Elec. Eng.) =3

Database System Concepts - 6t" Edition 11.18 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Example of Hash File Organization

bucket 0 bucket 4
12121 | Wu Finance 90000
76543 | Singh Finance |80000)

bucket 1 bucket 5
15151| Mozart | Music |40000 76766| Crick Biology |72000
bucket 2 bucket 6
32343| El Said | History 80000 10101 [Srinivasan |Comp. Sci,65000
58583 Califieri | History [60000 45565 |Katz Comp. Sci.[75000

83821 |Brandt |Comp. Sci 92000

bucket 3 bucket 7
22222\ Einstein | Physics | 95000
33456| Gold Physics |87000
98345| Kim Elec. Eng.[80000

Hash file organization of instructor file, using dept_name as key
(see previous slide for details).

Database System Concepts - 6t Edition 11.19 ©Silberschatz, Korth and Sudarshan

Hash Functions

® Worst hash function maps all search-key values to the same bucket;
this makes access time proportional to the number of search-key
values in the file.

® Anideal hash function is uniform, i.e., each bucket is assigned the
same number of search-key values from the set of all possible values.

m |deal hash function is random, so each bucket will have the same
number of records assigned to it irrespective of the actual distribution of
search-key values in the file.

m Typical hash functions perform computation on the internal binary
representation of the search-key.

For example, for a string search-key, the binary representations of
all the characters in the string could be added and the sum modulo
the number of buckets could be returned. .

Database System Concepts - 6t" Edition 11.20 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

Handling of Bucket Overflows

® Bucket overflow can occur because of
Insufficient buckets
Skew in distribution of records. This can occur due to two
reasons:
» multiple records have same search-key value
» chosen hash function produces non-uniform distribution of key
values

m Although the probability of bucket overflow can be reduced, it cannot
be eliminated; it is handled by using overflow buckets.

11.21 ©Silberschatz, Korth and Sudarshan

Database System Concepts - 6t Edition

g Handling of Bucket Overflows (Cont.)

m Overflow chaining — the overflow buckets of a given bucket are
chained together in a linked list.

B Above scheme s called closed hashing.

An alternative, called open hashing, which does not use overflow
buckets, is not suitable for database applications.

bucket 0
bucket 1 — —
overflow buckets for bucket 1
bucket 2
bucket 3
Database System Concepts - 6" Edition 11.22 ©Silberschatz, Korth and Sudarshan

© 2016 Christopher W. Clifton

T &

Creating Indexes

create index <name> on <relation>
(<attribute_list>)

— create index students_i_name on
students (lastname);

Can specify type of index

— create bitmap index students_i_id on
students(StudentID);

Also delete: drop index student i _name;

Oracle: Index automatically created for
primary key or unique constraint

Bitmap Index

Similar in concept to hashing

— Key values represented as bits in a (long)
vector

— Particularly good when few possible key
values

Supports easy and/or operations in
qgueries

— lastname = ‘Clifton” AND salary > $100k
More expensive to update

CS34800 25

© 2016 Christopher W. Clifton

