
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Indexing & Hashing

Prof. Chris Clifton

31 October 2016

First:

Triggers - Limitations

• Many database functions do not quite work
as expected
– One example: Trigger on a table that modifies

that table

• Often published “work-arounds”

• You may run into one of these on Project 3
Question 5b

– Will send out a “hint” this afternoon

– This will only be 5 points (i.e., we only expect A-
level students to get this part.)

CS34800 2

©Jan-16 Christopher W. Clifton 220

Indexing and Hashing

• Goal: Faster access to data
– Faster than scanning the whole table

• Search Key: attribute/column for which faster
search enabled
– Not the same as keys for database design

• Index: Tree structure allowing faster search
– Logarithmic time

• Hashing: Group data into “buckets” based on
value of search key
– If all goes well, constant time access

CS34800 3

©Silberschatz, Korth and Sudarshan11.5Database System Concepts - 6th Edition

Ordered Indices

 In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose search

key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

 Index-sequential file: ordered sequential file with a primary index.

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan11.6Database System Concepts - 6th Edition

Dense Index Files

 Dense index — Index record appears for every search-key

value in the file.

 E.g. index on ID attribute of instructor relation

©Silberschatz, Korth and Sudarshan11.7Database System Concepts - 6th Edition

Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on

dept_name

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan11.8Database System Concepts - 6th Edition

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

©Silberschatz, Korth and Sudarshan11.12Database System Concepts - 6th Edition

Secondary Indices

 Frequently, one wants to find all the records whose values in

a certain field (which is not the search-key of the primary

index) satisfy some condition.

 Example 1: In the instructor relation stored sequentially by

ID, we may want to find all instructors in a particular

department

 Example 2: as above, but where we want to find all

instructors with a specified salary or with salary in a

specified range of values

 We can have a secondary index with an index record for

each search-key value

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan11.13Database System Concepts - 6th Edition

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor

©Silberschatz, Korth and Sudarshan11.14Database System Concepts - 6th Edition

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database

modification --when a file is modified, every index on the file

must be updated,

 Sequential scan using primary index is efficient, but a

sequential scan using a secondary index is expensive

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 milliseconds, versus

about 100 nanoseconds for memory access

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan11.17Database System Concepts - 6th Edition

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as well

as deletion.

 Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to

locate a record.

©Silberschatz, Korth and Sudarshan11.18Database System Concepts - 6th Edition

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to be the

integer i.

 The hash function returns the sum of the binary representations of

the characters modulo 10

 E.g. h(Music) = 1 h(History) = 2

h(Physics) = 3 h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key

(See figure in next slide.)

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan11.19Database System Concepts - 6th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

(see previous slide for details).

©Silberschatz, Korth and Sudarshan11.20Database System Concepts - 6th Edition

Hash Functions

 Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

 Typical hash functions perform computation on the internal binary

representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan11.21Database System Concepts - 6th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan11.22Database System Concepts - 6th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

©Jan-16 Christopher W. Clifton 920

Creating Indexes

• create index <name> on <relation>
(<attribute_list>)
– create index students_i_name on

students (lastname);

• Can specify type of index

– create bitmap index students_i_id on
students(StudentID);

• Also delete: drop index student_i_name;

• Oracle: Index automatically created for
primary key or unique constraint

Bitmap Index

• Similar in concept to hashing

– Key values represented as bits in a (long)
vector

– Particularly good when few possible key
values

• Supports easy and/or operations in
queries

– lastname = ‘Clifton’ AND salary > $100k

• More expensive to update

CS34800 25

