
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Indexing & Hashing

Prof. Chris Clifton

31 October 2016

First:

Triggers - Limitations

• Many database functions do not quite work
as expected
– One example: Trigger on a table that modifies

that table

• Often published “work-arounds”

• You may run into one of these on Project 3
Question 5b

– Will send out a “hint” this afternoon

– This will only be 5 points (i.e., we only expect A-
level students to get this part.)

CS34800 2

©Jan-16 Christopher W. Clifton 220

Indexing and Hashing

• Goal: Faster access to data
– Faster than scanning the whole table

• Search Key: attribute/column for which faster
search enabled
– Not the same as keys for database design

• Index: Tree structure allowing faster search
– Logarithmic time

• Hashing: Group data into “buckets” based on
value of search key
– If all goes well, constant time access

CS34800 3

©Silberschatz, Korth and Sudarshan11.5Database System Concepts - 6th Edition

Ordered Indices

 In an ordered index, index entries are stored sorted on the search key

value. E.g., author catalog in library.

 Primary index: in a sequentially ordered file, the index whose search

key specifies the sequential order of the file.

 Also called clustering index

 The search key of a primary index is usually but not necessarily the

primary key.

 Secondary index: an index whose search key specifies an order

different from the sequential order of the file. Also called

non-clustering index.

 Index-sequential file: ordered sequential file with a primary index.

©Jan-16 Christopher W. Clifton 320

©Silberschatz, Korth and Sudarshan11.6Database System Concepts - 6th Edition

Dense Index Files

 Dense index — Index record appears for every search-key

value in the file.

 E.g. index on ID attribute of instructor relation

©Silberschatz, Korth and Sudarshan11.7Database System Concepts - 6th Edition

Dense Index Files (Cont.)

 Dense index on dept_name, with instructor file sorted on

dept_name

©Jan-16 Christopher W. Clifton 420

©Silberschatz, Korth and Sudarshan11.8Database System Concepts - 6th Edition

Sparse Index Files

 Sparse Index: contains index records for only some search-key

values.

 Applicable when records are sequentially ordered on search-key

 To locate a record with search-key value K we:

 Find index record with largest search-key value < K

 Search file sequentially starting at the record to which the index

record points

©Silberschatz, Korth and Sudarshan11.12Database System Concepts - 6th Edition

Secondary Indices

 Frequently, one wants to find all the records whose values in

a certain field (which is not the search-key of the primary

index) satisfy some condition.

 Example 1: In the instructor relation stored sequentially by

ID, we may want to find all instructors in a particular

department

 Example 2: as above, but where we want to find all

instructors with a specified salary or with salary in a

specified range of values

 We can have a secondary index with an index record for

each search-key value

©Jan-16 Christopher W. Clifton 520

©Silberschatz, Korth and Sudarshan11.13Database System Concepts - 6th Edition

Secondary Indices Example

 Index record points to a bucket that contains pointers to all the

actual records with that particular search-key value.

 Secondary indices have to be dense

Secondary index on salary field of instructor

©Silberschatz, Korth and Sudarshan11.14Database System Concepts - 6th Edition

Primary and Secondary Indices

 Indices offer substantial benefits when searching for records.

 BUT: Updating indices imposes overhead on database

modification --when a file is modified, every index on the file

must be updated,

 Sequential scan using primary index is efficient, but a

sequential scan using a secondary index is expensive

 Each record access may fetch a new block from disk

 Block fetch requires about 5 to 10 milliseconds, versus

about 100 nanoseconds for memory access

©Jan-16 Christopher W. Clifton 620

©Silberschatz, Korth and Sudarshan11.17Database System Concepts - 6th Edition

Static Hashing

 A bucket is a unit of storage containing one or more records (a

bucket is typically a disk block).

 In a hash file organization we obtain the bucket of a record directly

from its search-key value using a hash function.

 Hash function h is a function from the set of all search-key values K

to the set of all bucket addresses B.

 Hash function is used to locate records for access, insertion as well

as deletion.

 Records with different search-key values may be mapped to the

same bucket; thus entire bucket has to be searched sequentially to

locate a record.

©Silberschatz, Korth and Sudarshan11.18Database System Concepts - 6th Edition

Example of Hash File Organization

 There are 10 buckets,

 The binary representation of the ith character is assumed to be the

integer i.

 The hash function returns the sum of the binary representations of

the characters modulo 10

 E.g. h(Music) = 1 h(History) = 2

h(Physics) = 3 h(Elec. Eng.) = 3

Hash file organization of instructor file, using dept_name as key

(See figure in next slide.)

©Jan-16 Christopher W. Clifton 720

©Silberschatz, Korth and Sudarshan11.19Database System Concepts - 6th Edition

Example of Hash File Organization

Hash file organization of instructor file, using dept_name as key

(see previous slide for details).

©Silberschatz, Korth and Sudarshan11.20Database System Concepts - 6th Edition

Hash Functions

 Worst hash function maps all search-key values to the same bucket;

this makes access time proportional to the number of search-key

values in the file.

 An ideal hash function is uniform, i.e., each bucket is assigned the

same number of search-key values from the set of all possible values.

 Ideal hash function is random, so each bucket will have the same

number of records assigned to it irrespective of the actual distribution of

search-key values in the file.

 Typical hash functions perform computation on the internal binary

representation of the search-key.

 For example, for a string search-key, the binary representations of

all the characters in the string could be added and the sum modulo

the number of buckets could be returned. .

©Jan-16 Christopher W. Clifton 820

©Silberschatz, Korth and Sudarshan11.21Database System Concepts - 6th Edition

Handling of Bucket Overflows

 Bucket overflow can occur because of

 Insufficient buckets

 Skew in distribution of records. This can occur due to two

reasons:

 multiple records have same search-key value

 chosen hash function produces non-uniform distribution of key

values

 Although the probability of bucket overflow can be reduced, it cannot

be eliminated; it is handled by using overflow buckets.

©Silberschatz, Korth and Sudarshan11.22Database System Concepts - 6th Edition

Handling of Bucket Overflows (Cont.)

 Overflow chaining – the overflow buckets of a given bucket are

chained together in a linked list.

 Above scheme is called closed hashing.

 An alternative, called open hashing, which does not use overflow

buckets, is not suitable for database applications.

©Jan-16 Christopher W. Clifton 920

Creating Indexes

• create index <name> on <relation>
(<attribute_list>)
– create index students_i_name on

students (lastname);

• Can specify type of index

– create bitmap index students_i_id on
students(StudentID);

• Also delete: drop index student_i_name;

• Oracle: Index automatically created for
primary key or unique constraint

Bitmap Index

• Similar in concept to hashing

– Key values represented as bits in a (long)
vector

– Particularly good when few possible key
values

• Supports easy and/or operations in
queries

– lastname = ‘Clifton’ AND salary > $100k

• More expensive to update

CS34800 25

