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Related Techniques:  OLAP

On-Line Analytical Processing

• On-Line Analytical Processing tools provide the ability to 
pose statistical and summary queries interactively
(traditional On-Line Transaction Processing (OLTP) 
databases may take minutes or even hours to answer 
these queries)

• Advantages relative to data mining
– Can obtain a wider variety of results

– Generally faster to obtain results

• Disadvantages relative to data mining
– User must “ask the right question”

– Generally used to determine high-level statistical summaries, 
rather than specific relationships among instances
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What is a Data Warehouse?

• Defined in many different ways, but not rigorously.

– A decision support database that is maintained separately from the 

organization’s operational database

– Support information processing by providing a solid platform of 

consolidated, historical data for analysis.

• “A data warehouse is a subject-oriented, integrated, time-variant, 

and nonvolatile collection of data in support of management’s 

decision-making process.”—W. H. Inmon

• Data warehousing:

– The process of constructing and using data warehouses
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Data Warehouse—Subject-

Oriented

• Organized around major subjects, such as customer, 

product, sales.

• Focusing on the modeling and analysis of data for decision 

makers, not on daily operations or transaction processing.

• Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in the 

decision support process.
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Data Warehouse—Integrated

• Constructed by integrating multiple, 
heterogeneous data sources
– relational databases, flat files, on-line transaction 

records

• Data cleaning and data integration 
techniques are applied.
– Ensure consistency in naming conventions, 

encoding structures, attribute measures, etc. 
among different data sources

• E.g., Hotel price: currency, tax, breakfast covered, etc.

– When data is moved to the warehouse, it is 
converted.  
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Data Warehouse—Time 

Variant

• The time horizon for the data warehouse is 
significantly longer than that of operational 
systems.

– Operational database: current value data.

– Data warehouse data: provide information from a 
historical perspective (e.g., past 5-10 years)

• Every key structure in the data warehouse

– Contains an element of time, explicitly or implicitly

– But the key of operational data may or may not 
contain “time element”.
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• A physically separate store of data transformed 

from the operational environment.

• Operational update of data does not occur in the 

data warehouse environment.

– Does not require transaction processing, recovery, 

and concurrency control mechanisms

– Requires only two operations in data accessing: 

• initial loading of data and access of data.
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Data Warehouse—Non-Volatile
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• OLTP (on-line transaction processing)
– Major task of traditional relational DBMS

– Day-to-day operations: purchasing, inventory, banking, 
manufacturing, payroll, registration, accounting, etc.

• OLAP (on-line analytical processing)
– Major task of data warehouse system

– Data analysis and decision making

• Distinct features (OLTP vs. OLAP):
– User and system orientation: customer vs. market

– Data contents: current, detailed vs. historical, consolidated

– Database design: ER + application vs. star + subject

– View: current, local vs. evolutionary, integrated

– Access patterns: update vs. read-only but complex queries

Data Warehouse vs. 

Operational DBMS
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 OLTP OLAP 

users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 

detailed, flat relational 

isolated 

historical,  

summarized, multidimensional 

integrated, consolidated 

usage repetitive ad-hoc 

access read/write 

index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records accessed tens millions 

#users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
 

 

OLTP vs. OLAP
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• High performance for both systems
– DBMS— tuned for OLTP: access methods, indexing, 

concurrency control, recovery

– Warehouse—tuned for OLAP: complex OLAP queries, 
multidimensional view, consolidation.

• Different functions and different data:
– missing data:  Decision support requires historical data which 

operational DBs do not typically maintain

– data consolidation:  DS requires consolidation (aggregation, 
summarization) of data from heterogeneous sources

– data quality: different sources typically use inconsistent data 
representations, codes and formats which have to be reconciled

Why a Separate Data 

Warehouse?



©Jan-16 Christopher W. Clifton 620

CS34800 64

Conceptual Modeling of Data 

Warehouses

• Modeling data warehouses: dimensions & measures

– Star schema: A fact table in the middle connected to a set of 

dimension tables 

– Snowflake schema:  A refinement of star schema where some 

dimensional hierarchy is normalized into a set of smaller 

dimension tables, forming a shape similar to snowflake

– Fact constellations:  Multiple fact tables share dimension tables, 

viewed as a collection of stars, therefore called galaxy schema or 

fact constellation

CS34800 65

Example of Star Schema
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Example of Snowflake Schema
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Example of Fact Constellation
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Measures: Three Categories

• distributive: if the result derived by applying the function to n aggregate 

values is the same as that derived by applying the function on all the 

data without partitioning.

• E.g., count(), sum(), min(), max().

• algebraic: if it can be computed by an algebraic function with M

arguments (where M is a bounded integer), each of which is obtained 

by applying a distributive aggregate function.

• E.g., avg(), min_N(), standard_deviation().

• holistic: if there is no constant bound on the storage size needed to 

describe a subaggregate.

• E.g., median(), mode(), rank().
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A Concept Hierarchy: 

Dimension (location)

all
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M. WindL. Chan

...

......

... ...

...

all

region

office

country

TorontoFrankfurtcity



©Jan-16 Christopher W. Clifton 920

CS34800 70

Multidimensional Data

• Sales volume as a function of product, 

month, and region

P
ro

d
u

ct

Month

Dimensions: Product, Location, Time

Hierarchical summarization paths

Industry   Region         Year

Category   Country  Quarter

Product      City     Month    Week

Office         Day
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From Tables and Spreadsheets to 

Data Cubes

• A data warehouse is based on a multidimensional data model which 

views data in the form of a data cube

• A data cube, such as sales, allows data to be modeled and viewed in 

multiple dimensions

– Dimension tables, such as item (item_name, brand, type), or time(day, 

week, month, quarter, year) 

– Fact table contains measures (such as dollars_sold) and keys to each of 

the related dimension tables

• In data warehousing literature, an n-D base cube is called a base 

cuboid. The top most 0-D cuboid, which holds the highest-level of 

summarization, is called the apex cuboid.  The lattice of cuboids 

forms a data cube.
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Cube: A Lattice of Cuboids

all

time item location supplier

time,item

time,location

time,supplier

item,location

item,supplier

location,supplier

time,item,location
time,item,supplier

time,location,supplier

item,location,supplier

time, item, location, supplier

0-D(apex) cuboid
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73

View of Warehouses and 

Hierarchies

Specification of 

hierarchies

• Schema hierarchy

day < {month < quarter; 

week} < year

• Set_grouping hierarchy

{1..10} < inexpensive
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A Sample Data Cube
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Cuboids Corresponding to the 

Cube

all

product date country

product,date product,country date, country

product, date, country

0-D(apex) cuboid

1-D cuboids

2-D cuboids

3-D(base) cuboid
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Browsing a Data Cube

• Visualization

• OLAP 
capabilities

• Interactive 
manipulation
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Typical OLAP Operations

• Roll up (drill-up): summarize data

– by climbing up hierarchy or by dimension reduction

• Drill down (roll down): reverse of roll-up

– from higher level summary to lower level summary or detailed data, or 

introducing new dimensions

• Slice and dice:

– project and select

• Pivot (rotate):

– reorient the cube, visualization, 3D to series of 2D planes.

• Other operations

– drill across: involving (across) more than one fact table

– drill through: through the bottom level of the cube to its back-end 

relational tables (using SQL)
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A Data Mining Query Language: 

DMQL

• Cube Definition (Fact Table)

define cube <cube_name> [<dimension_list>]:         

<measure_list>

• Dimension Definition ( Dimension Table )

define dimension <dimension_name> as

(<attribute_or_subdimension_list>)

• Special Case (Shared Dimension Tables)

– First time as “cube definition”

– define dimension <dimension_name> as

<dimension_name_first_time> in cube

<cube_name_first_time>
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Defining a Star Schema in DMQL

define cube sales_star [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, 
month, quarter, year)

define dimension item as (item_key, item_name, brand, 
type, supplier_type)

define dimension branch as (branch_key, branch_name, 
branch_type)

define dimension location as (location_key, street, city, 
province_or_state, country)
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Defining a Snowflake Schema in 

DMQL

define cube sales_snowflake [time, item, branch, location]:

dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, 

year)

define dimension item as (item_key, item_name, brand, type, 

supplier(supplier_key, supplier_type))

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city(city_key, 

province_or_state, country))
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Defining a Fact Constellation in 

DMQL

define cube sales [time, item, branch, location]:
dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), 

units_sold = count(*)

define dimension time as (time_key, day, day_of_week, month, quarter, year)

define dimension item as (item_key, item_name, brand, type, supplier_type)

define dimension branch as (branch_key, branch_name, branch_type)

define dimension location as (location_key, street, city, province_or_state, 
country)

define cube shipping [time, item, shipper, from_location, to_location]:
dollar_cost = sum(cost_in_dollars), unit_shipped = count(*)

define dimension time as time in cube sales

define dimension item as item in cube sales

define dimension shipper as (shipper_key, shipper_name, location as location 
in cube sales, shipper_type)

define dimension from_location as location in cube sales

define dimension to_location as location in cube sales
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Data Warehouse Usage
• Three kinds of data warehouse applications

– Information processing

• supports querying, basic statistical analysis, and reporting using crosstabs, 

tables, charts and graphs

– Analytical processing

• multidimensional analysis of data warehouse data

• supports basic OLAP operations, slice-dice, drilling, pivoting

– Data mining

• knowledge discovery from hidden patterns 

• supports associations, constructing analytical models, performing 

classification and prediction, and presenting the mining results using 

visualization tools.

• Differences among the three tasks
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From On-Line Analytical Processing to 

On Line Analytical Mining (OLAM)

• Why online analytical mining?

– High quality of data in data warehouses
• DW contains integrated, consistent, cleaned data

– Available information processing structure 
surrounding data warehouses

• ODBC, OLEDB, Web accessing, service facilities, reporting 
and OLAP tools

– OLAP-based exploratory data analysis
• mining with drilling, dicing, pivoting, etc.

– On-line selection of data mining functions
• integration and swapping of multiple mining functions, 

algorithms, and tasks.
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Discovery-Driven Exploration 

of Data Cubes

• Hypothesis-driven
– exploration by user, huge search space

• Discovery-driven (Sarawagi, et al.’98)
– Effective navigation of large OLAP data cubes

– pre-compute measures indicating exceptions, guide 
user in the data analysis, at all levels of aggregation

– Exception: significantly different from the value 
anticipated, based on a statistical model

– Visual cues such as background color are used to 
reflect the degree of exception of each cell

131

Examples: Discovery-Driven Data 

Cubes
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Summary

• Data warehouse

• A multi-dimensional model of a data warehouse
– Star schema, snowflake schema, fact constellations

– A data cube consists of dimensions & measures

• OLAP operations: drilling, rolling, slicing, dicing 
and pivoting

• OLAP servers: ROLAP, MOLAP, HOLAP
• Efficient computation of data cubes

– Partial vs. full vs. no materialization
– Multiway array aggregation
– Bitmap index and join index implementations

• Further development of data cube technology
– Discovery-drive and multi-feature cubes
– From OLAP to OLAM (on-line analytical mining)
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