
©Jan-16 Christopher W. Clifton 120

CS34800

Information Systems

Big Data

Prof. Chris Clifton

2 November 2016

The Cloud:

What’s it all About?

CS34800 2

Im
p
a
la

©Jan-16 Christopher W. Clifton 220

Beyond RDBMS

The Relational Model is too limiting!

• Simple data model – doesn’t capture

semantics

– Object-Oriented DBMS (‘80s)

• Fixed schema – not flexible enough

– XML databases (‘90s)

• Too heavyweight/slow

– NoSQL databases (‘00s)

CS54100

The Latest: Cloud Databases

• PERFORMANCE!

– More speed, bigger data

• But this doesn’t come for free

– Eventual consistency (eventually all the

updates will occur)

– No isolation guarantees

– Limited reliability guarantees

CS54100

©Jan-16 Christopher W. Clifton 320

Cloud Databases: Why?

• Scaling

– 1000’s of nodes working simultaneously to

analyze data

• Answer challenging queries on big data

– If you can express the query in a limited query

language

• Several examples

– We will use Spark in this course

CS54100

Basic Idea:

Divide and Conquer

• Divide data into

units

• Compute on those

units

• Combine results

• Need algorithms

where this works!

CS34800 6

Answer!

©Jan-16 Christopher W. Clifton 420

Example: MapReduce to

count word frequency

• SQL:
select word, count(*) from documents group
by word

• MapReduce:
– function map (String name, String document):

for each word w in document: emit (w, 1)

– function reduce (String word, Iterator partCounts):
sum = 0
for each pc in PartCounts:
sum += pc

emit (word, sum)

CS34800 7

Spark: Implementation of this

Programming Model

CS34800 8

©Jan-16 Christopher W. Clifton 520

Spark Applications

CS34800 9

Spark 101

• Apache Spark

– Open Source

– Extensive developer community

– Growing commercial use

• Somewhat heavy to set up

– First, you need a cloud…

– But we’ll handle this for the next project

CS34800 10

©Jan-16 Christopher W. Clifton 620

Creating a Data Object

>>> sc

<pyspark.context.SparkContext object at 0x10ea7d4d0>

>>> pagecounts = sc.textFile("data/pagecounts")

>>> pagecounts

MapPartitionsRDD[1] at textFile at

NativeMethodAccessorImpl.java:-2

• Assume data/pagecounts is pageviews of Wikipedia

pages

CS34800 11

Viewing Data

(first 10 records)
>>> pagecounts.take(10)

...

[u'20090505-000000 aa.b ?71G4Bo1cAdWyg 1 14463', u'20090505-

000000 aa.b Special:Statistics 1 840', u'20090505-000000 aa.b

Special:Whatlinkshere/MediaWiki:Returnto 1 1019', u'20090505-

000000 aa.b Wikibooks:About 1 15719', u'20090505-000000 aa

?14mFX1ildVnBc 1 13205', u'20090505-000000 aa

?53A%2FuYP3FfnKM 1 13207', u'20090505-000000 aa

?93HqrnFc%2EiqRU 1 13199', u'20090505-000000 aa

?95iZ%2Fjuimv31g 1 13201', u'20090505-000000 aa File:Wikinews-

logo.svg 1 8357', u'20090505-000000 aa Main_Page 2 9980']

CS34800 12

©Jan-16 Christopher W. Clifton 720

Prettier:

>>> for x in pagecounts.take(10):

... print x

...

20090505-000000 aa.b ?71G4Bo1cAdWyg 1 14463

20090505-000000 aa.b Special:Statistics 1 840

20090505-000000 aa.b Special:Whatlinkshere/MediaWiki:Returnto 1 1019

20090505-000000 aa.b Wikibooks:About 1 15719

20090505-000000 aa ?14mFX1ildVnBc 1 13205

20090505-000000 aa ?53A%2FuYP3FfnKM 1 13207

20090505-000000 aa ?93HqrnFc%2EiqRU 1 13199

20090505-000000 aa ?95iZ%2Fjuimv31g 1 13201

20090505-000000 aa File:Wikinews-logo.svg 1 8357

20090505-000000 aa Main_Page 2 9980

CS34800 13

Caching Results

>>> pagecounts.count()

• May take a long time

>>> enPages = pagecounts.filter(lambda x:

x.split(" ")[1] == "en").cache()

• doesn’t actually do anything

>>> enPages.count()

• slow the first time, fast in later calls

CS34800 14

©Jan-16 Christopher W. Clifton 820

Histogram of page views

• First, divide the data

>>> enTuples = enPages.map(lambda x: x.split(" "))

• And create a count for each date

>>> enKeyValuePairs = enTuples.map(lambda x:

(x[0][:8], int(x[3])))

• Then combine

>>> enKeyValuePairs.reduceByKey(lambda x, y: x + y,

1).collect()

[(u'20090507', 6175726), (u'20090505', 7076855)]

CS34800 15

Single command to do it all

(and only return where >200k)

>>> enPages.map(lambda x: x.split(" ")).

map(lambda x: (x[2],int(x[3]))).

reduceByKey(lambda x, y: x + y, 40).

filter(lambda x: x[1] > 200000).

map(lambda x: (x[1], x[0])).collect()

[(451126, u'Main_Page'), (1066734,

u'404_error/'), (468159, u'Special:Search')]

CS34800 16

©Jan-16 Christopher W. Clifton 920

CS34800

Information Systems

Big Data

Prof. Chris Clifton

4 November 2016

Cloud Databases: Why?

• Scaling

– 1000’s of nodes working simultaneously to

analyze data

• Answer challenging queries on big data

– If you can express the query in a limited query

language

• Example: Hadoop

– Slides courtesy Yahoo!

CS34800

©Jan-16 Christopher W. Clifton 1020

Introduction to Hadoop

Owen O’Malley

Yahoo!, Grid Team

owen@yahoo-inc.com

CCA – Oct 2008

Problem

• How do you scale up applications?

– Run jobs processing 100’s of terabytes of data

– Takes 11 days to read on 1 computer

• Need lots of cheap computers

– Fixes speed problem (15 minutes on 1000 computers), but…

– Reliability problems

• In large clusters, computers fail every day

• Cluster size is not fixed

• Need common infrastructure

– Must be efficient and reliable

©Jan-16 Christopher W. Clifton 1120

CCA – Oct 2008

Solution

• Open Source Apache Project

• Hadoop Core includes:

– Distributed File System - distributes data

– Map/Reduce - distributes application

• Written in Java

• Runs on

– Linux, Mac OS/X, Windows, and Solaris

– Commodity hardware

CCA – Oct 2008

Commodity Hardware Cluster

• Typically in 2 level architecture

– Nodes are commodity PCs

– 40 nodes/rack

– Uplink from rack is 8 gigabit

– Rack-internal is 1 gigabit

©Jan-16 Christopher W. Clifton 1220

CCA – Oct 2008

Distributed File System

• Single namespace for entire cluster

– Managed by a single namenode.

– Files are single-writer and append-only.

– Optimized for streaming reads of large files.

• Files are broken in to large blocks.

– Typically 128 MB

– Replicated to several datanodes, for reliability

• Client talks to both namenode and datanodes

– Data is not sent through the namenode.

– Throughput of file system scales nearly linearly with the
number of nodes.

• Access from Java, C, or command line.

CCA – Oct 2008

Map/Reduce

• Map/Reduce is a programming model for efficient
distributed computing

• It works like a Unix pipeline:

– cat input | grep | sort | uniq -c | cat > output

– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from

– Streaming through data, reducing seeks

– Pipelining

• A good fit for a lot of applications

– Log processing

– Web index building

©Jan-16 Christopher W. Clifton 1320

CCA – Oct 2008

Map/Reduce Dataflow

CCA – Oct 2008

Map/Reduce features

• Java and C++ APIs

– In Java use Objects, while in C++ bytes

• Each task can process data sets larger than RAM

• Automatic re-execution on failure

– In a large cluster, some nodes are always slow or flaky

– Framework re-executes failed tasks

• Locality optimizations

– Map-Reduce queries HDFS for locations of input data

– Map tasks are scheduled close to the inputs when possible

©Jan-16 Christopher W. Clifton 1420

Select word, count(*) from doc

group by word;
public class WordCount {

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {

private final static IntWritable one = new IntWritable(1);

private Text word = new Text();

public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());

output.collect(word, one);

}

}

}

public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text,
IntWritable> {

public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {

int sum = 0;

while (values.hasNext()) {
sum += values.next().get();

}

output.collect(key, new IntWritable(sum));

}

}

public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);

conf.setJobName("wordcount");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);

conf.setCombinerClass(Reduce.class);

conf.setReducerClass(Reduce.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new

Path(args[0]));

FileOutputFormat.setOutputPath(conf, new

Path(args[1]));

JobClient.runJob(conf);

}

}

CCA – Oct 2008

How is Yahoo using Hadoop?

• We started with building better applications

– Scale up web scale batch applications (search, ads, …)

– Factor out common code from existing systems, so new

applications will be easier to write

– Manage the many clusters we have more easily

• The mission now includes research support

– Build a huge data warehouse with many Yahoo! data sets

– Couple it with a huge compute cluster and programming

models to make using the data easy

– Provide this as a service to our researchers

– We are seeing great results!

• Experiments can be run much more quickly in this environment

©Jan-16 Christopher W. Clifton 1520

CCA – Oct 2008

Running Production WebMap

• Search needs a graph of the “known” web

– Invert edges, compute link text, whole graph heuristics

• Periodic batch job using Map/Reduce

– Uses a chain of ~100 map/reduce jobs

• Scale

– 1 trillion edges in graph

– Largest shuffle is 450 TB

– Final output is 300 TB compressed

– Runs on 10,000 cores

– Raw disk used 5 PB

• Written mostly using Hadoop’s C++ interface

CCA – Oct 2008

Research Clusters

• The grid team runs the research clusters as a service to

Yahoo researchers

• Mostly data mining/machine learning jobs

• Most research jobs are *not* Java:

– 42% Streaming

• Uses Unix text processing to define map and reduce

– 28% Pig

• Higher level dataflow scripting language

– 28% Java

– 2% C++

©Jan-16 Christopher W. Clifton 1620

CCA – Oct 2008

NY Times

• Needed offline conversion of public domain articles

from 1851-1922.

• Used Hadoop to convert scanned images to PDF

• Ran 100 Amazon EC2 instances for around 24 hours

• 4 TB of input

• 1.5 TB of output

Published 1892, copyright New York Times

CCA – Oct 2008

Terabyte Sort Benchmark

• Started by Jim Gray at Microsoft in 1998

• Sorting 10 billion 100 byte records

• Hadoop won the general category in 209 seconds

– 910 nodes

– 2 quad-core Xeons @ 2.0Ghz / node

– 4 SATA disks / node

– 8 GB ram / node

– 1 gb ethernet / node

– 40 nodes / rack

– 8 gb ethernet uplink / rack

• Previous records was 297 seconds

• Only hard parts were:

– Getting a total order

– Converting the data generator to map/reduce

©Jan-16 Christopher W. Clifton 1720

CCA – Oct 2008

Hadoop clusters

• We have ~20,000 machines running Hadoop

• Our largest clusters are currently 2000 nodes

• Several petabytes of user data (compressed, unreplicated)

• We run hundreds of thousands of jobs every month

CCA – Oct 2008

Research Cluster Usage

©Jan-16 Christopher W. Clifton 1820

CCA – Oct 2008

Hadoop Community

• Apache is focused on project communities
– Users

– Contributors
• write patches

– Committers
• can commit patches too

– Project Management Committee
• vote on new committers and releases too

• Apache is a meritocracy

• Use, contribution, and diversity is growing

– But we need and want more!

CCA – Oct 2008

Size of Releases

©Jan-16 Christopher W. Clifton 1920

CCA – Oct 2008

Who Uses Hadoop?

• Amazon/A9

• AOL

• Facebook

• Fox interactive media

• Google / IBM

• New York Times

• PowerSet (now Microsoft)

• Quantcast

• Rackspace/Mailtrust

• Veoh

• Yahoo!

• More at http://wiki.apache.org/hadoop/PoweredBy

CCA – Oct 2008

What’s Next?

• Better scheduling

– Pluggable scheduler

– Queues for controlling resource allocation between groups

• Splitting Core into sub-projects

– HDFS, Map/Reduce, Hive

• Total Order Sampler and Partitioner

• Table store library

• HDFS and Map/Reduce security

• High Availability via Zookeeper

• Get ready for Hadoop 1.0

©Jan-16 Christopher W. Clifton 2020

HIVE:

RDBMS on Hadoop

• Limited schema

– Tables

– Primitive types

• Subset of SQL

– Select-Project

– (equi)join

– Group by

• Operations implemented using Map-
Reduce

But what about…

• Schema

– Need to know what the data is about

• Queries

– Do you really want to write map-reduce

programs?

– Optimization?

©Jan-16 Christopher W. Clifton 2120

HIVE:

RDBMS on Hadoop

• Limited schema

– Tables

– Primitive types

• Subset of SQL

– Select-Project

– (equi)join

– Group by

• Operations implemented using Map-
Reduce

What is Hive?

• A system for managing and querying

structured data built on top of Hadoop

• Three main components:

– MapReduce for execution

– Hadoop Distributed File System for storage

– Metadata in an RDBMS

• Hive QL based on SQL

– Easy for users familiar with SQL

©Jan-16 Christopher W. Clifton 2220

Hive Architecture

