PURDUE

UNIVERSITY

CS34800
Information Systems

Big Data
Prof. Chris Clifton
2 November 2016

Indiana

Center for

J Database

Systems
N"W ™

;,_: The Cloud:
<5 What'’s it all About?

_ ihadmmp /
\

CS34800

© 2016 Christopher W. Clifton

Beyond RDBMS

The Relational Model is too limiting!
Simple data model — doesn’t capture
semantics
— Object-Oriented DBMS (‘80s)

Fixed schema — not flexible enough
— XML databases (‘90s)

Too heavyweight/slow

— NoSQL databases (‘00s)

CS54100

The Latest: Cloud Databases
%

i

« PERFORMANCE!
— More speed, bigger data
 But this doesn’t come for free

— Eventual consistency (eventually all the
updates will occur)

— No isolation guarantees
— Limited reliability guarantees

CS54100

© 2016 Christopher W. Clifton

Cloud Databases: Why?
v A
» Scaling

—1000’s of nodes working simultaneously to
analyze data

« Answer challenging queries on big data

— If you can express the query in a limited query
language

» Several examples
— We will use Spark in this course

CS54100

Basic ldea:
Divide and Conquer
+ Divide data into
units

« Compute on those
units

 Combine results

* Need algorithms
where this works!

CS34800 6

© 2016 Christopher W. Clifton

1

#-== Example: MapReduce to

- A
-
-

N count word frequency
« SQL:
select word, count(*) from documents group
by word

« MapReduce:

— function map (String name, String document):
for each word w in document: emit (w, 1)
— function reduce (String word, Iterator partCounts):
sum =0
for each pc in PartCounts:
sum +=pc
emit (word, sum)

CS34800 7

#-== Spark: Implementation of this

es? Programming Model

-

-

BDAS Stack

(= : Sample

E 5 1) BIinkDB " 1aan

h= SparkSQL
Spark Core

Mesos Hadoop Yarn
Succinct

Tachyon HDFS, 83, Ceph,

KestoneML

SparkR
GraphX

MLiib Velox

Processing

Res.
Memnt

&

Storage

BDAS Stack 3 party

CS34800 8

© 2016 Christopher W. Clifton

=
,,.,-'],’

R Spark Applications

(B
1 8

fr.'i

Spark

Unifies batch, interactive, streaming computations
Easy to build sophisticated applications

+ Support iterative, graph-parallel algorithms

+ Powerful APIs in Scala, Python, Java R

- Scala é !

]d\lrl P Uh an

Spark
SparkSQL MLIib | GraphX | SparkR

Spark Core

CS34800

=

el
=

he

Spark 101

P

o',r,itlf

vt

» Apache Spark
— Open Source

— Extensive developer community
— Growing commercial use

« Somewhat heavy to set up
— First, you need a cloud...
— But we’ll handle this for the next project

CS34800

10

© 2016 Christopher W. Clifton

Creating a Data Object

>>> SC

<pyspark.context.SparkContext object at 0x10ea7d4d0>
>>> pagecounts = sc.textFile("data/pagecounts")

>>> pagecounts

MapPartitionsRDDJ[1] at textFile at
NativeMethodAccessorimpl.java:-2

» Assume data/pagecounts is pageviews of Wikipedia
pages

CS34800

11

Viewing Data

<0 (first 10 records)

>>> pagecounts.take(10)

[u'20090505-000000 aa.b ?71G4BolcAdWyg 1 14463', u'20090505-
000000 aa.b Special:Statistics 1 840", u'20090505-000000 aa.b
Special:Whatlinkshere/MediaWiki:Returnto 1 1019', u'20090505-
000000 aa.b Wikibooks:About 1 15719, u'20090505-000000 aa
?14mFX1lildvnBc 1 13205', u'20090505-000000 aa
?53A%2FuYP3FfnKM 1 13207', u'20090505-000000 aa
?93HgrnFc%2EiqRU 1 13199', u'20090505-000000 aa
?95iZ%2Fjuimv31g 1 13201', u'20090505-000000 aa File:Wikinews-
logo.svg 1 8357, u'20090505-000000 aa Main_Page 2 9980']

CS34800

12

© 2016 Christopher W. Clifton

iz Prettier:

S {4

>>> for x in pagecounts.take(10):
print x

20090505-000000 aa.b ?71G4BolcAdWyg 1 14463

20090505-000000 aa.b Special:Statistics 1 840

20090505-000000 aa.b Special:Whatlinkshere/MediaWiki:Returnto 1 1019
20090505-000000 aa.b Wikibooks:About 1 15719

20090505-000000 aa ?14mFX1ildvnBc 1 13205

20090505-000000 aa ?53A%2FuYP3FfnKM 1 13207

20090505-000000 aa ?93HgrnFc%2EigRU 1 13199

20090505-000000 aa ?95iZ%2Fjuimv31g 1 13201

20090505-000000 aa File:Wikinews-logo.svg 1 8357

20090505-000000 aa Main_Page 2 9980

CS34800 13

S Caching Results

>>> pagecounts.count()

* May take a long time

>>> enPages = pagecounts.filter(lambda x:
x.split(" ")[1] == "en").cache()

« doesn’t actually do anything

>>> enPages.count()

* slow the first time, fast in later calls

CS34800 14

© 2016 Christopher W. Clifton

Histogram of page views
* First, divide the data
>>> enTuples = enPages.map(lambda x: x.split(" "))

« And create a count for each date

>>> enKeyValuePairs = enTuples.map(lambda x:
(x[O][:8], int(x[3])))

 Then combine

>>> enKeyValuePairs.reduceByKey(lambda x, y: x +,
1).collect()

[(U'20090507", 6175726), (U'20090505', 7076855)]

%

CS34800 15

#=% Single command to do it all

% (and only return where >200Kk) R
>>> enPages.map(lambda x: x.split(" ")).
map(lambda x: (x[2],int(X[3]))).
reduceByKey(lambda x, y: x +, 40).

filter(lambda x: x[1] > 200000).
map(lambda x: (x[1], X[0])).collect()

[(451126, u'Main_Page'), (1066734,
u'404_error/"), (468159, u'Special:Search’)]

CS34800 16

© 2016 Christopher W. Clifton

PURDUE

CS34800
Information Systems

Big Data
Prof. Chris Clifton
4 November 2016

Indiana

Center for
J Database

}Systemsc_/:"

/ g
P /f ™

[

Cloud Databases: Why?

™
e 1A

%

« Scaling

—1000’s of nodes working simultaneously to
analyze data

« Answer challenging queries on big data

— If you can express the query in a limited query
language

- Example: Hadoop ﬁ 7
— Slides courtesy Yahoo! Whad@@lﬂ

CS34800

© 2016 Christopher W. Clifton

Introduction to Hadoop

Owen O’Malley
Yahoo!, Grid Team
owen@yahoo-inc.com

9_’ Problem

* How do you scale up applications?
— Run jobs processing 100’s of terabytes of data

— Takes 11 days to read on 1 computer

* Need lots of cheap computers
— Fixes speed problem (15 minutes on 1000 computers), but...

— Reliability problems
* Inlarge clusters, computers fail every day
» Cluster size is not fixed

* Need common infrastructure
— Must be efficient and reliable

YaHoO!

© 2016 Christopher W. Clifton

10

9_’ Solution

Open Source Apache Project

Hadoop Core includes:
— Distributed File System - distributes data
— Map/Reduce - distributes application

Written in Java

Runs on
— Linux, Mac OS/X, Windows, and Solaris
— Commodity hardware

YaHoO!

9_’ Commodity Hardware Cluster

“+—— 3-4 gigabit
” =“+——» 1 gigabit
/ -
- o \\‘
- , // I ~,
Node | Node [Node Node | MNode Node

) [|

o0

[
(]

+ Typically in 2 level architecture
— Nodes are commodity PCs
— 40 nodes/rack
— Uplink from rack is 8 gigabit
— Rack-internal is 1 gigabit

YaHoO!

© 2016 Christopher W. Clifton

11

Q!Distributed File System

+ Single namespace for entire cluster

— Managed by a single namenode.

— Files are single-writer and append-only.

— Optimized for streaming reads of large files.

Files are broken in to large blocks.

— Typically 128 MB

— Replicated to several datanodes, for reliability
Client talks to both namenode and datanodes
— Data is not sent through the namenode.

— Throughput of file system scales nearly linearly with the
number of nodes.

» Access from Java, C, or command line.

YaHoO!

9_’ Map/Reduce

» Map/Reduce is a programming model for efficient
distributed computing

It works like a Unix pipeline:
— catinput | grep | sort | unig-c | cat> output
— Input | Map | Shuffle & Sort| Reduce | Output
 Efficiency from
— Streaming through data, reducing seeks
— Pipelining
» A good fit for a lot of applications
— Log processing
— Web index building

YaHoO!

© 2016 Christopher W. Clifton

9’ Map/Reduce Dataflow

Input H Map : Shuffle & Sort H Reduce H Output

Reduce

Input
Data

Output
Data

YaHoO!

9_’ Map/Reduce features

Java and C++ APIs
— In Java use Obijects, while in C++ bytes
Each task can process data sets larger than RAM

Automatic re-execution on failure
— In alarge cluster, some nodes are always slow or flaky

— Framework re-executes failed tasks

Locality optimizations
— Map-Reduce queries HDFS for locations of input data
— Map tasks are scheduled close to the inputs when possible

YaHoO!

© 2016 Christopher W. Clifton

public class WordCount {
public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter
reporter) throws I0Exception {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);

}
}
public static class Reduce extends MapReduceBase
implements Reducer<Text, IntWritable, Text,
IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text, IntWritable> output, Reporter
reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();

}
output.collect(key, new IntWritable(sum));

Select word, count(*) from doc
group by word,;

public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputkeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setinputFormat(TextinputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FilelnputFormat.setinputPaths(conf, new
Path(args[0]));
FileOutputFormat.setOutputPath(conf, new
Path(args[1]));
JobClient.runJob(conf);

B

9_’ How is Yahoo using Hadoop?

+ We started with building better applications
— Scale up web scale batch applications (search, ads, ...)

— Factor out common code from existing systems, so new
applications will be easier to write

— Manage the many clusters we have more easily

* The mission now includes research support

Build a huge data warehouse with many Yahoo! data sets
Couple it with a huge compute cluster and programming

models to make using the data easy

We are seeing great results!

Provide this as a service to our researchers

» Experiments can be run much more quickly in this environment

YaHoO!

© 2016 Christopher W. Clifton

14

9_’ Running Production WebMap

» Search needs a graph of the “known” web
— Invertedges, compute link text, whole graph heuristics
» Periodic batch job using Map/Reduce
— Uses a chain of ~100 map/reduce jobs
+ Scale
— 1 trillion edges in graph
Largest shuffleis 450 TB
Final output is 300 TB compressed

Runs on 10,000 cores
Raw disk used 5 PB

* Written mostly using Hadoop’s C++ interface

YaHoO!

9_’ Research Clusters

» The grid team runs the research clusters as a service to
Yahoo researchers

* Mostly data mining/machine learning jobs

* Most research jobs are *not* Java:
42% Streaming

» Uses Unix text processing to define map and reduce
28% Pig
» Higher level dataflow scripting language

28% Java
2% C++

YaHoO!

© 2016 Christopher W. Clifton

15

€9 N Times

* Needed offline conversion of public domain articles
from 1851-1922.

» Used Hadoop to convert scanned images to PDF

 Ran 100 Amazon EC2 instances for around 24 hours

* 4 TB of input 4 OOMPUTER WANTED.
WABHINGTON, Mgy 1.—A civil service ex-
* 1.5 TB of output amination will bo held May 18 in Washington,

and, 1f necossary, In other ecitles, to secure !
eligibles for the position of computer in the |
Nuutioal Almanace Office, where two vacanoies |
exist—one at $1,000, the other at $1,400..

The exsmination will include the subjects of |
algebra, geometry, trigonometry, and ase- |
tronomy. Application blanks may be obtained i

; of the United Siates Civil Bervice Commiasion. |

Published 1892, copyright New York Times

YaHoO!

9_’ Terabyte Sort Benchmark

+ Started by Jim Gray at Microsoft in 1998
« Sorting 10 billion 100 byte records

+ Hadoop won the general category in 209 seconds
— 910 nodes
— 2 quad-core Xeons @ 2.0Ghz / node
— 4 SATA disks / node
— 8 GBram / node
— 1 gb ethernet / node
— 40 nodes / rack
— 8 gb ethernet uplink / rack

* Previous records was 297 seconds

* Only hard parts were:
— Getting a total order

— Converting the data generator to map/reduce

YaHoO!

© 2016 Christopher W. Clifton

9_’ Hadoop clusters

* We have ~20,000 machines running Hadoop
* Our largest clusters are currently 2000 nodes
+ Several petabytes of user data (compressed, unreplicated)

* We run hundreds of thousands of jobs every month
< o == 23 — e —

9_’ Research Cluster Usage

Node usage on mithril_gold
W Nodes Running Jobs M Free Nodes B Down Modes

2008-03-14
2008-03-21
2005-03-28

o (=2 ~
g 3 g
o o Lol
5 g 5
= =4 =]
b=4 (=4 Q
b= (=] b=]
o o o

YaHoO!

© 2016 Christopher W. Clifton

17

9_’ Hadoop Community

» Apache is focused on project communities
— Users
— Contributors
* write patches
— Committers
* can commit patches too
— Project Management Committee
* vote on new committers and releases too

« Apache is a meritocracy
+ Use, contribution, and diversity is growing
— But we need and want more!

YaHoO!

9_’ Size of Releases

Hadoop Core Patches by Branch

250

200

n
e

Non-Yahoo
®=Yahoo

Patches

=
5]
=]

50

Branch

YaHoO!

© 2016 Christopher W. Clifton

18

9_’ Who Uses Hadoop?

* Amazon/A9

+ AOL

* Facebook

* Fox interactive media
* Google/1BM

* New York Times

* PowerSet (now Microsoft)
* Quantcast

» Rackspace/Mailtrust
* Veoh

* Yahoo!

* More at http://wiki.apache.org/hadoop/PoweredBy
YaHoO!

9_’ What’s Next?

Better scheduling
— Pluggable scheduler
— Queues for controlling resource allocation between groups

» Splitting Core into sub-projects
— HDFS, Map/Reduce, Hive
» Total Order Sampler and Partitioner
» Table store library
+ HDFS and Map/Reduce security
» High Availability via Zookeeper
» Get ready for Hadoop 1.0

YaHoO!

© 2016 Christopher W. Clifton

19

» Limited schema
— Tables
— Primitive types
» Subset of SQL
— Select-Project
— (equi)join
— Group by
» Operations implemented using Map-
Reduce

HIVE:
RDBMS on Hadoop i

But what about...

L

e Schema
— Need to know what the data is about
* Queries

— Do you really want to write map-reduce
programs?
— Optimization?

i %

© 2016 Christopher W. Clifton

20

HIVE:
RDBMS on Hadoop W;

Limited schema

— Tables

— Primitive types

Subset of SQL

— Select-Project

— (equi)join

— Group by

Operations implemented using Map-
Reduce

What is Hive?

A system for managing and querying
structured data built on top of Hadoop
Three main components:

— MapReduce for execution

— Hadoop Distributed File System for storage
— Metadata in an RDBMS

Hive QL based on SQL

— Easy for users familiar with SQL

© 2016 Christopher W. Clifton

21

HADOOP
(MAP-REDUCE + HDFS)

=111

Fig_1: Hive System Architecture

© 2016 Christopher W. Clifton

22

