Models for Privacy-Preserving Collaboration

Wei Jiang

Department of Computer Science Purdue University, West Lafayette, Indiana

14th April 2007

Data Confidentiality and Personal Privacy in Distributed Environment

Secure Distributed *k*-Anonymity

Age	Gender
23	M
35	M
24	F
27	F
40	M
26	M

Age	Gender	Zip code Occupation		
[20, 30]	M	48502	Research Assistant	
[35, 40]	M	606**	Professor	
[20, 30]	F	47***	Teaching Assistant	
[20, 30]	F	47*** Teaching Assistant		
[35, 40]	M	606**	Professor	
[20, 30]	M	48502	Research Assistant	

Basic Definitions of Secure Function Evaluation

Adversary Models

- Semi-honest: follow the rules of the protocol using correct input, but is free to compute anything based on what has been seen
- Malicious: behave arbitrarily to compromise privacy

Accountable Computing Framework - Check after the Fact

	M1	
_	M1'	
	1	
		_
	Mn	
4	Mn'	

Non-Cooperative Computing

Example (Computing Sample Mean of x, y)

- Alice: x; Bob: y and y', where y' Bob's modified input
- Given y, y' and incorrect sample mean μ' (based on x, y'), Bob can obtain the correct μ

$$\mu' = \frac{x + y'}{2}$$
 \Rightarrow $\mu = \mu' + \frac{y - y'}{2}$

Non-Cooperative Computing

Example (Computing Sample Mean of x, y)

- Alice: x; Bob: y and y', where y' Bob's modified input
- Given y, y' and incorrect sample mean μ' (based on x, y'), Bob can obtain the correct μ

$$\mu' = \frac{\mathbf{x} + \mathbf{y}'}{2}$$
 \Rightarrow $\mu = \mu' + \frac{\mathbf{y} - \mathbf{y}'}{2}$

Future Work

Secure Distributed k-Anonymity

- More efficient protocols
- Multi-party (more than two) protocol

Accountable Computing Framework

- Formalize the AC-framework
- Remove the third party verifier
- Extend the framework for more than two parties

Non-Cooperative Computing

- Composition theorem
- Design of SFE-NCC protocols

