Frequent Pattern-based Classification and Post-Processing of Mining Results

#### Hong Cheng Data Mining Group University of Illinois at Urbana-Champaign





#### Part I: Frequent Pattern-based Classification





## **Basic Idea**

- Mine discriminative frequent patterns;
- Represent the data in the feature space of such patterns;
- Build classification models.





# Application

- Transactional database
  - Relational dataset, Customer transaction data, etc.
  - Frequent itemsets
- Sequence database
  - Protein sequences, Web log data, etc.
  - Frequent sequential patterns or K-substrings
- Graph database
  - Chemical compounds, Molecules, etc.
  - Frequent substructures

Frequent pattern is a good candidate as features, especially for data with complicated structures.



## Why Are Frequent Patterns Useful?

- Frequent pattern
  - A non-linear combination of single features
  - Increase the expressive power of the feature space
    - Exclusive OR example
    - Data is linearly separable in (x, y, xy), but not in (x, y)



classifier



Discriminative Power vs. Frequency

- The discriminative power of a feature is closely related to its frequency.
- The discriminative power of a lowfrequency feature is low!
- Theoretical analysis [Cheng et al, ICDE'07]



## Information Gain vs. Frequency



#### Fig. 1. Information Gain vs. Pattern Frequency





### Fisher Score vs. Frequency



#### Fig. 2. Fisher Score vs. Pattern Frequency





## **Experimental Results**

#### Table 1. Accuracy by SVM on Frequent Combined Features vs. Single Features

#### Table 2. Accuracy by C4.5 on Frequent Combined Features vs. Single Features

| Data     | Si          | ngle Fea   | ture     | Freq. 1 | Pattern   | $\mathbf{Dataset}$ | Single      | Features   | Freque  | nt Patterns |
|----------|-------------|------------|----------|---------|-----------|--------------------|-------------|------------|---------|-------------|
|          | $Item\_All$ | $Item\_FS$ | Item_RBF | Pat_All | $Pat\_FS$ |                    | $Item\_All$ | $Item\_FS$ | Pat_All | $Pat\_FS$   |
| anneal   | 99.78       | 99.78      | 99.11    | 99.33   | 99.67     | anneal             | 98.33       | 98.33      | 97.22   | 98.44       |
| austral  | 85.01       | 85.50      | 85.01    | 81.79   | 91.14     | austral            | 84.53       | 84.53      | 84.21   | 88.24       |
| auto     | 83.25       | 84.21      | 78.80    | 74.97   | 90.79     | auto               | 71.70       | 77.63      | 71.14   | 78.77       |
| breast   | 97.46       | 97.46      | 96.98    | 96.83   | 97.78     | breast             | 95.56       | 95.56      | 95.40   | 96.35       |
| cleve    | 84.81       | 84.81      | 85.80    | 78.55   | 95.04     | cleve              | 80.87       | 80.87      | 80.84   | 91.42       |
| diabetes | 74.41       | 74.41      | 74.55    | 77.73   | 78.31     | diabetes           | 77.02       | 77.02      | 76.00   | 76.58       |
| glass    | 75.19       | 75.19      | 74.78    | 79.91   | 81.32     | glass              | 75.24       | 75.24      | 76.62   | 79.89       |
| heart    | 84.81       | 84.81      | 84.07    | 82.22   | 88.15     | heart              | 81.85       | 81.85      | 80.00   | 86.30       |
| hepatic  | 84.50       | 89.04      | 85.83    | 81.29   | 96.83     | hepatic            | 78.79       | 85.21      | 80.71   | 93.04       |
| horse    | 83.70       | 84.79      | 82.36    | 82.35   | 92.39     | horse              | 83.71       | 83.71      | 84.50   | 87.77       |
| iono     | 93.15       | 94.30      | 92.61    | 89.17   | 95.44     | iono               | 92.30       | 92.30      | 92.89   | 94.87       |
| iris     | 94.00       | 96.00      | 94.00    | 95.33   | 96.00     | iris               | 94.00       | 94.00      | 93.33   | 93.33       |
| labor    | 89.99       | 91.67      | 91.67    | 94.99   | 95.00     | labor              | 86.67       | 86.67      | 95.00   | 91.67       |
| lymph    | 81.00       | 81.62      | 84.29    | 83.67   | 96.67     | lymph              | 76.95       | 77.62      | 74.90   | 83.67       |
| pima     | 74.56       | 74.56      | 76.15    | 76.43   | 77.16     | pima               | 75.86       | 75.86      | 76.28   | 76.72       |
| sonar    | 82.71       | 86.55      | 82.71    | 84.60   | 90.86     | sonar              | 80.83       | 81.19      | 83.67   | 83.67       |
| vehicle  | 70.43       | 72.93      | 72.14    | 73.33   | 76.34     | vehicle            | 70.70       | 71.49      | 74.24   | 73.06       |
| wine     | 98.33       | 99.44      | 98.33    | 98.30   | 100       | wine               | 95.52       | 93.82      | 96.63   | 99.44       |
| ZOO      | 97.09       | 97.09      | 95.09    | 94.18   | 99.00     | ZOO                | 91.18       | 91.18      | 95.09   | 97.09       |

## **Graph Classification**

- A learning approach to assign class labels (toxic/non-toxic, active/inactive) to graph data such as molecules or chemical compounds.
- Applications
  - QSAR in chemical informatics
  - Screening in drug design







## Challenges in Graph Classification

- Feature construction and selection
  - Data not in readily available feature vector format
  - Simple features such as atoms or edges not discriminative
  - Structural features are better candidates
- Skewed class distribution
  - AIDS anti-viral screen datasets
    - Active class : only 1%
  - NCI anti-cancer screen datasets
    - Active class : around 5%



# An Ensemble Approach

- Structural features
  - Discriminative frequent subgraphs
- Sampling
  - Repeated samples of the positive class
  - Under samples of the negative class
- Ensemble
  - Build multiple classifiers based on different balanced data samples
  - Reduce the variance introduced by sampling



## **ROC Plot**





## **Experimental Results**

| Table 4: | ROC50, | Base | Learner | C4.5 |
|----------|--------|------|---------|------|
|----------|--------|------|---------|------|

| Datasets | SE     | SE+FE  | GF     |
|----------|--------|--------|--------|
| NCI1     | 0.4880 | 0.5279 | 0.3260 |
| NCI109   | 0.4361 | 0.5909 | 0.3020 |
| NCI123   | 0.4853 | 0.4808 | 0.2630 |
| NCI145   | 0.5235 | 0.5887 | 0.3400 |
| NCI167   | 0.5047 | 0.5715 | 0.0640 |
| NCI33    | 0.4419 | 0.5175 | 0.3180 |
| NCI330   | 0.5183 | 0.5687 | 0.3430 |
| NCI41    | 0.4392 | 0.5362 | 0.3570 |
| NCI47    | 0.4987 | 0.4971 | 0.3110 |
| NCI81    | 0.4252 | 0.4689 | 0.2950 |
| NCI83    | 0.5152 | 0.5761 | 0.3170 |
| H1       | 0.4655 | 0.5956 | 0.2680 |
| H2       | 0.3960 | 0.6059 | 0.6510 |





#### Part II: Post-Processing of Mining Results





#### From Mining to Understanding and Application



#### Applications:

#### indexing, classification, prediction, clustering



## Post-processing of Mining Results

- Pattern Summarization [Yan et al, KDD'05]
  - Pattern compression with a maximal preservation of pattern and support information by exploring pattern profiles
  - Won Best Student Paper Runner-up Award
- Pattern Compression [Xin et al, VLDB'05]
  - Find a set of representative patterns which can cover the rest of patterns with bounded distance
- Top-K Pattern Extraction [Xin et al, KDD'06]
  - Pick the most important K patterns
  - Avoid picking redundant patterns
- Semantic Annotation [Mei et al, KDD'06]
  - Annotate a frequent pattern with in-depth, concise and structured information
  - Won Best Student Paper Runner-up Award



#### Thank You

#### <u>hcheng3@uiuc.edu</u> <u>www.ews.uiuc.edu/~hcheng3</u>

