Deng Cai

- Ph.D 2008
- University of Illinois at Urbana Champaign
- Advisor: Jiawei Han
- Thesis topic:
 - Spectral Regression for Dimensionality Reduction

Graph Embedding & Extension for Dimensionality Reduction

Deng Cai

Department of Computer Science University of Illinois at Urbana Champaign

Joint work with Xiaofei He, Jiawei Han

Dimensionality Reduction

Question

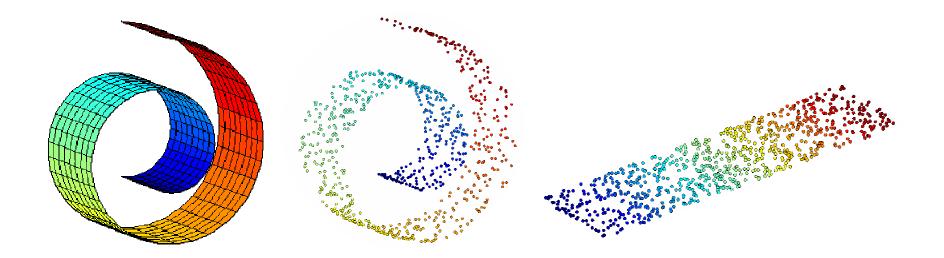
 How can we detect low dimensional structure in high dimensional data?

• Applications

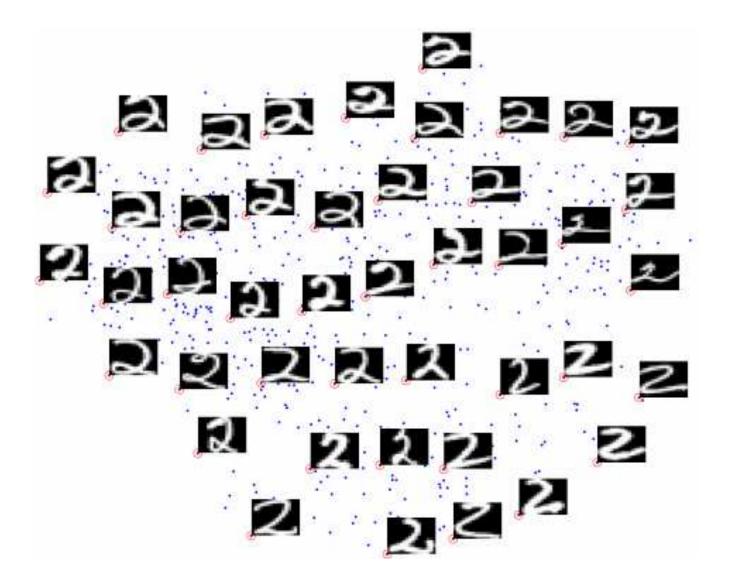
- Digital image and speech processing
- Gene expression microarray data
- Visualization of large networks
- Analysis of neuronal populations

The Big Picture

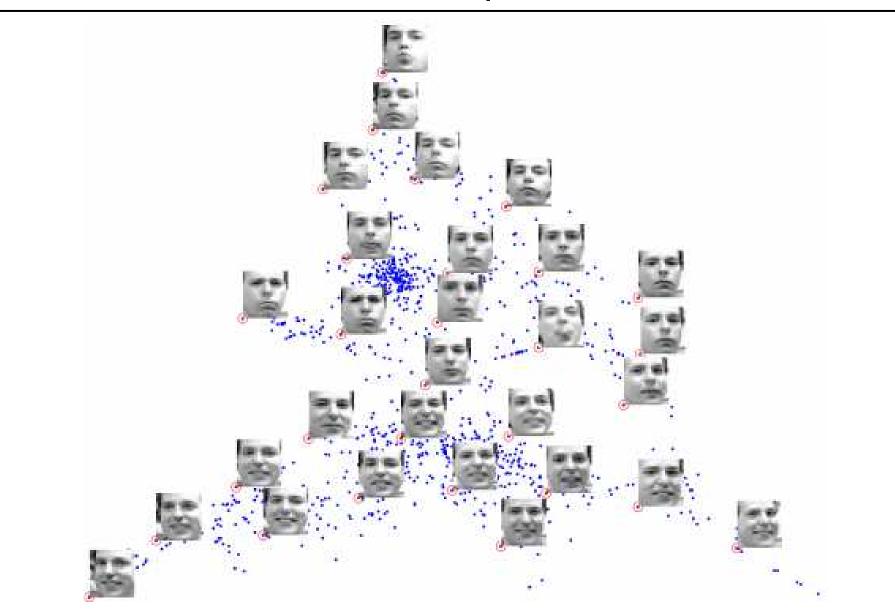
Given high dimensional data sampled from a low dimensional manifold, how to compute a faithful embedding?



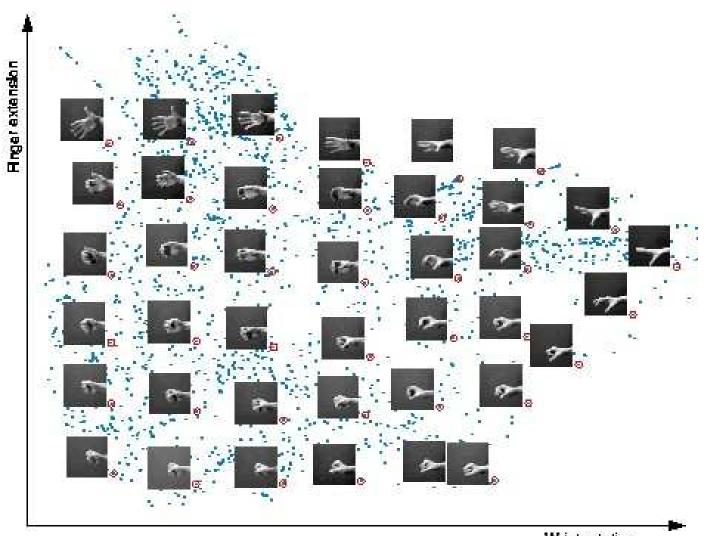
Handwritten Digit



Pose and Expression



Hand Images



Wrist rotation

Problem

Input:

$$\mathbf{x}_i \in \mathbb{R}^n$$
 with $i = 1, \cdots, m$

Output:

$$\mathbf{y}_i \in \mathbf{R}^d$$
 with d m

Embedding:

Nearby points remain nearby, distant points remain distant. Estimate *d*.

Spectral Methods

- Isomap (2000)
- Locally Linear Embedding (2000)
- Laplacian Eigenmap (2001)
- Hessian LLE (2003)
- Maximum Variance Unfolding (2004)
- Conformal Eigenmaps (2005)

Spectral Methods

Common framework

- Derive sparse graph from *k*-NN
- Derive matrix from graph weights: W
 - Varied algorithms differ in this step
- Derive embedding from eigenvectors

$$\mathbf{y}^{opt} = \arg \max \frac{\mathbf{y}^T W \mathbf{y}}{\mathbf{y}^T D \mathbf{y}} \implies W \mathbf{y} = \lambda D \mathbf{y}$$

Weakness

No out-of-sample extension

Require a linear projective function

$$y = f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}, \qquad \mathbf{y} = X^T \mathbf{a}$$

$$\mathbf{a}^{opt} = \arg \max \frac{\mathbf{a}^T X W X^T \mathbf{a}}{\mathbf{a}^T X D X^T \mathbf{a}} \implies X W X^T \mathbf{a} = \lambda X D X^T \mathbf{a}$$

• Examples

- Linear Discriminant Analysis
- Locality Preserving Projection
- Neighborhood Preserving Embedding
- More ...

Require a nonlinear projective function

$$y = f(\mathbf{x}) = \sum \alpha_i K(\mathbf{x}_i, \mathbf{x}) \qquad \mathbf{y} = K \boldsymbol{\alpha}$$

$$\boldsymbol{\alpha}^{opt} = \arg \max \frac{\boldsymbol{\alpha}^T K W K \boldsymbol{\alpha}}{\boldsymbol{\alpha}^T K D K \boldsymbol{\alpha}} \implies K W K \boldsymbol{\alpha} = \lambda K D K \boldsymbol{\alpha}$$

• Examples

- Kernel Linear Discriminant Analysis
- Kernel Locality Preserving Projection
- More...

Platform for Dimensionality Reduction

- Develop new algorithms
 - New objective function
 - New graph structure
 - Locality Sensitive Discriminant Analysis
 - Maximum Margin Projection
 - Semi-supervised Discriminant Analysis
 - ...

Efficient solution

Cubic-time complexity
 Linear-time complexity

- Graph embedding is a way to transform continuous
 manifold learning problems into discrete ones
- Graph embedding provides a general framework for dimensionality reduction
- Need efficient optimization solutions

Thank You!

http://www.ews.uiuc.edu/~dengcai2