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Dimensionality Reduction

• Question
– How can we detect low dimensional structure in 

high dimensional data?

• Applications

– Digital image and speech processing

– Gene expression microarray data

– Visualization of large networks

– Analysis of neuronal populations



The Big Picture

Given high dimensional data sampled 

from a low dimensional manifold, 

how to compute a faithful embedding?
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Problem

Nearby points remain nearby,

distant points remain distant.

Estimate d.
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Spectral Methods

• Isomap (2000)

• Locally Linear Embedding (2000)

• Laplacian Eigenmap (2001)

• Hessian LLE (2003)

• Maximum Variance Unfolding (2004)

• Conformal Eigenmaps (2005)



Spectral Methods

• Common framework
– Derive sparse graph from k-NN

– Derive matrix from graph weights:
• Varied algorithms differ in this step

– Derive embedding from eigenvectors

• Weakness

– No out-of-sample extension
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Linear Extension

• Require a linear projective function

• Examples

– Linear Discriminant Analysis

– Locality Preserving Projection

– Neighborhood Preserving Embedding

– More …
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Kernel Extension

• Require a nonlinear projective function

• Examples

– Kernel Linear Discriminant Analysis

– Kernel Locality Preserving Projection

– More…
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Platform for Dimensionality Reduction

• Develop new algorithms
– New objective function

– New graph structure
• Locality Sensitive Discriminant Analysis 

• Maximum Margin Projection

• Semi-supervised Discriminant Analysis

• ….

• Efficient solution

– Cubic-time complexity à Linear-time complexity



Conclusions

• Graph embedding is a way to transform continuous 
manifold learning problems into discrete ones

• Graph embedding provides a general framework for 

dimensionality reduction

• Need efficient optimization solutions



Thank You!

http://www.ews.uiuc.edu/~dengcai2


