Learning Global Probabilistic Models for Analyzing Large Structured and Semi-Structured Data

Chao Wang
Department of Computer Science and Engineering
The Ohio State University
wachao@cse.ohio-state.edu
Advisor: Prof. Srinivasan Parthasarathy

Copyright 2007, Data Mining Research Lab at the Ohio State University
Outline

• Introduction
• Background
• Our Previous Work
• Ongoing Work
• Concluding Remarks
Introduction

• Structured and semi-structured data
 – Transactional data. E.g., market basket data
 – Real graph data. E.g., co-authorship network, protein-protein interaction network
 – XML data

• Data modeling
 – Modeling interactions among domain entities
 – Our focus: Using local patterns to learn global probabilistic models

• Applications
 – Business intelligence
 • Recommender system/collaborative filtering
 – Graph analysis
 • Link prediction
 • Anomaly detection. E.g., anomalous link detection
 – Database processing
 • Selectivity estimation for query optimization
 – Many more …
Background

• Probabilistic graphical models
 – Undirected graphical models (Markov random field)
 – Directed graphical models (Bayesian network)

• Local patterns
 – Frequent itemsets
 – Frequent structural (sequence/tree/graph) patterns

• Using frequent itemsets to construct an MRF (First proposed by Pavlov et al. in 2000 for solving selectivity estimation problem)
 – View each k-itemset and its support as a constraint on the underlying data distribution
 – For a set of itemsets, a maximum entropy (ME) distribution satisfying all these constraints is selected as the estimated data distribution
 • This ME distribution specifies an MRF
Previous Work (Part 1) – Learning Approximate MRFs on Large Transactional Data

Mining frequent itemsets

<table>
<thead>
<tr>
<th>TID</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Exact MRF (model structure)

decompose

k-MinCut

augment

Interaction importance & treewidth-based scheme

Approximate MRF

derive

greedy inference
Experimental Results on Selectivity Estimation

Microsoft Web Anonymous Dataset
minSupp=20, |FI|=9901, tw=28

Varying tw (k = 25):

![Graphs showing estimation accuracy and response time](image)

- **Online time**: Increasing with query size and tw.
- **Offline time**: Increasing with tw, but relatively stable for different query sizes.

![Histogram showing average relative error](image)

- **Estimation accuracy**: Dependent on query size and tw, with lower error for smaller tw and query size.
There exist redundancy in a large collection of frequent itemsets

- Select only non-redundant patterns to learn probabilistic models
- Eliminate redundancy using MRFs
 - Relate to itemset summarization: To provide a more concise representation of a large collection of itemsets

1: Start from itemsets of size $k = 1$

2: Use k-itemsets to construct an MRF M (learning)

3: Use M to estimate the supports of $(k+1)$-itemsets (inference)
 - If estimation is accurate enough ($<\text{error_threshold}$), do nothing
 - Else, augment M using the corresponding patterns

4: Repeat in a level-wise fashion
Itemset Summarization Results

- Chess dataset (minSup=2000, |FI|=166581, |CFI|=68967, |NDFI|=1276|)

Summarization quality (restoration error)

Summarization size

Summarization time
Ongoing Work

• Improving model learning
 – Exploiting sampling methods (e.g., importance sampling) to learn truly large models
 – Combined with convex optimization techniques (e.g., CG, BFGS, L-BFGS, etc)

• Modeling data with incremental updates (e.g., Evolving real graphs) – preliminary results are promising
 – Incremental modeling is a special case
 – Link prediction
 – Novel pattern discovery
Concluding Remarks

- My thesis work is an *inter-disciplinary* effort that closely relates to various data mining/machine learning techniques, including:
 - Frequent pattern mining / Pattern post-processing
 - Statistical modeling / Probabilistic inference
 - Incremental data mining / Mining stream data
 - Graph mining / Social network analysis
 - Data characterization