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Introduction

* Structured and semi-structured data
— Transactional data. E.g., market basket data

— Real graph data. E.g., co-authorship network, protein-protein interaction
network

— XML data

* Data modeling
— Modeling interactions among domain entities
— Ouwur focus: Using local patterns to learn global probabilistic models

* Applications
— Business intelligence
* Recommender system/collaborative filtering
— Graph analysis
* Link prediction
* Anomaly detection. E.g., anomalous link detection
— Database processing
* Selectivity estimation for query optimization
— Many more ...
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Background

Probabilistic graphical models
— Undirected graphical models (Markov random field)
— Directed graphical models (Bayesian network)

Local patterns
— Frequent itemsets
— Frequent structural (sequence/tree/graph) patterns

Using frequent itemsets to construct an MRF (First proposed
by Pavlov et al. in 2000 for solving selectivity estimation
problem)

— View each k-itemset and its support as a constraint on the underlying
data distribution

— For a set of itemsets, a maximum entropy (ME) distribution satisfying
all these constraints is selected as the estimated data distribution

* This ME distribution specifies an MRF
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Previous Work (Part 1) — Learning Approximate
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Experimental Results on Selectivity Estimation

Microsoft Web Anonymous Dataset
minSupp=20, |FI|=9901, tw=28

Varying tw (k = 25):
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Previous Work (Part 2) — Employing Non-Redundant
[.ocal Patterns to Learn Global Models

* There exist redundancy in a large collection of frequent
itemsets

* Select only non-redundant patterns to learn probabilistic
models

* Eliminate redundancy using MRFs

— Relate to itemset summarization: To provide a more concise
representation of a large collection of itemsets

1: Start from itemsets of size k = 1
2: Use k-itemsets to construct an MRF M (learning)
3: Use Mto estimate the supports of (k+1)-itemsets (inference)

If estimation is accurate enough (< error_threshold), do nothing
Else, augment M using the corresponding patterns

4: Repeat in a level-wise fashion
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Itemset Summarization Results

Chess dataset (minSup=2000, IFIl=166581, ICFII=68967, INDFII=1276I)
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Ongoing Work

* Improving model learning

— Exploiting sampling methods (e.g., importance
sampling) to learn truly large models

— Combined with convex optimization techniques
(e.g., CG, BFGS, L-BFGS, etc)

* Modeling data with incremental updates (e.g.,
Evolving real graphs) — preliminary results are
promising

— Incremental modeling 1s a special case
— Link prediction
— Novel pattern discovery
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Concluding Remarks

* My thesis work 1s an inter-disciplinary effort that
closely relates to various data mining/machine learning
techniques, including:

— Frequent pattern mining / Pattern post-processing
— Statistical modeling / Probabilistic inference

— Incremental data mining / Mining stream data

— Graph mining / Social network analysis

— Data characterization
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