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Abstract—Frequently, users on the web need to show that
they are, for example, not a robot, old enough to access an
age restricted video, or eligible to download an ebook from
their local public library without being tracked. Anonymous
credentials were developed to address these concerns. However,
existing schemes do not handle the realities of deployment or
the complexities of real-world identity. Instead, they implicitly
make assumptions such as there being an issuing authority
for anonymous credentials that, for real applications, requires
the local department of motor vehicles to issue sophisticated
cryptographic tokens to show users are over 18. In reality,
there are multiple trust sources for a given identity attribute,
their credentials have distinctively different formats, and many,
if not all, issuers are unwilling to adopt new protocols.

We present and build zk-creds, a protocol that uses
general-purpose zero-knowledge proofs to 1) remove the need
for credential issuers to hold signing keys: credentials can be
issued to a bulletin board instantiated as a transparency log,
Byzantine system, or even a blockchain; 2) convert existing iden-
tity documents into anonymous credentials without modifying
documents or coordinating with their issuing authority; 3) allow
for flexible, composable, and complex identity statements
over multiple credentials. Concretely, identity assertions using
zk-creds take less than 150ms in a real-world scenario of
using a passport to anonymously access age-restricted videos.

1. Introduction
Privacy-preserving identification is an apparent contra-

diction in terms: one cannot both wish to simultaneously
identify themselves and stay private. But this is increasingly
necessary on today’s internet. For example, Australia, the
EU, and the UK age-restrict access to some video content,
requiring identification via a credit card or photo of an official
ID to access it [37, 36]. The tracking and data exposure risks
raised by such requirements can be eliminated with privacy-
preserving cryptography: anonymous credentials allow a
user to assert that they meet some access criteria, e.g., are
over 18, without revealing anything else about themselves,
linking their viewing habits to their identity, or even linking
distinct video views together. Beyond this narrow applica-
tion, anonymous credentials could be extended to complex
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identity statements—for example, checking residency for
accessing online library resources or petitioning local elected
representatives1—and the composition of credentials such as
the pairing of a vaccine card with a photo ID.

While the subject of extensive academic work [26, 21,
22, 6, 5, 35, 17, 55], anonymous credentials have thus far
seen little deployment.2 In large part, this is because most
existing systems are designed with a number of assumptions
about identity that, while suitable for advancing a body
of cryptographic knowledge, produce designs that can be
difficult to actually deploy in real-world identity systems.

Existing anonymous credential schemes make, at a mini-
mum, some subset of the following simplifying assumptions:
there is a single issuer for a given identity property (e.g.,
date of birth); when there are multiple issuers for a property,
the property formats are compatible; there exist reputable
authorities that are able and (more importantly) willing to
be responsible for holding signing keys, verifying identity
properties, and running sophisticated cryptographic protocols
for issuing anonymous credentials; all attribute formats
needed for a credential are known in advance; and the set
of authorities for a given identity attribute or credential can
be enumerated at the time one instantiates the system.

In this paper, we build zk-creds, a flexible, issuer-
agnostic anonymous credential toolkit for complex identity
statements. The general-purpose proving functionality sup-
ported by zkSNARKs gives us the flexibility to address most
of these challenges. From this approach, we automatically
gain support for ad-hoc composition of credentials and access
criteria, and issuance by (threshold) signatures. In many
cases, we can even remove the need for trusted anonymous
credential issuers entirely by instantiating a bulletin board
to track issued credentials, no longer requiring issuers to
hold signing keys or other secrets. Concretely, this work
contributes the design and implementation of a toolkit
for flexible privacy-preserving credentials, and builds two
example applications.

1. New York State provides such a platform with no privacy guaran-
tees [50].

2. Notable exceptions for human uses of credentials are limited trials of
CL-sigs with Idemix [24] and, although it is not a full-fledged anonymous
credential scheme, Privacy Pass [28]. Intel also makes use of DAA [13]
for device attestation, and a MAC variant of anonymous credentials is also
being used for private groups in Signal [25].



1.1. Past work and real-world limitations
Several approaches have tried to address the limitations of

anonymous credentials, focusing primarily on the problems
of finding and trusting issuers.
Distributing issuance via multiple issuers. To reduce
the trust needed in issuers, schemes have explored threshold
issuance [55] and support for multiple issuers [20]. While this
improves the situation if there are multiple willing issuers,
it does not address the potential scarcity of issuers who are
willing or able to deploy novel (or any) cryptography. Nor
does it provide a means to reconcile the differing identity
document formats or use cases multiple issuers would have.
Decentralizing issuance by removing signing keys. In
Decentralized Anonymous Credentials [35], credentials are
maintained in some form of transparency log which can either
be centralized and audited, distributed across cooperating
parties, or operated in a decentralized fashion by a Byzantine
system or blockchain. While this approach removes one
obstacle to credential issuance by avoiding signing keys, the
concrete protocol has performance and operational limita-
tions. For example, the protocol requires that all clients have
the full list of issued credentials, and does not address any
of the other complexities of real use cases.
The messy reality of identity claims. We now return to
our initial example: an anonymous credential to allow access
to age-restricted videos and prevent tracking of browsing
habits. In theory, whichever authority issues identity cards
in a country can also issue anonymous digital credentials
to everyone of age. But in practice, a number of problems
arise when attempting to deploy such a scheme with existing
anonymous credentials.

First, there is not a single source of identity documents
(e.g., the US has 50+ drivers license issuers) and few might
wish to participate due to the burden of deploying new
technology. Fewer still can be trusted to secure the requisite
signing keys for issuing credentials.

Second, requirements will change. What started as a
token for being over 18 will need to support other age
checks—under 12, over 21, over 65—necessitating more
complex credentials, access criteria, and potentially credential
revocation and reissuance.

Third, each ID issuer will, by default, form its own
anonymity set. Even for “multi-authority” schemes designed
to avoid this, differences in data fields can distinguish
populations:3 a foreign diplomat accessing age-restricted
content in their host country may be distinguished from a
resident using a local ID.

Fourth, new identity documents need to be integrated
as they emerge to avoid access equity issues, and these
documents may have differing formats. For example, many
cities now issue IDs in part for undocumented residents [41].

Finally, even for something as conceptually simple as
“of age,” identity statements are not necessarily simple: in

3. Consider something as simple as date formats: Japanese Drivers
Licenses give birth year relative to eras that correspond to the reign of the
emperor. However, they use the Gregorian calendar for months and days.

the event age limits differ between jurisdictions, a video
platform needs to check where the viewer is located, and IP
geolocation may be insufficient (e.g, in the case of Tor or a
VPN). Credentials can directly encode a home address but,
even for physical credentials, this does not work in practice:
people move and do not update their IDs, and as a result
need to provide alternative proofs of address. Supporting
this privately requires composing credentials for, e.g., age
and residency.
Minimizing trust when issuing credentials. Current (even
non)-anonymous credential protocols assume the same party
verifies claimed identity properties and signs cryptographic
credentials. This requires finding a single party who is trusted
for two different (and not necessarily related) tasks: one who
is both capable of verifying identity attributes and competent
to manage signing keys. The linking of these two roles is
often unnecessary and complicates deployment.

First, many uses of anonymous credentials do not use
identity attributes which must be verified by a trusted
party to issue a credential. Looking ahead, we describe
an issuer-less Privacy Pass-like construction [28] where
Sybil-resistant anonymous tokens are issued by making a
blockchain payment. This has no trusted parties—neither
for verifying that the user is not a Sybil, nor for signing a
credential.

Second, even when we must trust some entity to verify
identity attributes (e.g., a passport issuer for a user‘s date
of birth), it is not necessary to trust an additional party to
hold key material for a novel cryptographic scheme. Looking
ahead, we offer the minimal trust assumptions in many such
cases by replacing signing with a distributed bulletin board.

Third, even where there is a trusted party who both
verifies identity attributes and issues credentials, trusting a
party to maintain a list is safer than trusting them to secure
signing keys. In existing anonymous credential schemes,
compromise of issuing keys is frequently undetectable and
rollback requires rekeying and reissuing. With issuance via
a list, compromise is detectable and easily reversible.

All of the aforementioned issues can be addressed by
a scheme that is flexible, dynamically adaptable to new
use cases post-deployment, minimizes the need to find new
trusted parties, and can support complex access criteria that
are agnostic to the issuer or credential format.

1.2. Our contribution
We introduce zk-creds, a toolkit for privacy-

preserving authentication protocols and anonymous creden-
tials that offers flexible identity assertions and does not
need trusted issuers. A key contribution of zk-creds
over previous works is the usage of general-purpose zero-
knowledge proofs rather than bespoke proof systems over
blind signatures.

The switch to general-purpose zero-knowledge proofs
as the basis for anonymous credentials, instead of blind
signatures, is a paradigm shift: rather than imagining a
subset of use cases and designing custom protocols for
each while balancing cryptographic tradeoffs, zk-creds
gets full privacy and full expressivity even after a protocol
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is designed and deployed. A single scheme, built with
zk-creds, is adaptable to shifting requirements without
requiring the development of new custom cryptographic
protocols. Moreover, application-specific logic can be defined
and modified in simple programming languages via a number
of publicly available tools [49, 3, 10] with the instantiation
of the scheme handled by the compiler.

General-purpose zero-knowledge proofs enable
zk-creds to support flexible and composable access
criteria. zk-creds not only allows users to privately show
that their credential(s) meet some arbitrary access criteria
check, but it also allows these criteria to be defined at
any time (even after system setup or credential issuance),
by any party, and composed dynamically as gadgets.
This flexibility allows zk-creds to meet the reality of
real-world authentication mechanisms: requirements can
dynamically change at any time, as can use cases and even
identity issuers.

The second major contribution of zk-creds is its
support of existing government identity infrastructure with-
out modification or collaboration. Using general-purpose
zero-knowledge proofs, we can convert the digital (non-
anonymous) identity information that is increasingly included
in national identity cards and passports into anonymous
credentials. This zk-supporting-documentation allows us to
provide a digital analogue of walking into a US Department
of Motor Vehicles and presenting existing identity documents
to get a driver’s license, without exposing any information
to the issuer. We implement an end-to-end example of this
paradigm, using a zero-knowledge proof over the data in
unmodified NFC-enabled US passports to create credentials
for accessing age-restricted videos.

As a third contribution, zk-creds supports publicly
verifiable credentials. Because the issued credential list can
be maintained by a public system (i.e., a transparency log or
blockchain) and each credential can include zk-supporting-
documentation justifying its issuance, the set of all issued
credentials is publicly auditable. This is not possible when
credentials can be surreptitiously issued via signing keys.4
As such, we need only trust the issuer to add credentials
(and their supporting documentation) to the list, and any
compromise or malfeasance is detectable and reversible.

To summarize, in this paper we design, build, and
benchmark zk-creds which:

• drastically improves performance over existing decen-
tralized schemes via reusable proofs where ShowCred
takes < 150ms;

• supports existing physical identity documents (e.g.,
passports) without modification via zk-supporting-
documentation;

• provides support for flexible and composable gadgets
that can be combined to express complex access criteria
checks even after system setup;

• allows for public auditability of issued credentials,
without harming anonymity;

4. We note, however, that while the credentials are fully auditable, identity
statements require inherent trust in something. If the identity infrastructure,
e.g., US passports, is not trusted, then we can make no guarantees.

• provides (of independent interest), blind Groth16, a
novel mechanism for privately linking together multiple
zero-knowledge proofs in a way that enables proof
rerandomization and reuse; and

• includes a full application for age-restricted video access
with cloning resistance, using existing passports for
issuance.

Non-goals: On-chain verification of credentials. This
work constructs flexible credentials that can be issued
without a central party holding a signing key (although
we also support signature-based issuance). This should not
be confused with a different area of both industrial and
academic work (see e.g., [52]), which considers verification
of existing (i.e., centrally issued) anonymous credentials by
a smart contract. The question for on-chain verification of
anonymous credentials is not how to remove centralized
issuance, but simply how to minimize the cost of verification
given the extreme cost of smart contract execution. Reducing
verification costs is typically done by batching verification
inside a zero-knowledge proof5 and is generically applicable
to any anonymous credential scheme, including the ones
proposed here.

2. Overview
zk-creds is a system for issuing credentials to users

and privately showing that a credential meets access criteria.

2.1. Example application and credential lifecycle
A credential is a commitment to a set of attributes (e.g.,

name, date of birth, etc.). A credential is issued (see Figure 1)
when it is made a leaf in a Merkle tree. We call the set of
leaves the issuance list. Optionally, protocol designers can
require zero-knowledge supporting-documentation that the
attributes match some (existing) document without revealing
any additional information. In our implemented example (see
Section 7), this consists of a zero-knowledge proof that the
attributes in the credential match a US passport.

We emphasize that, while our example trusts an existing
identity document issuer—the passport authority—it requires
no additional trusted parties, no existing parties to take on
additional trusted roles, or even modification of the issuer.
With standard anonymous credentials, we would need to also
trust the security of credential signing keys, likely held by
an additional party. In our example, we need only some way
of maintaining a list of issued credentials.

Clients, once issued a credential, show a credential to
gain access to some resource, as shown in Figure 2. The
client presents a non-interactive zero-knowledge proof that:
1) they have a credential (a commitment) in the Merkle tree
of issued credentials and 2) the attributes meet some access
criteria.

Crucially, the zero-knowledge proof hides which creden-
tial is used, the credential’s attributes, and the details of how
the access criteria were met. In our example, the client uses
a credential containing their birth date to show they are over
18 and gain access to a website. The verifier learns only that

5. This is, in essence, a specialized zk-rollup [16].
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Name
DOB rk

πcommitment

zk-supporting-docs

issuance list Merkle root

Figure 1: A credential in zk-creds is issued by adding it
to a Merkle tree after (optionally) presenting zk-supporting-
documentation to justify issuance.

Name
DOB rk user verifier

issuance list

Figure 2: To show a credential in zk-creds, the prover uses
knowledge of their credential opening and the position of the
credential in the issuance list to construct a zero-knowledge proof.
The verifier need only know the issuance list root.

the client is over 18, not their identity, which credential they
used, their exact birth date, or any of the other attributes in
their credential.

2.2. Design features
As illustrated by our example application, our approach

to building anonymous credentials has a number of important
features.
Flexible access criteria. Application developers can define
arbitrary access criteria at any point in the lifetime of the
system. We support common features from the anonymous
credential literature, such as hidden-attribute credentials, in-
equality or expiry checks, rate limiting, and cloning resistance
where violating the rate limit (e.g., by sharing a credential
with others) results in the credential’s identification and
revocation. And because we support the efficient encoding
of access criteria as an NP relation, we can easily support
more complex criteria than existing schemes, such as a proof
of residency in a given municipality to access ebooks from
a local public library.
Auditable issuance. Credential issuance can be publicly
auditable as well: e.g., in our passport example anyone can
download the list of credentials and, with zk-supporting-
documentation, verify both that a credential was issued and
why. Even without such documentation, all issued credentials
are visible and issuance can be investigated. In contrast, it
is impossible to enumerate, let alone audit, every credential
signed with a given key.
Flexible credential management. Because credential
issuance is simply a matter of list management, credential
issuance is flexible. In many cases, we need not find a
trusted party at all: a simple bulletin board is sufficient, as

is a blockchain. In other cases, a central party can maintain
the list without needing to be trusted to secure signing keys.
Signature-issued credentials. Separately, in cases where
there is a party who is trusted to issue correct credentials
without public auditability and is trusted, willing, and able
to secure signing keys, our implementation of zk-creds
also supports issuing credentials via signatures. In this case,
there is no issuance list. When feasible, this leads to faster
credential shows and removes the overhead of managing a
witness to list membership.
Witness management. Using Merkle trees for credential
issuance requires the user to maintain an up-to-date witness
to the credential’s membership in an issuer’s list. Periodically,
the user can ask the issuer for an updated witness. Looking
ahead, this also lets any user update their witness by down-
loading logarithmic-sized updates from the tree’s frontier
and a constant number of Merkle roots (see Appendix B).
Revocation. Many existing approaches require expensive
asymmetric cryptographic operations for each revocation.
Some schemes, like EPID [14], require each credential show
to perform work linear in the number of revoked private
keys. Other schemes use, e.g., RSA accumulators, which
require recomputing accumulator witnesses per revocation at
cost linear in the number of revocations. And, while more
efficient accumulators exist [9], such techniques have not
been used for revocation, to the best of our knowledge.
In contrast, each revocation in zk-creds only requires
removing the credential from its Merkle tree, incurring only
logarithmic costs in the number of issued credentials. This
captures revocation of the credential where the holder’s public
identity is known, and so called private key revocation where
a stolen or leaked credential is banned.

3. Preliminaries
3.1. General notation

We write x := z to denote variable assignment, and y ←
S to denote sampling uniformly from a set S. y := A(x; r)
denotes the execution of a probabilistic algorithm A on input
x, using randomness r. We write x := x1, x2, . . . to denote
a variable-length list, and boldface to denote a vector. For
an arbitrary, efficiently computable predicate P , we say that
a proof of knowledge of a relation R = {(x;w) : P (x,w)}
with respect to an instance x is a proof of knowledge of the
witness w such that P (x,w) is satisfied. We use Com(v; r)
to denote a commitment to the value v with randomness r.
The security parameter of our system is denoted by λ.

3.2. Merkle trees
In zk-creds we use Merkle trees T to represent set

membership. The root of a tree T is denoted Troot. A Merkle
forest F is a set of Merkle tree roots. Merkle trees have the
following functionality:
T .Insert(v)→ T ′ Inserts the value v into the next free leaf

in T and returns the modified tree.
T .Remove(v)→ T ′ Removes v from the tree (if present)

and returns the modified tree.
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T .AuthPath(v)→ θ Creates an authentication path θ that
proves that v ∈ T . The size of θ is proportional to the
height of the tree.

3.3. Cryptographic building blocks
We describe two non-interactive zero-knowledge (NIZK)

proof systems we use to build zk-creds. Both systems
operate within a type-3 non-degenerate bilinear group which
we denote bg.
Groth16. Groth16 [39] is a trusted-setup zkSNARK scheme.
To describe zk-creds, it suffices to specify the functional-
ity of Groth16 that any general-purpose NIZK proof scheme
supports:
G16.Setup(bg, desc)→ crs Generates a common reference

string (crs) for the given arithmetic circuit description
and bilinear group.

G16.Prove(crs, x, w)→ π Proves the circuit described by
crs is satisfied, where x are the public inputs and w
are the witnesses.

G16.Verify(crs, π, x)→ {0, 1} Verifies the proof π with re-
spect to the given public inputs.

Groth16 Linkage. We describe a high-level interface that
allows us to construct a (blinded) linkage proof over Groth16
proofs. This allows one to show that a hidden collection of
Groth16 proofs π1, . . . , πk all share some subset of hidden
common inputs x∗, not known to the verifier. Concretely,
this proof system proves that

k∧
i=1

G16.Verify(crsi, πi, (x
∗,xi))

where xi are the non-hidden public inputs (i.e., public inputs
known to the verifier). See Appendix C for the full description
and security proofs of LinkG16. For zk-creds, however,
it suffices to specify the functionality:
LinkG16.Link(x∗, {crsi, πi}ki=1)→ πlink Constructs a zero-

knowledge proof of the above relation, with respect to
hidden common inputs x∗.

LinkG16.LinkVerify(πlink, {crsi,xi}ki=1) → {0, 1} Verifies
the above statement with respect to the given public
inputs and Groth16 CRSs.

3.4. Cryptographic assumptions
We state the security properties of the above schemes and

the cryptographic assumptions necessary to achieve them. For
brevity, we defer the definitions of the specific assumptions
to the cited references.

Groth16 is perfectly zero-knowledge and weak white-box
simulation-extractable against algebraic adversaries under
q−dlog and a linear independence assumption [4]. We
also assume this result holds under the common Groth16
substitution γ = 1. We use Poseidon [38] to instantiate a
hash for Merkle trees, as well as commitments. Finally, we
assume that the key-prefixed Poseidon hash function, used to
instantiate the gadgets in Section 5.3, is a PRF. As Poseidon
is a sponge construction, prefixing is secure. Separately, see
Appendix F for an alternate instantiation using Pedersen
hashes and perfectly hiding commitments.

4. Definitions
4.1. Security definitions

Security definitions are given by an ideal functionality
in Figure 6 of Appendix E, corresponding to the usual
security properties of anonymous credentials: unforgeability,
correctness and unlinkability. It also implies an additional
security property, session binding: shows of a credential are
inherently bound to the channel or session in which they are
presented, thus preventing replay attacks.
Threat model. The ideal functionality corresponds to
the following general threat model. We assume all issuers,
verifiers, and (almost all) users are malicious and can collude.
We inherit the standard requirement that, for anonymity, there
must be at least two honest users with valid issued credentials.
We also assume that there exists a reliable mechanism for
parties to agree on the list of issued credentials.

4.2. Anonymous credentials
We give a generic overview of the data structures and

algorithms which our scheme instantiates.
Let a credential be the commitment cred :=

Com(nk, rk, attrs; r) where nk is the pseudonym key, a
private random value used to generate persistent pseudonyms;
rk is the rate key, a private random value used to generate
rate-limit tokens; attrs ∈ A is an arbitrary set of public
and hidden attributes; and r is the commitment randomness.
Note that the values within the credential remain private
by the hiding property of commitment schemes, with the
exception of attribute information revealed by the user.

We say that an issuer I issues a credential if it appears
on I’s credential list CL. Looking ahead, while the credential
list may be instantiated in many ways (e.g. an accumulator,
or Merkle tree), we later instantiate this as a Merkle forest
and a list of corresponding Merkle trees CL := (F, T ), with
an authentication path θ providing membership attestation.
Every issuer has some issuance criteria ι that the requester
must meet in order to have their cred issued, e.g., that
the birth date in cred matches a signed digital passport.
Over an issuer-authenticated channel, the requester (running
IssueReq) sends cred to the issuer with some zk-supporting-
documentation sd, e.g., a Groth16 proof or a digital signature,
that convinces the issuer of the criteria. The issuer runs
IssueGrant and, upon success, adds cred to their list and
returns an authentication path θ attesting to its issuance.

Next, let the list of all possible access criteria be
Φ := {ϕ | ϕ : A → {0, 1}} which can be defined dynam-
ically by users, verifiers, or even third-parties for an applica-
tion using zk-creds, even after system instantiation. Over
an anonymous channel, a user shows a credential (running
ShowCred) by presenting a zero-knowledge proof that they
have a valid issued credential (with θ as a private witness)
whose attributes in witness w satisfy the verifier’s access
criteria. The proof must also be bound to some session
context, aux. The verifier runs VerifyShow and, upon success,
grants access to the user.

An anonymous credential system with zk-supporting-
documentation can then be defined by the following algo-
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rithms (where the subscript U , I , or V denotes that the user,
issuer, or verifier runs the algorithm, respectively):
Setup(1λ)→ pp Generates the system parameters.
IssueSetup(pp)→ ι Establishes the public attribute fields

and issuance criterion ι for obtaining a credential.
ShowSetup(pp)→ ϕ Establishes a new access criterion ϕ ∈

Φ for showing a credential.
IssueReqU (pp, ι, attrs, wsd, iauxsd)→ (cred, sd) Creates

and requests a credential cred with zk-supporting-
documentation sd under issuance criteria ι.

IssueGrantI(pp, ι,CL, cred, sd)→ (CL′, θ) Decides whether
to grant a user the requested credential cred; if so, adds
it to the list CL and returns its issuance attestation θ.

ShowCredU (pp, ϕ,CL, cred, θ, w, aux)→ (πlink, aux)
Shows that an issued cred satisfies access criteria ϕ.

VerifyShowV (pp, ϕ,CL, πlink, aux)→ b Validates a creden-
tial show, including the current session context in aux.

RevokeCredI(pp,CL, cred)→ CL′ Revokes a credential.

5. Construction
zk-creds assumes there is a list of issued credentials

maintained by either a trusted party, some Byzantine system,
or a blockchain. Our scheme provides three sets of func-
tionalities: issue, show, and revoke. Through the issuance
process, a user, Alice, convinces the issuance mechanism
she should be given a credential. Once her credential is put
on the issuance list, Alice can then use the credential to
show she meets some access criteria. Conceptually, using a
credential involves two steps: (1) a membership proof that
the credential is on the issuance list, and (2) a proof that
the committed attributes meet some access criteria. Finally,
an issuer is able to revoke a credential if need be by simply
removing it from the list.

We can realize this paradigm in different ways and
using different set-membership techniques such as an RSA
accumulator, purpose built zero-knowledge schemes [61], or
even using signatures of issuance.

In our construction of zk-creds, we realize member-
ship proofs using Merkle forests, a new approach that allows
developers to trade a slight increase in verification time and
witness data for a large reduction in proving time. For access
criteria checks, we provide developers with a set of gadgets.
Gadgets can be composed to form complex access criteria
checks. Finally, we tie these components together with a
new blind Groth16 proof, of potentially independent interest,
that lets us show multiple Groth16 proofs shared the same
blinded input without—as in commit-and-prove—creating a
persistent identifier. This allows us to reuse the membership
proof across multiple credential shows without the reused
proofs being tracked.

We now give details on our specific instantiation and
describe the full construction in Figure 3.

5.1. Merkle forests
Rather than using a single Merkle tree to accumulate

credentials and prove membership, zk-creds uses a forest
of Merkle trees. The membership proof attests to two parts:
cred ∈ T for some Merkle tree T , and Troot ∈ F where F

is the forest of Merkle trees containing issued credentials.
Compared to a single Merkle tree, the Merkle forest approach
gives us a tunable tradeoff between proving time and
verification time. Shorter Merkle trees can drastically reduce
proving costs—up to 50%, or 143ms. Furthermore, since
forest membership is a simple OR-proof over Merkle tree
roots, the cost of a larger forest is negligible to the prover
and allows for a much larger list. Also, we note that, for the
size of the forests we consider, the additional verification
cost is trivial (137µs).

Witness management. Showing a credential in zk-creds
requires knowing the witness (a.k.a., authentication path) θ
attesting to issuance in its Merkle tree. θ must be updated
as credentials are added or removed from the tree. In a
naı̈ve construction, a user might download newly-issued
credentials to update the tree. However, this requires the user
to construct and maintain a local copy of their entire Merkle
tree, which is often impractical. On the other extreme, users
could periodically query an issuer or list manager to provide
the updated θ. However, this uniquely identifies the credential
and strongly correlates with subsequent shows, posing a large
privacy risk (especially in low-use deployments). We present
two expedient approaches in Appendix B, and introduce
better constructions leveraging Merkle forests in the full
version [54].

5.2. Blind Groth16

The membership proof is the most costly part of
ShowCred. Looking ahead, it takes 460ms to complete. While
the access criteria check must be redone for every show in
many cases—for example, rate-limited shows include a token
that uniquely identifies reuse—the membership proof does
not change unless more credentials are issued.

We use a blind Groth16 linkage proof to combine a mem-
bership proof with (perhaps multiple) access proofs. Blind
Groth16 lets us reuse an already computed membership proof
in multiple shows without breaking privacy. Furthermore,
it expands the functionality of the system by supporting
the easy composition of access criteria: without this ability
to compose access criteria, system designers would need to
either: 1) dynamically generate circuit parameters for gadgets
as they are needed, 2) determine in advance all the gadgets
they will support, or 3) generate the circuit parameters for
every combination of gadgets that could be used.

Concretely, blind Groth16 lets us prove that a number
of Groth16 proofs are all made with respect to the same
credential without revealing the credential. At a high level, the
algorithm works as follows. First, it prepares the public inputs
(here, cred and its Merkle root) shared by the underlying
proofs. For each proof, it then blinds a copy of the prepared
input, and blinds the proof in a way that cancels with
the blinded input. Finally, it proves that all the blinded
inputs are consistent with each other. After canceling the
blinding factors, the verification equation is identical to the
typical Groth16 verification equation. For more detail, see
the description of LinkG16 in Appendix C.
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Setup(1λ, h, n):
1. Choose bilinear group bg w/ large prime order p
2. Let descT be a circuit w/ public inputs (Troot, cred), where

T is a Merkle tree of height h. It asserts that there is an
auth path θ attesting to cred ∈ T

3. Let descF be a circuit w/ public inputs (Troot, cred, F ),
where F is a forest of n Merkle trees. It asserts that the
tree is in the forest: (Troot = F1) ∨ . . . ∨ (Troot = Fn)

4. Compute crsT := G16.Setup(bg, descT )
5. Compute crsF := G16.Setup(bg, descF )
6. Let pp := (bg, crsT , crsF )
7. Return pp

IssueSetup(pp):
1. Decide on issuance criteria (ιzk, ιpub) for supporting docs
2. Let desc be a circuit w/ public input iauxzk asserting:

ιzk(attrs, iauxzk) = 1 ∧ cred opens to (nk, rk, attrs)
3. Compute crsι := G16.Setup(bg, desc)
4. Return (crsι, ιpub)

ShowSetup(pp):
1. Decide on access criteria ϕ for satisfying attributes
2. Let desc be a circuit w/ public (Troot, cred, aux) asserting:

ϕ(nk, rk, attrs, aux) = 1 ∧ cred opens to (nk, rk, attrs)
3. Compute crsϕ := G16.Setup(bg, desc)
4. Return crsϕ

IssueReq(pp, crsι, attrs, wsd, (iauxzk, iauxpub)):
1. Sample r, nk, rk // commitment nonce, pseudonym key, rate key
2. Commit cred := Com(nk, rk, attrs; r)
3. Let w := (wsd, r, nk, rk, attrs) // collect the witnesses
4. Prove πι := G16.Prove(crsι, (cred, iauxzk), w)
5. Let sdzk := (πι, iauxzk) // collect the supporting docs
6. Let sdpub := iauxpub
7. Send (cred, sdzk, sdpub) to issuer
8. Receive the root of the modified credential tree T ′ and a

Merkle auth path θ attesting to cred ∈ T ′

9. Store (nk, rk, r, attrs, θ)

IssueGrant(pp, (crsι, ιpub), (F, T ), cred, (sdzk, sdpub)):
1. Parse (πι, iauxzk) := sdzk
2. Check ιpub(sdpub) // check public supporting docs
3. Check G16.Verify(crsι, πι, (cred, iauxzk)) // check ZK SD
4. If either check fails, reject issuance and abort
5. Else, choose T from forest F and let T ′ := T .Insert(cred)
6. Let θ := T ′.AuthPath(cred) // θ attests to cred ∈ T ′

7. Store T ′ and update the forest F
8. Send θ to user U

ShowCred(pp, crs, (F, Troot), cred, θ, {wi, auxi}ki=1):
1. Parse ({crsϕi}

k
i=1, crsT , crsF ) := crs and cred’s Troot ∈ F

2. For all i = 1, . . . , k, compute the access criteria proof:
πϕi

:= G16.Prove(crsϕi , (Troot, cred, auxi), wi)
3. Prove πT := G16.Prove(crsT , (Troot, cred), θ) // tree
4. Prove πF := G16.Prove(crsF , (Troot, cred, F ), nil) // forest
5. Let π := ({πϕi}

k
i=1, πT , πF ) // collect the proofs

6. Prove πlink := LinkG16.Link((Troot, cred), {crsi, πi}k+2
i=1 )

7. Send (πlink, {auxi}ki=1) to verifier V

VerifyShow(pp, crs, F, πlink, {auxi}ki=1):
1. Parse ({crsϕi}

k
i=1, crsT , crsF ) := crs

2. Let (auxk+1, auxk+2) := (nil, F ) // collect auxiliary inputs
3. Check LinkG16.LinkVerify(πlink, {crsi, auxi}k+2

i=1 )
4. Upon success, accept. Else, reject

RevokeCred(pp, (F, T ), cred):
1. Find cred ∈ T within forest F ; if cred not found, abort
2. Let T ′ := T.Remove(cred)
3. Store T ′ and update the forest F
4. Return T ′

Figure 3: zk-cred Construction. NB: Although the inputs (Troot, cred) are public in all Groth16 proofs in ShowCred, they are hidden
from the verifier by LinkG16. Also note that any necessary updates to the auth path θ or credential list (F, T ) are handled out-of-band.

5.3. Gadgets
Since ShowCred supports arbitrary statements, verifiers

have the flexibility to add and remove helpful subcircuits, or
gadgets, from their protocol. In fact, rather than embedding
gadgets in existing circuits, verifiers can make use of the
structure of ShowCred to create a separate proof for each
gadget and link them together. The benefit to this kind of
customization is twofold: users can precompute and cache
standalone gadget proofs separately from other access criteria
proofs, and verifiers are freed from having to define custom
circuits and generate the CRSs.

Gadgets are arbitrary NP relations which can capture
nearly any conceivable identity check. We now describe
some gadgets that serve as building blocks for zk-creds-
based systems. Recall that rk denotes the rate key, used for
generating rate-limit tokens, and nk denotes the pseudonym
key, used for deriving uniform but linkable tokens.
Linkable show Reveals a pseudonym PRFnk(ctx) that per-

sists across interactions in a given context ctx, but is
unlinkable to any use of the credential in other contexts.

For example, a single Sybil-resistant credential could be
used for creating unlinkable accounts across sub-forums
within a single site, such as Discord servers or subreddits.

Rate limiting Limits users to performing ShowCred only
N times per epoch, for some verifier-chosen rate limit
N . Every ShowCred, the user produces a pseudorandom
token tok = PRFrk(epoch∥ctr), reveals epoch, and
proves that ctr is less than N .

Cloning resistance Performs the same function as rate
limiting, but deanonymizes rate violators. The technique
was introduced by Camenisch et al. [19] (Section 5.2).
Every run of ShowCred, the user receives a nonce from
the verifier and sends two tokens:

tok1 = PRFrk(epoch∥ctr)
tok2 = id+H(nonce) · PRF′

rk(epoch∥ctr)

where id is an identifying attribute (e.g., credential hash).
As above, ShowCred proves the tokens are constructed
correctly. If one of these shows is reused, tok1 will be
repeated, but tok2 will be distinct, giving the verifier
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two instances of the tok2 equation and two unknown
variables: id and PRF′

rk(epoch∥ctr). Solving the equation
for id identifies the credential holder. Note that if id is
the credential (or its hash), then the cloned credential can
be revoked immediately by removing it from the issuance
list.

Expiry Opens an attribute e in the credential and proves
that e > today, i.e., that the credential is not yet expired.

Session binding Gives the verifier the ability to reject
replayed ShowCred proofs by binding a verifier-chosen
nonce, or session context, to every ShowCred. This can
be done by including an empty proof that takes the nonce
as the public input6.

Join Allows credentials to be composed by joining them
along some common attribute(s), such as full name or
address. This is either done inside a single ShowCred, or
between separate ShowCreds by publicly committing to
the common attribute(s).

5.4. Signature-issued credentials
One of the major advantages of zk-creds is that we

do not need issuers who are trusted to hold signing keys and
can instead use a transparency log or blockchain to issue
credentials. However, if this feature is not needed, we can
build a traditionally issued anonymous credential scheme that
retains zk-creds’ other features and flexibility. Because
our gadget-based approach is flexible, we can replace the
membership-check gadget with one that instead verifies a
signature. This means zk-creds, like Coconut [55], also
supports credentials that are issued by signing under a
standard signature (e.g., ECDSA or Schnorr) either by a
single party or by a threshold of parties via a threshold
signature scheme such as FROST [44]. Moreover, we can
compose credentials issued via a list with ones issued via
signatures.

5.5. Additional features
Notably, our construction of zk-creds also allows for

the construction of protocols with several features previously
only available in dedicated schemes.
Hidden issuer We can completely hide the identity of a

credential issuer, e.g., in situations where leaking where
a credential came from can cause significant harm to pri-
vacy. While this is not a new notion in the literature, very
few existing schemes support this hidden issuer property.
zk-creds supports this inherently, as ShowCred can
be performed with respect to synthetic lists created by
concatenating lists maintained by different issuers, thus
hiding the issuer. One drawback though is that multiple
issuers will likely issue different credential formats.

Hidden credential type zk-creds can also be configured
to hide the credential type which is both independently
useful as well as necessary to fully support hidden issuer.
In zk-creds, credentials with different attributes can
be padded to the same size post-issuance, and then used

6. This binds the nonce to the Groth16 proof, assuming some basic
properties about the circuit [4].

interchangeably for and efficiently verified over an access
criterion. This is accomplished by constructing a new
circuit that is the OR of the criteria on the individual
credentials.

Delegation Issuance authority is delegatable in zk-creds.
Authority to issue a credential can be shown via zk-
supporting-documentation that is itself the show of
another credential. Moreover, because the proof in zk-
supporting-documentation is general-purpose, the dele-
gation process can constrain attributes in the credential
being issued. For example, we could define a credential
for an authority that can only be delegated three layers
deep by having a hidden attribute of delegation level
decremented each time. Credential attributes can be
selectively delegated as well.

5.6. NIZK setup
Groth16 requires a one-time trusted setup to generate

a set of parameters called a common reference string (or
CRS) for each statement (a.k.a., circuit). Once this CRS
is generated, it can be used throughout the lifetime of the
system to prove different instances of the statement.

Distributed setup for Groth16 CRSs is a solved problem
via multiparty computation setup ceremonies [12, 8, 43] that
need only two honest parties. These have been run with
hundreds of users and used to secure billions of dollars in
cryptocurrency. These protocols are efficient and produce
subversion-resistant zero-knowledge proof systems [33]—
systems which ensure that, even if all parties in a setup
are malicious, the proofs are still zero-knowledge and user
privacy is unaffected.

Independently, as mentioned previously, we have also
sought to minimize the impact of this CRS on the flexibility
of zk-creds. By utilizing blind Groth16, a system designer
does not need to decide on and pre-generate CRSs for all
possible combinations of access criteria they wish to support
and can instead just generate CRSs on a per-gadget basis.

5.7. Security argument
The security of zk-creds rests on the assumption

that Groth16 proofs are sound, perfectly zero-knowledge,
and simulation-extractable (in the Algebraic Group Model),
that the Poseidon hash function is collision resistant and a
PRF, and, for other variants of our scheme, that Schnorr
signatures are secure under the discrete log assumption,
and Pedersen commitments are computationally binding
under the same assumption and perfectly hiding. Informally,
because all messages between parties in our security game
are “authenticated” by zero-knowledge proofs, the simulator
can extract on all adversarially generated messages and
proxy them to the ideal functionality. Similarly, for any
honest interactions in the ideal functionality, the simulator
can model the adversary’s view of the real-world protocol by
simulating the zero-knowledge proofs with respect to random
commitments and random outputs. Finally, the simulator
maintains a list mapping real and ideal world credentials
to allow it to handle revocation events. We defer a full
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description of the simulator to Appendix E and provide a
proof of security in the full version [54].

6. Implementation and evaluation
We now detail the evaluation of zk-creds.

6.1. Code and setup

Hardware. All benchmarks were performed on a desktop
computer with a 2021 Intel i9-11900KB CPU with 8 physical
cores and 64GiB RAM running Ubuntu 20.04 with kernel
5.11.0-40-generic.

Code. zk-creds consists of 7.6k lines of Rust code7

and relies on the Arkworks [3] zkSNARK framework. For
benchmarks and statistics, we used the Criterion-rs crate. In
addition, we modified an existing Android passport scanner
app to extract intermediate cryptographic values from the
passport and dump them to a JSON file.8 The Rust code
uses the dump file format for all its passport proofs.

Statistics. Each figure and plot shows the median runtime
of 100 executions. Over all experiments, the maximum
estimated relative standard error of the median is 1.8%.
For completeness, our plots include error bars indicating the
95% confidence interval, though they are not visible due to
the low error.

Instantiating cryptographic primitives. We set λ = 128.
We compute Groth16 proofs over the BLS12-381 curve [11].
The collision-resistant hash function used in all Merkle trees
are domain-separated instances of the Poseidon hash function
[38], configured to be compatible with BLS12-381 and a 128-
bit security level (α = 3 and capacity = 1). We instantiate
Com using key-prefixed Poseidon as well. Separately, in
Appendix F, we give benchmarks for an instantiation with
provably secure Pedersen hashes and commitments.

6.2. Microbenchmarks
In this section we measure performance of various com-

mon gadgets, with reasonable parameter choices. Recall the
performance of zk-creds depends on credential list size,
attribute size, criteria complexity, and number of standalone
gadget proofs. We measure the effects of these parameters
in greater detail in Appendix A. We also measure the sizes
of the associated proving and verifying keys in Appendix G.

Table 1 gives a summary of zk-creds’s performance
for common usage scenarios. We assume a setting where 231

credentials have been issued. The first variant (C) minimizes
client-side proving cost by separating the Merkle forest proof,
allowing for reuse across shows. A basic show takes 5ms to
produce and 3ms to verify, assuming precomputation of the
Merkle tree and forest membership proofs. More complex
statements like rate-limited credentials with clone resistance
take 90ms to show and 5ms to verify. If the Merkle tree
membership proof is not precomputed, then the full show
takes an additional 460ms but verification time is unchanged.

7. Code repository: https://github.com/rozbb/zkcreds-rs
8. Code repository: https://github.com/rozbb/zkcreds-passport-dumper

The Simple Possession benchmark shows the prover has
an attribute-less credential on a list and proves no predicates.
This maps to a use case such as possessing a valid access
card, as that is often sufficient to enter a building. The
remaining benchmarks build on Simple Possession, adding
their own predicate to the set of linked proofs. For example,
Expiry proves possession, but also bears a single attribute
and proves that it has a value less than some timestamp.

Separately, we give an alternate variant of zk-creds
in Table 1 (S) which is optimized for verification latency
and server throughput. The server-optimized construction
combines the Merkle membership and criteria check circuits
into a single monolithic zkSNARK without proof reuse. As
a result, clients pay approximately the full ShowCred cost
every time, but since proofs are a single Groth16 proof rather
than a linkage proof, they can be batch-verified by the server
at 1.8 verifications per millisecond per core. We note it may
be possible to batch verify the non-optimized scheme as
well, but throughput would be lower as there are at least
three times as many proofs.

Finally, to demonstrate the full flexibility of our approach,
we also provide a signature-based variant of zk-creds in
Table 2, where credentials are issued in a more traditional
signature-based manner by a trusted issuer or threshold
quorum of issuers. We implemented a signature gadget for
checking Schnorr (and therefore FROST threshold [44])
signatures and measured the proving time to be 129ms
(compare to 460ms for tree-based issuance).

7. Case studies: zk-creds as a toolkit
We design, implement, and benchmark two full scenarios

for zk-creds using credentials derived from existing
government identity infrastructure without any modifications
or coordination. Many government identity documents now
include the ability to perform various authentication protocols
(e.g, the German and Estonian [32, 29] smart-card enabled
national IDs). For our applications, we use US passports,
which contain a signed digital copy of the passport’s basic
data in an NFC-readable chip. Our applications validate
that zk-creds can be used as a toolkit by application
developers to support privacy-preserving identity in realistic
applications with complex, compound access criteria.

7.1. Digital passport data
Over 150 countries issue passports with an NFC-readable

chip which is standardized in ICAO Doc. 9303 [53, 40].
We are interested in the first two data groups on the chip.
Data group 1 (DG1) contains the textual info available on
the passport’s data page: name, issuing state, date of birth,
and passport expiry. Data group 2 (DG2) contains a JPEG-
encoded image of the passport holder’s face. The ICAO
standard also requires the immutable part of the chip’s
contents to be signed by the issuing state. For example, every
US passport has an RSA PKCS#1 v1.5 signature under a
known US State Department public key.

zk-supporting-documentation for passports. While we
could just reveal the signed passport to the credential
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Client-opt. (C)
Server-opt. (S)

ShowCred VerifyShow Proof Size
C C (full) S C S S (batch) C S

Simple Possession 5ms 465ms 450ms 3ms 744B
Expiry 53ms 526ms 461ms

Linkable Show 43ms 494ms 457ms 5ms 1.5ms 1.8 verifs/ms 1064B 192B
Rate Limiting 60ms 507ms 461ms

Clone Resistance 90ms 542ms 530ms

TABLE 1: Gadget microbenchmarks using Poseidon hashes for two versions of zk-creds. Membership proofs are done on a Merkle
forest of size 231 (tree height = 24, #trees = 28). The first configuration (C) minimizes client-side proving cost; the second configuration
(S) maximizes server throughput. ShowCred (full) gives the cost of including membership recomputation while showing a credential.
VerifyShow (batch) gives throughput for verifying a set of 100 proofs. We emphasize that all verification numbers are single-threaded,
allowing for efficient concurrent processing.

Client-opt. ShowCred VerifyShow Proof Size
Simple Possession 2ms 2ms 424B

Expiry 50ms
Linkable Show 41ms 5ms 744BRate Limiting 58ms

Clone Resistance 88ms

TABLE 2: Benchmarks for zk-creds configured for minimizing
client side proving cost, using signature-based issuance. Unlike the
client-optimized benchmarks in Table 1, which uses list-based
membership, there is no distinction between a partial or full
ShowCred, since the membership proof (a signature verification
proof) never has to be recomputed.

issuer, this 1) requires the issuer be trusted to maintain
the confidentiality of sensitive information, and 2) is wholly
incompatible with issuance via a bulletin board or blockchain.
Instead, we design and implement a zero-knowledge proof
that the attributes of a credential commitment match the
signed contents of DG1 and DG2.

Parsing the contents of an e-passport in zero-knowledge
is non-trivial: the signature is not just over DG1 and
DG2, but the econtent hash, which is calculated over
the mostly variable-length data groups DG1, . . . ,DG16.
Variable length inputs are particularly challenging to
parse with a fixed-size zero-knowledge circuit. Our zero-
knowledge proof is made possible by realizing that the
econtent hash is actually a tree hash, roughly of the form
H(H(H(DG1)∥H(DG2)∥ . . . ∥H(DG16)) . . .). We do not
care about the contents of DG3 through DG16, so their hashes
can be used directly as witnesses to the proof. H(DG2) is
the image hash, which can either be hidden as a witness
or revealed by showing all of DG2.9 Since DG1 contains
the attributes we care about, we must parse DG1 inside
the zero-knowledge proof. Luckily, since DG1 mirrors the
content of the passport’s Machine Readable Zone (MRZ), it
is fixed-length. The proof then hashes the data group digests
along with other fixed-length values until it has computed
the econtent hash. We avoid the cost of checking the RSA

9. In reality, DG2 contains slightly more than the bare image; it also has
the image’s creation and expiry dates.

signature by simply revealing it and the econtent hash.10

Computing this proof takes less than 2 seconds.
Why zk-proofs over passports are insufficient. We cannot
just use the zero-knowledge passport proof as a credential for
accessing age-restricted content: to prevent credential sharing,
we need cloning resistance, which requires that credentials
include a secret random seed that a passport lacks.

7.2. Instantiating an issuance bulletin board
An instantiation of zk-creds requires a publicly acces-

sible bulletin board to distribute the credential list, as well
as parties running our software. We stress that zk-creds
can be deployed either on a blockchain or (at much lower
cost) a more centralized transparency log; we choose to
instantiate the bulletin board here as a smart contract on an
Ethereum Virtual Machine (EVM)-compatible blockchain to
demonstrate that full decentralization is feasible and because,
unlike many other consensus systems in development or
deployment, the EVM has comparatively robust development
tooling and documentation.

The smart contract stores a list of credentials and corre-
sponding zk-supporting-documentation—together, referred
to as an issuance request—as well as the current roots of the
Merkle forest. An issuer issues a credential by posting the
full issuance request to the smart contract. This allows any
external auditor to download the full list, reconstruct a local
copy of the Merkle forest, then verify in zero-knowledge that
each credential was validly issued. While any party (including
the user) can audit the full list themselves if desired, they
need not do so if they trust another party (e.g., an issuer
or auditor) to promptly update and verify the credential
list for them. Periodically, users request their credential’s
authentication path and the updated root from the bulletin
board or auditing party. To perform VerifyShow, a verifier
only needs to retrieve the current Merkle tree roots F from
the bulletin board.

Furthermore, we must prevent DoS attacks from blocking
or flooding additions to the bulletin board. Our prototype
instantiation assumes a smart contract operator who is

10. Revealing the econtent hash reveals the identity of the requester to
the passport authority during issuance. However, since ShowCred proofs
are unlinkable to issuance, this is not a problem. Moreover, it is possible
to hide the hash and verify the RSA signature in the zkSNARK, at a cost
of about 868k constraints using the approach from [45], or 3.6s in our
benchmarking environment.
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IssueReq IssueGrant ShowCred ShowCred (full) VerifyShow
Age-restricted vid. 1.97s 2ms 143ms 602ms 5ms

Entering a bar 1.97s 2ms 98ms 557ms 5ms

TABLE 3: zk-creds case study benchmarks. IssueReq is the time to convert a passport into a credential using zk-supporting-documentation.
ShowCred is the time it takes a user to prove they are over 18. All other parameters are the same as in Table 1.

authorized to add to the bulletin board contract on behalf
of the issuer. An alternative solution, allowing for operator-
free setup, is to verify all zk-supporting-documentation and
Merkle tree root computations within the EVM smart contract
itself. While this is feasible [58], verifying proofs and Merkle
tree updates on-chain without extensive optimizations is
expensive. Another solution is to instead support on-chain
proof verification with an optimistic rollup [31]: bulletin
board additions include a deposit which is burned if, after
the smart contract evaluates a challenge, it determines that
the proofs or computed Merkle tree roots are invalid. While
the challenge still requires costly computation, this is not
paid for during issuance.

We implement our smart contract in Solidity and the
requisite client-side scripts to post and retrieve data in
web3.js. Note that we can deploy our contract to any
EVM-compatible chain, such as Avalanche’s C-Chain or
Ethereum itself. EVM contract operations are measured in
gas, which roughly acts as a complexity-weighted count of
the EVM instructions used. Posting each issuance request
costs 576, 808 gas, while posting a Merkle root costs 78, 355
gas. The price of gas and the underlying currency it is priced
in is highly volatile. As of early June 2022, Ethereum gas
prices range from about 20 to 50 Gwei (a Giga-wei is 10−9

ETH), and 1 ETH is about $1800 USD; as such, posting an
issuance request costs about $20–$50 USD. Gas prices are
proportionally similar for Avalanche but, at $25 USD per
token, actual costs would be 70 times smaller.

7.3. Credentials from existing identity infrastruc-
ture

Given a construction of zk-supporting-documentation for
a passport and a choice of bulletin board in an Ethereum
smart contract, application developers can now readily build
access control schemes. Once the credentials are issued,
multiple developers can independently rely on them by either
composing existing identity gadgets or defining new ones.

Issuance. We provide a toolchain to convert a passport
into an anonymous credential. An Android app extracts the
NFC passport data and a separate program converts it into
a credential containing the holder’s nationality, full name,
and date of birth (dob); a rate key (rk); the passport expiry
date (expiry); and the hash of the image of the holder’s
face (facehash). Separately the program computes the zk-
supporting-documentation that this credential is correct with
respect to the signature and econtent hash.

The IssueReq payload sent to the issuer consists of
the signed econtent hash, credential, and zk-supporting-
documentation proof. IssueGrant verifies the proof and
econtent hash signature. Upon success, the issuer adds the

credential to their list and returns a Merkle authentication
path.
Scenario 1: Viewing age-restricted content on the internet.
Age-restricted content is common on the internet. For exam-
ple, in Switzerland, the EU, and the UK, YouTube requires
users to upload an image of their ID or credit card in order
to prove their age [36]. In this scenario we demonstrate the
feasibility of zk-creds for proving age without revealing
any personally identifying information.

Our zk-creds toolkit has three features that are crucial
to building a real-world feasible age verification credential.
First, it can be used without coordination with existing
identity infrastructure. Second, it can readily support other
identity credentials, provided they indicate date of birth and
are signed. Third and, most crucially, it can create credentials
that are clone-resistant (via the gadget in Section 5.3) with
easy revocation of cloned credentials. This last point is
essential: while a zero-knowledge proof over a passport is
itself an anonymous credential,11 practical usage demands
cloning protections. And cloning resistance requires a rate
key to be bound to the credential and kept secret from
the issuer. Existing identity documents (such as a passport)
lack such a key. zk-creds allows composition of identity
without coordinating with the passport issuer or any trusted
party to add such information.

Given issued credentials via passports, building a privacy-
preserving age verification scheme with zk-creds is
straightforward and requires no new cryptography: website
developers need simply define the issuers they will accept12

and construct the access criteria they need using gadgets.
For this scenario, the only issuer is our passport-based issuer,
and the access criteria being proved are age, expiry, and
non-cloning. Concretely, the access predicate is:

dob ≤ today − 18yrs ∧ expiry > today
∧ CloneResistance(rk, nonce, tok1, tok2, . . .)

where CloneResistance, nonce, tok1, and tok2 are as de-
scribed in Section 5.3.

Table 3 gives performance numbers. Given a credential,
it takes Alice 143ms to show a website she is over 18 (and
602ms when she must recompute her membership proof). The
server can verify her assertion in 5ms. If we wish to optimize
for server verification time or throughput, we can switch
to zk-cred’s server-optimized construction and achieve
1.5ms verification times and 1.8 verifications per ms per
core. Extrapolating from the server-optimized benchmarks
in Table 1, proving times would increase to approximately
595ms.

11. When augmented to hide the passport signature.
12. This defines which credential list they use or defines a new list as

some subset of existing ones.
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Scenario 2: A cryptographer walks into a bar. To
purchase alcohol in the United States, one needs to show
photo ID and proof they are at least 21 years old. But showing
a driver’s license reveals name, sex, weight, and date of
birth. And if the license’s barcode is scanned [1], additional
information is revealed, potentially including whether the
holder is insulin-dependent, hearing-impaired, developmen-
tally disabled, or, surprisingly, a sexual predator [59].

We now build a system for in-person age verification
coupled with photographic verification. Importantly, our goal
in this scenario is selective disclosure and not anonymity.
Anonymity in an in-person setting is often not possible or
even desired. Rather, what we want is privacy: the ability
to control what information is revealed and limit it to what
is necessary—the patron’s photo and the fact that they have
an unexpired ID with a birth date making them of drinking
age.

We envision a hypothetical system where bar patrons
have an ID-wallet application on their phone. The app, using
ShowCred, presents an identity assertion (e.g., via a QR
code or NFC) to an app on a bouncer’s phone which checks
the assertion with VerifyShow and displays the user’s photo
along with whether they are over 21. In contrast to scanning
the user’s driver’s license, this reveals only the minimal
information necessary. The necessary access predicate is:

dob ≤ today−21yrs ∧ expiry > today ∧ facehash = H(face)

Table 3 gives concrete costs for local computations. To
show that a patron is over 21 takes 98ms in the common
case and 557ms if membership proofs must be recomputed.
As before, verification is 5ms in either case.

8. Extensions and applications
We now discuss extensions to zk-creds and additional

applications of our approach.
Other signed identity sources. As shown by our e-
passport example, zk-creds can transform legacy identity
sources into anonymous credentials if there is a digitally
signed component. This raises an interesting question about
what parts of existing identity and credential infrastructure
include such signatures. For example, digital diplomas for
many US universities include digital signatures over the
diploma holder’s name, degree, and institution. Many emails
are signed with DKIM which, while problematic in many
contexts [56], could be a source of identity or membership
in an organization. New York’s Excelsior Pass for COVID
vaccination contains the holder’s name, birth date, and a
signature.13 Other existing digital protocols may contain a
signature that establishes ownership of a resource (e.g., a
phone number in an eSIM or virtual SIM card) or identity
(e.g., Apple’s digital driver’s license features).
Complex access criteria. We have discussed conceptually
simple access control criteria such as “my credential is not
expired,” or “I am of age,” perhaps with a cryptographically

13. This was obtained by scanning the pass’s QR code, whose contents
are a W3C Verifiable Credential [60].

complex mechanism for clone resistance. However, real-
world access criteria can be far more complex. zk-creds
provides a way to deal with such criteria without requir-
ing coordination with identity issuing authorities for every
custom access check that must be implemented.

An example of this comes in the form of online petitions
and discussions. New York State has an online portal for
discussion and petition which asks a user for their address
to match them with the appropriate state senator [50]. While
this check does not seem to be enforced, one could imagine
both wanting to enforce this constituency check and allowing
constituents to leave non-identifying comments. Similarly,
some online resources, such as ebooks from the New York
Public Library, are limited to city residents; enforcing this
currently requires in-person registration for a library card to
present proof of address, and opens up a (hypothetical) risk
of tracking online reading habits [2].

Geolocating an address to the bounds of, e.g., a city
council district, however, is not simple. The computation is,
by the standards of credential schemes, complex, and involves
converting the address to a location and then performing
a point-in-polygon check.14 For a small number of fixed
boundaries (e.g., federal congressional districts), one might
imagine avoiding the problem by issuing identity documents
with this information included. But even in cases where the
identity issuer would cooperate, coordinating all geocoding
restrictions one might want to realize (e.g., anonymous
discussion boards for a school zone, a neighborhood, or
even specific apartment building) is impractical and may
cause credential sizes to blow up.

Because zk-creds supports general purpose zero-
knowledge proofs, geocoding restrictions are made more
feasible with Groth16 gadgets: even if the Groth16 proof for
the gadget is expensive, the resident or an outsourced prover
avoids recomputing it every show. After the first time, the
proof can be reused arbitrarily, until the user’s Merkle tree
is updated by a new issuance.
Sybil-resistant IDs from email or money. Internet services
currently prevent multiple account registration (Sybils) by
requiring the user to consume a (hopefully) scarce resource,
such as money (via a micropayment), attention (via a
CAPTCHA), and possession of, e.g., phone number or email
address.

zk-creds provides several avenues for Sybil-resistant
credentials with anonymity. Credentials can be issued based
on signed identity documents (e.g., a passport, as demon-
strated in Section 6) with the signature as a uniqueness check.
Similarly, zk-creds can thwart Sybils via cryptocurrency:
a simple smart contract issues credentials if and only if a
small fee is paid.

Finally, and perhaps most surprisingly, we can use posses-
sion of a valid email address as a Sybil-resistance mechanism
without the use of a trusted third party or cooperation with
the email provider. A DomainKeys Identified Mail (DKIM)

14. Indeed, geolocation is the correct way to prove residency. For example,
the borders of New York City’s 10 city council districts are defined by 1.8
megabytes of geospatial vector bounds [51].
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header, which appears on all outgoing mail of most modern
email providers, contains a signature from the email provider.
By embedding the credential issuance request in the email
body, we get an externally verifiable proof of possession of
an email address that can be used to issue Sybil-resistant
accounts. This allows us to leverage the Sybil resistance
mechanisms used by Gmail, for example.

These short- and long-lived IDs can be reused and
rate-limited across actions, similar to the functionality of
Privacy Pass [28], which issues one-time-use anonymous
access tokens for every CAPTCHA a user completes.
Oracle- and self-issued credentials. A number of academic
works and industrial systems have emerged to address the
so-called “oracle problem”: how does a consensus scheme
such as a blockchain come to agreement about real world
events?

One class of solutions [30] relies on incentive systems and
the ability to challenge the veracity of data. These approaches,
if viable, could be used to issue anonymous credentials based
on public online reputation data (e.g., Twitter follower count,
Reddit karma, etc.). Crucially, because zk-creds forces
all issued credentials to be on a public list, any malfeasance
by an issuer could be detected and punished.

An orthogonal approach is the creation of notaries who
attest to data on third party servers. DECO [62] proposes a
2PC protocol between a client and a notary that authenticates
data retrieved over a TLS connection from a third-party
server. DECO also allows users to construct zero-knowledge
proofs to only selectively disclose HTTP response contents.
These features would allow a user to obtain a credential for
their name and address by, e.g., logging into their utility
provider and retrieving the bill. Moreover, in the event the
user has trustworthy secure hardware, they can self-issue the
credential by attesting the hardware ran this notary check
itself.

We note, however, that such schemes inherently rely on
assumptions (either non-collusion or the security of trusted
hardware) that become increasingly infeasible as the value
of the credential goes up. But, for example, it may be viable
as a simple Sybil prevention or anti-spam mechanism.
Composable credentials. When new use cases for existing
credentials emerge, they often require the combination of two
different credentials. Take, for example, US-issued vaccine
cards. Because these contain a person’s name, but not a photo,
COVID-19 vaccine mandates frequently required restaurants
and bars to ask customers for a vaccine card and a photo
ID with a matching name. zk-creds supports this type
of post-hoc composition: two credentials both containing a
field for, e.g., full name, can be jointly shown using the Join
gadget described in Section 5.3.

9. Related work
Anonymous credentials derive from a long line of work,

starting with Chaum [26], and subsequently seeing numerous
extensions [26, 20, 21, 22, 19, 6, 18, 5, 35, 17, 55].
While showing a credential initially allowed little more than
(unlinkably) presenting a signed token connected to a user’s

pseudonym, the schemes were generalized and extended to
provide more sophisticated properties such as issuance of
hidden attributes, rate-limiting, k-show, and efficient selective
disclosure of attributes. Because it uses general-purpose zero-
knowledge proofs, zk-creds can (and does) capture all of
these properties as implemented.

One drawback to deploying the majority of these schemes
is the requirement of a single, trusted issuer. As such, existing
work has sought to solve this issuance problem. We briefly
compare and contrast other approaches to addressing this.

Distributed issuance. In 2014, Garman et al. [35] were
the first to propose the notion of decentralized anonymous
credentials. Our approach is directly inspired by their work.

While the approach of Garman et al. removes the
assumptions of a single issuer and the need for issuers to
hold keys, it both leaves open a number of essential questions
for operating a real system and introduces new ones which
we address. First, showing a credential requires users to
1) locally store the full credential list and 2) compute proofs
which take time linear in the number of issued credentials
for every show (even for static credential lists). In contrast,
zk-creds develops a new approach and new cryptography
(blind Groth16) to allow proof reuse and fast credential
showing. And, via the use of Merkle trees, zk-creds
requires users to store only logarithmic-sized witness data
to compute credential shows. Second, while Garman et al.
suggest the possibility of more complex features, they do not
implement them. More importantly, the set of bespoke sigma
protocols they use does not provide for the composition of
credentials and identity attributes or support complex identity
statements. By developing a protocol based on general-
purpose zkSNARKs, we do. Lastly and most significantly,
the work does not answer the question of how the decision
to issue a credential could be made without disclosing
sensitive information to the issuer (i.e., the very problem
zk-supporting-documentation addresses). This also makes it
impossible to audit credentials that are issued via Garman
et al.’s construction, in marked contrast to zk-creds.

Threshold issuance. The Coconut [55] anonymous creden-
tial scheme addresses the issuance challenge via threshold
signatures. In Coconut, credentials are issued by n static
parties under the assumption t > 1/2 of them are honest.
The scheme is clever and achieves efficiencies on par with
single-issuer schemes. However, while threshold issuance
increases the security of a scheme by requiring an attacker to
corrupt more parties, it only addresses the scarcity of issuers
if we have an abundance of parties who are willing to issue
credentials but, for whatever reason, no individual one is
trusted. In many settings, it is a challenge to find even a single
party who both 1) is empowered to make identity statements
and 2) is willing and able to run cryptographic infrastructure
even if, by fiat, we trust them. Moreover, Coconut only
supports selective disclosure of attributes in a credential, not
complex zero-knowledge proofs over attributes. It does not
meet our design goals of flexibility or dynamic generation
of access criteria.

Finally, we note that zk-creds, as shown by the version
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given in Table 2, supports credential issuance via threshold
Schnorr schemes (e.g., FROST [44]), so we do capture the
functionality of Coconut.
Decoupling issuance from identity verification. More
broadly, another line of work, starting with TLSNotary [57],
considers convincing third parties of the correctness of data.
DECO [62] extended this protocol to support TLS 1.3 and
used zero-knowledge proofs for selective disclosure (e.g.,
the party learns a bank account balance is over a threshold,
but not the balance itself or the account holder’s identity).
Applying this to the anonymous credential setting, one could
use it to separate finding a cryptographic issuer for credentials
from the process of verifying entitlement to a credential.
Such approaches are complementary to zk-creds and we
consider them as an extension in Section 8. Without such
integrations, however, such an approach would still require
at least one trustworthy party to be willing to run a highly
available web service that holds live signing keys.
Decentralized identity (DID). We note another area of
research on decentralized identity which has been the subject
of both academic and industrial work, including some stan-
dardization. While zk-creds is compatible with these goals
inasmuch as it allows issuance without a party holding keys,
such works are largely orthogonal: decentralized identity as
an area considers who makes decentralized identity assertions,
while our work considers how to transform some identity
assertion (centralized or otherwise) into an anonymous
credential without introducing additional trusted parties.

10. Conclusion and future work
The approach we develop here—a switch from blind

signatures to zero-knowledge proofs as the foundation for
anonymous credentials—implies several avenues for further
work. In this section, we enumerate a few immediate conse-
quences of this paradigm and future research areas.
Instantiating zk-creds with improved zero-knowledge
proofs. We have instantiated zk-creds with Groth16. The
zk-creds approach we develop, however, is proof system-
agnostic. As such, instantiating the zk-creds paradigm
with other proof systems, such as ones without trusted setup
(e.g., [7, 39, 15]) or with universal setup (e.g., [48, 34, 27]),
is entirely possible. For the monolithic construction, such
a change is a drop-in replacement. If we wish to support
precomputation of separate membership proofs, as in our
client-optimized scheme, we must either adapt blind Groth16
to the new proof system or take an alternative approach, e.g.,
recursive proofs. The choice of proof system is also tied to
the choice of accumulator scheme.
Instantiating zk-creds with alternative accumulator
schemes or primitives. We have instantiated zk-creds us-
ing Merkle trees. However, as with proof schemes, the same
approach generalizes to other accumulator mechanisms such
as RSA accumulators [35], polynomial commitments [42],
Verkle trees [46], or perhaps special-purpose schemes for
zkSNARKs [61]. Again, for many such accumulators, this is a
simple black-box replacement of the membership zkSNARK.
Instantiating zk-creds with alternative accumulators will

offer different tradeoffs for witness size, witness update
requirements, witness computation cost, and accumulator
verification cost (and hence zkSNARK proving time). A
particularly exciting prospect is the co-design of accumulator
schemes and zkSNARKs to achieve drastically improved
performance.
Co-design or co-selection of zero-knowledge proofs and
proving systems. Similarly, one could instantiate either our
existing version of zk-creds, or a different construction,
with different cryptographic primitives. For example, one
might replace Poseidon with a newer, circuit-optimized hash
function, perhaps making use of low-degree gates in proving
systems like Plonk [34].
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Appendix A. Performance across parameter
choices

We expand on the microbenchmarks in Section 6.2 by
investigating how zk-creds scales with respect to various
parameters.

Recall that showing a credential requires proving: 1) the
credential is in the list of issued credentials, 2) the relevant
attributes are part of the credential, 3) the attributes meet
the access criteria being shown, 4) each of the above is
about the same data (linkage proof). Thus, the performance of
zk-creds depends on the number of issued credentials (via
1 above), the size of the attribute (via 2), and the complexity
of the access criteria (via 3).
Membership benchmarks. Recall that a membership proof
consists of a proof of credential membership in a tree,
followed by a proof of membership of that tree in a forest. In
Figure 5, we show the performance of proving membership
as the shape of the forest changes. For a fixed number of
total leaves, we find the size of the forest (and, consequently,
height of its trees) that minimizes membership proving time.
This results in a 50% (143ms) speedup in the best case.
Further, the verifier pays nothing for this optimization, since
all public inputs are prepared in advance and reused for all
verifications.

In Table 4, we show the time to compute a proof of
membership in the credential list as the list size varies. This
represents the baseline cost of the issuance portion of any
ShowCred call. The benchmark consists of one Groth16
proof of tree membership plus one Groth16 proof of forest
membership. For a fixed number of leaves, the tree height is
chosen using the optimal parameters from the experiments
in Figure 5.
Linkage benchmarks. In Figure 4, we plot the size, proving
time, and verification time of linkage proofs as the number
of standalone gadget proofs varies. Every additional gadget
adds 330B to the proof size.

Appendix B. Merkle witness management
A zk-creds implementation which prioritizes both

efficiency and privacy must carefully consider how it in-
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stantiates the credential list and, consequently, how it wants
its users to practically go about witness management. We
introduce two approaches and their tradeoffs for forests of
fixed-height Merkle trees. See the full version for more
in-depth discussion and a better optimized Merkle forest
construction using these techniques.

Assume that credentials are added to a Merkle forest from
left to right, and that issued credentials are never removed
or modified once added to a tree in the list. Also, suppose
there is a list manager, perhaps distinct from the issuer, who
distributes the issuer’s credential list to users and verifiers.15

Observe that, if a user has a valid Merkle authentication
path θ attesting to their credential’s issuance at time t, not
all nodes in θ will usually need updating by time t′ > t. Let
the frontier be the subset of information about the list that
is necessary for a given user to update their θ. As a first
approach, consider that a user can request only the subset of
frontier nodes in θ which will have updated from time t to t′,
instead of the full θ at time t′. However, requesting specific
nodes to update θ still reveals identifying information about
the credential (reducing the anonymity set) and, by necessity
of requests, likely correlates in time with the subsequent
usage of that credential.

As a second approach, consider the following techniques:
1) Instead of the user requesting specific updates for θ, the list

15. Assuming public auditability, the list manager is only trusted to not
DoS the system. If a party suspects that e.g. the authentication path is
invalid, they or an auditor can reliably obtain and audit the credential list
themselves.
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manager proactively broadcasts all relevant tree updates to
users. This requires O(logN) nodes per addition to Merkle
tree (capacity N ), or O(N logN) bandwidth per user across
the Merkle tree’s lifetime. With this, any user can parse
the streamed nodes to update θ with only O(logN) space.
And, since users no longer need to reveal when they do so,
this incurs little to no privacy risk. With no update requests,
adversaries can no longer correlate updates with subsequent
shows by observing network interactions.
2) Issuers batch newly-issued credentials by some epoch.
While this works for any list instantiation, for Merkle trees
this still only requires O(logN) frontier nodes to represent an
entire batch’s changes to any previously-issued credential’s
θ.

Both approaches require (competitive) small-constant log-
arithmic storage to update a credential’s authentication path,
with fewer privacy risks than the approaches in Section 5.1.

Appendix C. LinkG16
C.1. Groth16

We describe a trusted-setup zkSNARK scheme, due to
Groth16 [39], which operates over a non-degenerate type-3
bilinear group. We use F to denote the scalar field of the
bilinear group. At a high level, a Groth16 proof proves that an
arithmetic circuit over F is satisfied by a set of public inputs
(values known to the verifier) and private inputs (values not
known to the verifier).
G16.Setup(bg, desc)→ crs Generates a common reference

string for the given arithmetic circuit description. crs con-
tains the elements from the bilinear group bg necessary
to compute the expressions in G16.Prove below.

G16.Prove(crs, {ai}ℓi=0, {ai}mi=ℓ+1)→ π Proves the circuit
described by crs is satisfied, where a0, . . . , aℓ ∈ F repre-
sent the circuit’s public input wires and aℓ+1, . . . , am ∈ F
represent the private wires. π is of the form (A,B,C)
where A,C ∈ G1 and B ∈ G2.

G16.Verify(crs, π, Ŝ)→ {0, 1} Verifies the proof π =
(A,B,C) with respect to the prepared public input
Ŝ =

∑ℓ
0 aiWi by checking the relation

e(A,B)
?
= e([α]1, [β]2) · e(C, [δ]2) · e(Ŝ,H),

where [α]1, [β]2, and [δ]2 come from crs, and Wi is the
crs value whose coefficient represents the value of the
i-th wire in the circuit. As shorthand, verification can
also be written as G16.Verify(crs, π,a).

G16.Rerand(crs, π)→ π′ Rerandomizes the proof π =
(A,B,C) by sampling ζ, ω ← F and computing

π′ := (ζ−1A, ζB + ζω[δ]2, C + ωA).

By Theorem 3 in [4], the output of Rerand is perfectly in-
distinguishable from a fresh proof of the same underlying
statement.

16. To support linkage, we diverge slightly from Groth’s original con-
struction by setting one of the trapdoor values γ to 1. This does not
affect security; zero-knowledge and knowledge soundness were proven by
Kohlweiss et al. [43] for a strictly larger CRS which also sets γ := 1.

We now describe and prove the security of the LinkG16
proof system.

C.2. Goal
The purpose of LinkG16 is to show that k Groth16 proofs

over heterogeneous circuits crs1, . . . , crsk all share the same
first t public inputs {a0, . . . , at−1} without revealing the
inputs. That is, given k Groth16 proofs π1, . . . , πk, we wish
to construct a zero-knowledge proof of the following relation:

Rlinkg16 =


({crsi, Ŝi}ki=1; {aj}t−1

j=0, {πi}ki=1) :

k∧
i=1

G16.Verify(crsi, πi, Ŝi +

t−1∑
j=0

ajW
(i)
j )


where W

(i)
j represents the wire Wj in crsi, and Ŝi =∑ℓ

j=t ajW
(i)
j is the verifier-known prepared input for the

i-th proof.

C.3. Construction
We define the new proof system below.

LinkG16.Link({aj}t−1
j=0, {crsi, πi}ki=1)→ πlink Sample val-

ues z1, . . . , zk ← F for blinding. For each i, commit
to the shared inputs, Ui := zi[δ]

(i)
1 +

∑t−1
j=0 ajW

(i)
j .

Let πeqwire be an EqWire discrete-log equality proof
(described in Appendix D) that the Ui commit to the
same aj values,

Reqwire =


({Ui, crsi}ki=1; {aj}t−1

j=0, {zi}
k
i=1) :

k∧
i=1

Ui = zi[δ]
(i)
1 +

t−1∑
j=0

ajW
(i)
j

 .

Rerandomize the underlying proofs in place, πi :=
G16.Rerand(crsi, πi), then blind the proofs,

π′
i := (Ai, Bi, Ci − [zi]1).

The final output is

πlink := (πeqwire, {Ui, π
′
i}ki=1).

LinkG16.LinkVerify(πlink, {crsi, Ŝi}ki=1)→ {0, 1} Check
πeqwire using EqWire.Verify. Then unpack each π′

i into
(A′

i, B
′
i, C

′
i). For each i = 1, . . . , k, check

e(A′
i, B

′
i)

?
= e([α]

(i)
1 , [β]

(i)
2 ) · e(C ′

i, [δ]
(i)
2 ) · e(Ui+ Ŝi, H).

where Ŝi is the Groth16 prepared public input for circuit
i.

C.4. Proofs
Theorem 1 (Correctness). If G16.Prove and LinkG16.Link
are honestly computed, then LinkG16.LinkVerify succeeds.

Proof. We show that the LinkVerify equation above holds for
all i. For legibility, we omit the index i in the proof. Suppose
πlink is computed honestly, i.e., that all U ′ and (A′, B′, C ′)
are well-formed and that the underlying Groth16 verification
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equations holds on the corresponding (A,B,C). First, we
note that, since C ′ and U were computed honestly,

e(C ′, [δ]2) · e(U,H)

= e(C − [z]1, [δ]2) · e(
∑

ajWj + z[δ]1, H)

= e(C, [δ]2) · e(−[z]1, [δ]2) · e(z[δ]1, H) · e(
∑

ajWj , H)

= e(C, [δ]2) · e(
∑

ajWj , H).

Using this and the fact that A′ = A and B′ = B, we see
that the LinkVerify equation

e(A′, B′) = e([α]1, [β]2) · e(C ′, [δ]2) · e(U + Ŝ,H)

holds if and only if

e(A,B)

= e([α]1, [β]2) · e(C ′, [δ]2) · e(U + Ŝ,H)

= e([α]1, [β]2) · e(C ′, [δ]2) · e(U,H) · e(Ŝ,H)

= e([α]1, [β]2) · e(C, [δ]2) · e(
∑

ajWj , H) · e(Ŝ,H)

= e([α]1, [β]2) · e(C, [δ]2) · e(Ŝ +
∑

ajWj , H)

which is precisely the verification equation for the i-th
underlying Groth16 instance. Since this equation holds by
assumption, LinkVerify succeeds.

Theorem 2. LinkG16 is perfect HVZK.

Proof. We define a simulator Simlinkg16 with access to
Groth16 trapdoors τ1, . . . , τk as follows. For each i, sample
Ā′

i, B̄
′
i, Ūi ← F uniformly. Use the trapdoor τi to compute

C ′
i ∈ G1 as the unique group element which satisfies the i-th

LinkVerify equation with respect to crsi and public inputs17

{aj}ℓj=t. Concretely,

C̄ ′
i :=

Ā′
iB̄

′
i − α(i)β(i) − Ūi −

∑ℓ
j=t ajW

(i)
j

δ(i)
.

For all i, let π′
i := ([Āi]1, [B̄i]2, [C̄i]1) and Ui := [Ūi]1.

Finally, let

πeqwire ← Simeqwire({crsi, Ui}ki=1).

The output of Simlinkg16 is (πeqwire, {Ui, π
′
i}ki=1).

This is indistinguishable from the real world protocol.
In the real world: each Ui is uniformly distributed due to
the blinding values zi; A′

i, B
′
i are uniformly distributed by

the Groth16 proof procedure; and each C ′
i is the unique

group element which satisfies the i-th LinkVerify equation.
Lastly, the simulated πeqwire is indistinguishable from an
honestly generated one due to the perfect HVZK of the
EqWire protocol.

Theorem 3. LinkG16 is knowledge-sound.

Proof. We define an extractor Elinkg16, aborting on ver-
ification error, as follows. By knowledge soundness of
EqWire there exists an extractor Eeqwire which extracts

17. How does the verifier know aj (for j ≥ t) if it was only given the
prepared input Ŝ? It is merely for brevity that LinkVerify is written to take
Ŝ. The verifier always knows the prepared input’s constituent aj values.

{aj}t−1
j=0, {zi}ki=1 such that Ui = zi[δ]

(i)
1 +

∑
ajW

(i)
j . For

each i = 1, . . . , k, Elinkg16 then reconstructs the underlying
Groth16 proof

πi = (A′
i, B

′
i, C

′
i + [zi]1).

Elinkg16 outputs ({aj}t−1
j=0, {πi}ki=1). Since Elinkg16 did not

abort, it is the case that, for each i,

e(A′
i, B

′
i)

= e([α]
(i)
1 , [β]

(i)
2 ) · e(C ′

i, [δ]
(i)
2 ) · e(Ui + Ŝi, H)

= e([α]
(i)
1 , [β]

(i)
2 ) · e(C ′

i, [δ]
(i)
2 ) · e(zi[δ](i)1 +

∑
ajW

(i)
j + Ŝi, H)

= e([α]
(i)
1 , [β]

(i)
2 ) · e(C ′

i + [zi]1, [δ]
(i)
2 ) · e(Ŝi +

∑
ajW

(i)
j , H)

which is precisely the verification equation for πi.

Appendix D. EqWire
We now define and prove secure a proof system for the

discrete-logarithm equality relation,

Reqwire =


({Ui, crsi}ki=1; {aj}t−1

j=0, {zi}
k
i=1) :

k∧
i=1

Ui = zi[δ]
(i)
1 +

t−1∑
j=0

ajW
(i)
j

 .

The proof system is instantiated using a proof framework
due to Camenisch and Stadler [23]. Concretely, it is the
Fiat-Shamir transform of the protocol described in Figure 7.

Proofs
Theorem 4. The EqWire protocol is knowledge-sound.

Proof. We define extraction in the usual way for Camenisch-
Stadtler sigma protocols. Let Eeqwire be our extractor, aborting
on verification failure. The extractor receives the commit-
ments, and then picks challenge c ← F. It sends c and
receives {ρj , σi}i,j . The extractor then rewinds to pick a
fresh c′ ← F. It sends c′ and receives {ρ′j , σ′

i}i,j . For all i
and j, the extractor computes

aj :=
ρj − ρ′j
c′ − c

zi :=
σi − σ′

i

c′ − c

and outputs ({aj}t−1
j=0, {zi}ki=1). Since the extractor did not

abort, i.e., both runs passed verification, and the commitments
did not change, it is the case that Ui = zi[δ]

(i)
1 +

∑
j ajW

(i)
j

for all i.

Theorem 5. The EqWire protocol is perfect HVZK.

Proof. We define a simulator as follows: sample c and
all σi, ρj uniformly from F; for all i, compute comi :=∑

j ρjW
(i)
j + σi[δ]

(i)
1 + cUi; output (c, {comi, ρj , σi}i,j).

This is perfectly indistinguishable from a real transcript:
all σi and ρj are uniform iid since they are blinded by si and
rj , respectively; c is uniform and independent by definition
of honest-verifier; and all comi are uniquely determined by
these values. In the simulator, each σi and ρj is uniform iid
by construction, and comi is uniquely determined by these
values.
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F .IssueSetup():
1. Decide on relevant issuance criteria ι.
2. Let IssueCriteria[I] := IssueCriteria[I] ∪ {ι}
3. Publish (I, ι)

F .IssueReqU (ι, attrs, wsd, iauxsd):
1. Sample random cred, r // commitment and its opening
2. UserCredsU [cred] := (ι, r, attrs) // construct credential
3. Let HiddenZKSDU [r] := wsd
4. Send (cred, iauxsd) to F .IssueGrant
5. If the previous step aborts or returns ⊥, abort
6. Else, it returns θ: send (cred, r, θ) to U

F .IssueGrantI(ι, cred, iauxsd):
1. If issuer I is honest and user U is corrupted:

(a) Let (ι′, r, attrs) := UserCredsU [cred]
(b) Let wsd := HiddenZKSDU [r]
(c) Check that ι = ι′ and ι ∈ IssueCriteria[I]
(d) Check that ι(attrs, iauxsd, wsd) = 1
(e) If any check fails: send ⊥ to U and abort

2. Arbitrarily, I may choose to deny cred; if so, abort
3. Sample random θ
4. Let IssuedCreds[θ] := cred
5. Send updated IssuedCreds to I
6. Send θ to U
7. Notify all parties that cred has been issued

F .ShowSetup():
1. Decide on relevant access criteria ϕ.
2. Let AccessCriteria[V ] := AccessCriteria[V ] ∪ {ϕ}
3. Publish (V, ϕ)

F .ShowCredU (ϕ, cred, θ, r, aux):
1. Sample random s
2. Let (·, r′, attrs) := UserCredsU [cred]
3. Check r = r′ and abort if it fails
4. If user U is honest: let ϕ′ := ϕ and θ′ := θ
5. Else, if U is corrupted: let ϕ′, θ′ be arbitrary
6. Let ShowProofsU [s] := (ϕ′, cred, θ′, r, aux)
7. Send (s, aux) to user U

F .VerifyShowV (ϕ, s, aux):
1. Let (ϕ′, cred, θ, r, aux′) := ShowProofsU [s]
2. Let cred′ := IssuedCreds[θ]
3. Let (·, r′, attrs) := UserCredsU [cred]
4. Check that ϕ = ϕ′ and ϕ ∈ AccessCriteria[V ]
5. Check that cred = cred′ ̸= nil, r = r′, and aux = aux′

6. If verifier V is honest and user U is corrupted:
check ϕ(attrs, aux) = 1

7. If any check fails: send false to V and abort
8. Arbitrarily, V may choose to deny cred; if so, abort
9. Else, send true to V

F .RevokeCredI(cred):
1. Find index θ such that IssuedCreds[θ] = cred; else, abort
2. Let IssuedCreds[θ] := nil
3. Notify all parties that cred has been revoked

Figure 6: An ideal functionality F for zk-creds.

IssueReq IssueGrant ShowCred ShowCred (full) VerifyShow
Age-restricted vid. 2.36s 2ms 258ms 1.05s 8ms

Entering a bar 2.36s 2ms 228ms 1.01s 6ms

TABLE 5: zk-creds case study benchmarks using Pedersen hashes. IssueReq is the time to convert a passport into a credential using
zk-supporting-documentation. ShowCred is the time it takes a user to prove they are over 18.

EqWire.Prove({aj}t−1
j=0, {crsi, zi}

k
i=1) EqWire.Verify({crsi, Ui}ki=1)

s1, . . . , sk ← F
r0, . . . , rt−1 ← F

∀i : comi :=
∑

j rjW
(i)
j + si[δ]

(i)
1

{comi}ki=1

c c← F

∀j : ρj := rj − caj

∀i : σi := si − czi {ρj}t−1
j=0, {σi}ki=1

Check for all i:

comi
?
=

∑
j ρjW

(i)
j

+ σi[δ]
(i)
1 + cUi

Figure 7: The EqWire protocol

Appendix E. Security Definition
Our security definitions are given as an ideal functionality

in Figure 6.

Appendix F. Instantiation with Pedersen hash-
ing

In Table 5, we give benchmarks for an instantiation using
Pedersen (rather than Poseidon) hashes and commitments.
These increase proving times but, atypically for hash func-
tions, are provably secure (in this case, under the discrete
log assumption).

Appendix G. CRS sizes of evaluated circuits
We list in Table 6 the sizes of the proving and verifying

keys for all the circuits evaluated in Sections 6 and 7.

Proving key (MB) Verifying key (KB)
Forest membership 0.3 12.8

Tree membership 10.1 0.6
Expiry 1.5 0.6

Linkable show 0.4 0.6
Rate limiting 1.3 0.8

Clone resistance 1.2 0.8
Age-restricted vid. 2.8 0.9

Entering a bar 2.5 0.6

TABLE 6: CRS sizes for our evaluated circuits
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