
SoK: SGX.Fail: How Stuff Gets eXposed

Stephan van Schaik
University of Michigan

stephvs@umich.edu

Alex Seto
Purdue University
aseto@purdue.edu

Thomas Yurek
UIUC

yurek2@illinois.edu

Adam Batori
University of Michigan
aabatori@umich.edu

Bader AlBassam
Purdue University

balbassa@purdue.edu

Daniel Genkin
Georgia Tech

genkin@gatech.edu

Andrew Miller
UIUC

soc1024@illinois.edu

Eyal Ronen
Tel Aviv University

eyal.ronen@cs.tau.ac.il

Yuval Yarom
Ruhr University Bochum

yuval.yarom@rub.de

Christina Garman
Purdue University
clg@cs.purdue.edu

Abstract—Intel’s Software Guard Extensions (SGX) promises
an isolated execution environment, protected from all software
running on the machine. As such, numerous works have
sought to leverage SGX to provide confidentiality and integrity
guarantees for code running in adversarial environments. In
the past few years however, SGX has come under heavy
fire, threatened by numerous hardware attacks. With Intel
repeatedly patching SGX to regain security while consistently
launching new (micro)architectures, it is increasingly difficult
to track the applicability of various attack techniques across
the SGX design landscape.

Thus, in this paper we set out to survey and categorize
various SGX attacks, their applicability to different SGX
architectures, as well as the information leaked by them. We
then set out to explore the effectiveness of SGX’s update
mechanisms in preventing attacks on real-world deployments.
Here, we study two commercial SGX applications. First, we
investigate the SECRET network, an SGX-backed blockchain
aiming to provide privacy-preserving smart contracts. Next,
we also consider PowerDVD, a UHD Blu-Ray Digital Rights
Management (DRM) software licensed to play discs on PCs.
We show that in both cases vendors are unable to meet security
goals originally envisioned for their products, presumably due
to SGX’s long update timelines and the complexities of a man-
ual update process. This in turn forces vendors to make difficult
security/usability trade offs, resulting in security compromises.

1. Introduction
Trusted Execution Environments (TEEs) have long been

the holy grail for security applications. Instead of enforcing
isolation and access control by software mechanisms, TEEs
aim to provide security via hardware, with the system’s
(micro)architecture enforcing protection. Indeed, with the
promise of strong security with near-native performance,
most hardware vendors offer TEEs, including Arm Trust-
Zone [15, 123, 133], AMD SEV [92] and Intel SGX [44].

Recently however, computer systems have encountered
a new kind of threat. Starting from the origins of crypto-
graphic key extraction [130, 132, 182], side-channel attacks
have now become a threat to nearly all hardware-backed

security primitives. In addition to breaking basic security
primitives like user-kernel isolation [95, 108, 159, 166, 168],
hardware attacks have been demonstrated against nearly ev-
ery TEE deployment, including TrustZone [135, 140, 183],
SEV [31, 104, 105, 106, 120, 177, 178] and SGX [27, 47,
60, 88, 115, 159, 161, 164, 166, 168, 172, 176].

Bolstered by remote attestation and provisioning mech-
anisms, microcode update options, and trusted computing
base (TCB) recovery procedures, Intel can, and has repeat-
edly tried to, recover SGX from compromise after every
successful hardware attack. With Intel CPUs being the target
of a wealth of side-channel research and attacks, in this
paper we aim to study and categorize SGX attack techniques
and their data leakages, as well as ascertain the real-world
feasibility of SGX post-compromise recovery. Thus, we set
out to study the following questions:

What techniques are available for attacking SGX en-
claves and what information do these techniques recover?
What mitigations exist, and how effective are SGX coun-
termeasures and TCB recovery mechanisms at preventing
compromises of SGX deployments?

1.1. Our Contribution
Given the wide variety of attacks on SGX enclaves, we

start by studying and building a comprehensive categoriza-
tion of publicly known hardware attacks. For each class of
attacks, we detail what information can be leaked, what
countermeasures are available for it, as well as potential
future research directions. We then investigate the effec-
tiveness of the SGX TCB recovery mechanism, presenting
an overview of SGX update timelines. Finally, we examine
two commercial SGX deployments, the SECRET network (a
blockchain with SGX-backed privacy) and PowerDVD (a
UHD Blu-Ray software player).

By using SECRET and PowerDVD as case studies, we
are able to ascertain how well real-world SGX deployments
fare in the face of the SGX attack landscape. Unfortunately,
we find that due to fundamental issues in the design of SGX,
it is difficult to build and securely deploy SGX applications
that protect high-valued secrets. In particular, we argue that
as soon as SGX is compromised, market forces place ven-

dors with a difficult choice between significantly reducing
their user base and foregoing the SGX security guarantees,
allowing potential secret extraction.
Categorization of SGX Attacks. We begin by surveying
publicly known SGX attacks from the perspective of an
enclave developer, categorizing attacks and the resulting
information leakage (Section 3). For each category, we
describe current mitigation strategies available, as well as if
they are applied by Intel or the developer. We hope this also
helps developers address future vulnerabilities, as existing
countermeasures give ideas of what to expect when simi-
lar issues get discovered and disclosed. We then overview
prominent SGX-enabled Intel CPU families, summarizing
the attacks and mitigations applicable to each architecture.
Finally, we highlight important takeaways for enclave devel-
opers, provide a discussion on possible improvements and
future work to mitigate classes of attacks more broadly, and
draw attention to future research directions in the space.
Investigating SGX Update Cycles. Given that mitigating
many of the attacks we categorize requires Intel to release
microcode updates, TCB updates are a prominent feature
in SGX post-compromise recovery. As such, we also inves-
tigate the effectiveness of TCB updates in protecting SGX
applications from publicly known mitigatable attacks in Sec-
tion 4. Here, we note that SGX’s threat model assumes a
malicious operating system, precluding the use of “regular”
update mechanisms. Consequentially, Intel collaborates with
motherboard vendors who distribute SGX microcode up-
dates in BIOS updates. This is inefficient, as BIOS updates
might damage the motherboard, and thus must be carefully
vetted by each vendor for each separate product.

Measuring update timelines, we perform a market study
of the timeline of BIOS update postings across six moth-
erboard vendors and six high-profile SGX vulnerabilities.
As we show, SGX TCB updates can suffer from extremely
long delays, with vendors achieving 50% update coverage
of their product lines about 52 days after SGX vulnerability
publication. Finally, even when a BIOS update is available,
its installation is often manual, and likely only performed by
advanced users. While we are unable to remotely measure
BIOS versions, we conjecture that many machines are not
updated, thereby remaining vulnerable to well publicized
attacks and unable to obtain a trusted attestation status.
The Developer’s Dilemma. We observe that this long
and cumbersome update cycle requires enclave developers
to strike a difficult balance between security and usability.
Prioritizing security requires only using fully-updated ma-
chines, which may not be available in a timely manner for
much of the user base, reducing service availability. On the
other hand, prioritizing usability results in a potential secu-
rity risk, as adversaries may exploit known vulnerabilities to
breach the product’s security mechanisms. We explore the
real world impact of these delays and this dilemma through
two case studies on deployed systems, and again highlight
concrete takeaways for production enclave developers.
Breaching the SECRET Network. For our first case
study, we breach the privacy guarantees of the SECRET

network [150] in Section 5. SECRET is a privacy-preserving
blockchain which leverages SGX to provide confidential
execution of smart contracts. Since its launch in September
2020, SECRET has grown to a total market cap of $150
million, as of early October 2022. As Intel did not promptly
address the xAPIC and MMIO issues [9, 10, 11] via TCB
recovery, we registered a Rocket Lake server as a validator
node and extracted its “consensus seed” (32 bytes of entropy
shared by all registered enclaves) to derive decryption keys.
With these we break SECRET’s privacy-preserving features,
decrypting the internal state of all smart contracts on the
network including all embedded private digital assets.
Breaching UHD Blu-ray DRM in PowerDVD. In our
second real-world case study, we reverse engineer Pow-
erDVD [1] and its DRM scheme for playing UHD Blu-
ray discs in Section 6. Being the only software licensed to
playback UHD Blu-rays on PCs (as opposed to dedicated
hardware players), PowerDVD uses SGX to ensure the
integrity and confidentiality of the disc decryption keys.
Remarkably, PowerDVD trusts unpatched machines with
GROUP_OUT_OF_DATE attestation status, favoring usabil-
ity over security. Consequently, we can extract attestation
keys from such vulnerable devices using known techniques
such as Foreshadow [159] and use them to aid in our reverse
engineering process.

Throughout this process, we also uncover previously
undisclosed information about the Advanced Access Content
System (AACS) 2 protocol, a closed-source proprietary
protocol for UHD Blu-ray DRM. We provide an overview
and highlight interesting information of the first public spec-
ification of this protocol in Appendix A. Finally, we can also
extract AACS2 decryption keys out of PowerDVD’s SGX
enclaves, allowing us to outline how one might completely
remove the encryption from a UHD Blu-ray movie.
Enabling Enclave Security Evaluations. We note that de-
spite the numerous SGX attacks surveyed in this paper, there
is a clear lack of tooling to allow developers to dynamically
analyze or evaluate the impact of (known) attacks and/or
mitigations on production-quality SGX enclaves. Aiming to
close this gap, in Appendix B we present Emulated Guard
eXtensions (EGX), a new SGX emulator which allows us
to run enclaves in production status outside of SGX, while
passing remote attestation using extracted attestation keys.
General Takeaways and Future Designs. Based on both
our categorization of the different information leakages by
existing attacks, current mitigation strategies, as well as how
well TCB recovery can protect SGX deployments, we con-
clude by discussing broad takeaways and recommendations
for future TEE design and TCB recovery strategies.
Summary of Contributions. We contribute the following:
• We survey publicly known SGX attacks, categorize the

information they expose, document their applicability to
Intel architectures, discuss mitigations, and provide a
number of future research directions and important take-
aways for enclave developers (Section 3).

• We document long delays and potential issues with the
SGX microcode update model, and quantify them with a
measurement study (Section 4).

• We breach the privacy guarantees of the SECRET network,
allowing us to recover the internal state of SECRET’s smart
contracts and any digital assets in them (Section 5).

• We reverse-engineer PowerDVD and breach the AACS2
DRM scheme, while providing the first public documen-
tation of this mechanism (Section 6 and Appendix A).

• We present Emulated Guard eXtensions, an SGX virtu-
alization framework capable of running commercial SGX
enclaves on nearly any architecture (Appendix B).

• We provide a broader discussion on recovery mechanisms
and future TEE design directions (Section 7).

1.2. Disclosure and Ethics
Our research and disclosure were conducted ethically

and responsibly in consultation with the Electronic Frontier
Foundation (EFF) and with the aim of minimizing risk to all
parties. We have disclosed our results to Intel, the SECRET
network, and CyberLink (PowerDVD’s vendor), and assisted
both SECRET and CyberLink with handling these issues.
Aiming to preserve the privacy of SECRET’s users, all testing
was only performed on our own transactions, with explicit
consent of transacting parties.

2. Background and Related Work
2.1. Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) [14, 114] is an
extension of the x86 64 instruction set, supporting secure
code execution in untrusted environments. SGX creates se-
cure execution environments, called enclaves, which prevent
inspection and modification of the code and data inside
them. Additionally, SGX provides an ecosystem for remote
attestation to ensure that genuine trustworthy Intel hardware
is running these enclaves, and not a malicious simulator.
SGX Threat Model. SGX’s threat model only trusts
the processor’s hardware and Intel-provided and Intel-signed
architectural enclaves. Other than the architectural enclaves,
SGX does not trust any software running on the processor,
including the operating system, the hypervisor, and the
firmware (BIOS). The processor’s microcode, however, is
considered part of the processor and hence trusted.
Identifying Enclaves. For each enclave, SGX keeps an
identity comprised of the enclave developer’s identifier and
a measurement representing the enclave’s initial state. The
developer’s identifier, referred to as mrsigner in SGX
literature, is a cryptographic hash of the public RSA key the
enclave developer used to sign the enclave’s measurement.
The measurement, representing the enclave’s initial state, is
a cryptographic hash of those parts of the enclave’s contents
(code and data) that its developer chose to measure and is
called mrenclave following SGX nomenclature.

2.2. SGX’s Attestation Mechanism
One of the most compelling properties that SGX pro-

vides is that an enclave can attest to a remote verifying party
that it is running on genuine and trustworthy Intel hardware,
with confidentiality and security guarantees, as opposed
to a malicious simulator. This allows the remote party to

subsequently provision the enclave with secrets, while being
assured that these secrets never leave the enclave’s memory.

We now proceed with an overview of SGX’s attestation
process (see [89] for an extended discussion).
Local attestation. When an enclave wants to prove (or at-
test) to a remote verifier, it first needs to prove its identity to
the Quoting Enclave (QE)—a special architectural enclave
provided and signed by Intel—via a process referred to as
local attestation [14, 73]. At a high level, this is done by
having the proving enclave use the ereport instruction,
which prepares a report containing the mrenclave and
mrsigner values of the proving enclave. The report is
also signed using a key that is only accessible to the QE.
The proving enclave then passes the report to the Quoting
Enclave, which proceeds with the remote attestation process.
Remote Attestation. Once local attestation is complete,
the QE can generate and sign a “Quote” authenticating the
proving enclave. Using the information from the Report, the
Quote contains a code hash (mrenclave) of the proving
enclave as well as its developer’s identifier (mrsigner).
The quote also contains information as to whether the prov-
ing enclave is running in production or debug mode. Next,
each SGX-enabled CPU is provisioned with an attestation
private key, which is obtained from Intel’s attestation server
during SGX initialization. The attestation key is then sealed
with keys only available to the Quoting Enclave (QE).

For attestation, the QE accesses the machine’s private
attestation keys and signs the proving enclave’s quote. This
quote is sent to the verifying party (e.g., service provider),
which will in turn send it to Intel’s Attestation Server (IAS)
for verification. As Intel possesses the public keys corre-
sponding to each SGX machine, a successful IAS response
guarantees to the verifying party that the enclave is running
in SGX and has not been tampered with.
Trusted Compute Base. The trusted compute base (TCB)
is the set of components that must be working correctly, and
may not be malicious or compromised for SGX to operate
securely. These are the CPU itself, the microcode, the quot-
ing and provisioning enclaves and the trusted runtime system
(tRTS) from the Intel SGX SDK or alternative SDKs such
as Fortanix eDP [53]. Whenever a vulnerability is found
that compromises the TCB, Intel has to release a microcode
update to mitigate the issue and to restore trust in the TCB,
a process known as TCB recovery.
Attestation Status. When the attestation report returns
TRUSTED status, this indicates that any known compro-
mises have been mitigated and the platform is fully trusted.
Other variants of the attestation status include that a config-
uration change is required (CONFIGURATION_NEEDED)
or that the enclave developer has to provide software
mitigations (SW_HARDENING_NEEDED) or a combina-
tion of these (SW_HARDENING_AND_CONFIGURATION_
NEEDED). Finally, GROUP_OUT_OF_DATE indicates that
the platform is affected by a known vulnerability, requiring
mitigations as well as a TCB recovery to restore trust.
Enhanced Privacy ID (EPID). Rather than using standard
digital signatures, SGX attestation uses the Intel-designed

EPID protocol [28], which is a type of group signature that
allows a CPU to sign messages (using its private signing
keys) without uniquely disclosing its identity. When exe-
cuted in unlinkable mode, all that an external observer (e.g.,
Intel) can do is verify the signature without being able to
link it to any specific Intel CPU or other previously signed
quotes. This allows SGX providers to be convinced that their
secrets are indeed stored in a genuine Intel enclave, without
being able to identify the specific CPU in a given group.

3. Categorization of SGX Attacks, Conse-
quences, and Mitigations
We now look at published SGX attacks and their im-

pact from the point of view of an enclave developer as
shown in Table 1. That is, our goal is to characterize what
these attacks can leak and what impact they have from
an SGX programmer’s perspective, rather than focusing on
the details of how to mount these attacks and how they
work [145]. More specifically, these attacks can have an
impact on confidentiality, i.e., the attacker can infer sensitive
information, and/or integrity, i.e., the attacker can tamper
with the enclave’s data. For each of the attacks we discuss
this impact, the current mitigation strategies and possible
improvements to mitigate such attacks in the future. Fur-
thermore, we also highlight future research directions where
applicable.

We first focus on vulnerabilities that rely on the attacker
inferring sensitive data from the enclave’s access patterns
in Section 3.1 and locating and exploiting both memory
corruption vulnerabilities and speculative execution gadgets
within an enclave in Section 3.2 and Section 3.3. As these
attacks rely on the enclave code, these generally require the
enclave developer to mitigate them. It is also important to
note that as the provisioning and quoting enclaves, as well
as the tRTS, are part of the TCB, that Intel is also an enclave
developer and that these may require software patches too.

Then we shift our focus towards vulnerabilities that
externally affect the enclave, such as attacks that leak en-
clave memory and thus extract sensitive information such as
keys in Section 3.4, as well as fault attacks in Section 3.5.
As these are outside of the enclave developer’s control,
these generally require Intel to provide mitigations through
a microcode update and by performing a TCB recovery.
However, ultimately, the enclave developer has to decide
what platforms and hardware configurations to trust, as it is
sometimes possible to mitigate certain issues in software.

3.1. Inferring Access Patterns

Since CPU threads and cores competitively share mi-
croarchitectural resources such as branch predictors [52,
66, 102], caches [27, 38, 47, 62, 115, 147], dependency
resolution [116], DRAM row buffers [172] and port con-
tention [12], an attacker can rely on contention to infer
the control flow and/or data access patterns of an SGX
enclave at different granularities. These attacks can be used
to recover ECDSA nonces [55, 181], attack RSA expo-

nentation [102] as well as recover keys from S-box/T-table
implementations of AES.
Page Faults. Numerous attacks targeting the page tables to
infer access patterns have been shown, including unmapping
enclave pages to induce faults whenever the enclave accesses
them [153, 180], monitoring page activity through the access
and dirty bits [163, 172] and mounting a FLUSH+RELOAD
attack on page tables to infer enclave page accesses [163].
In addition, concurrently running SGX enclaves can use
DRAM contention to infer whether the victim is accessing
the same DRAM bank and row [172]. Another controlled-
channel attack uses segmentation faults to infer access pat-
terns in 32-bit enclaves at a byte-level granularity in the first
MiB of the enclave’s address space [61].
Interrupt-driven Attacks. Another line of work [102,
115, 161, 162] focused on interrupting the enclave execution
to sample side-channel measurements yielding a framework
that allows an attacker to single-step the enclave execution.
Furthermore, different instructions have a different response
time to service the interrupt [162], including a varying ex-
ecution time for the same instruction [134]. CopyCat [119]
extended this work by counting the number of instructions
executed to infer the control flow at a very fine-grained
granularity, allowing for ECDSA key recovery from a single
trace. Finally, MicroScope [155] showed that the attacker
can speculatively replay a single page faulting instruction in
the enclave, which leads to the amplification of other side-
channel attacks, but more specifically to detect the input of
certain instructions as well as infer branches.
Mitigation: Constant-time Code. The enclave developer
needs to ensure that the attacker cannot infer sensitive
information from control flow or access patterns by avoiding
secret-dependent branches and memory lookups [13, 18].
For instance, a constant-time GCD algorithm can be used
for applications like modular inversion [21]. Similarly, there
are AES implementations using bit-slicing [112], vector
instructions [64] and AES instructions on Intel CPUs [65].
Mitigation: Obfuscating Memory Accesses. However,
such constant-time implementations are usually limited to
specific cryptographic implementations, whereas generic al-
gorithms require a different approach. Raccoon [138] is one
such option that implements the oblivious RAM (ORAM)
technique by always evaluating both paths of a condi-
tional branch. Many other ORAM schemes [58, 156, 173]
have been proposed, including schemes for Intel SGX [51,
141, 184]. Furthermore, CoSMIX [128] implements in-
enclave demand paging by instrumenting memory accesses,
which can be used to implement ORAM inside enclaves.
Another approach instead proposes to eliminate all con-
ditional branches by transforming them into conditional
moves [124]. However, their approach is limited to data-
oblivious machine learning algorithms. Zigzagger [102] is
a compiler-based mitigation against branch shadow attacks
that merges multiple conditional branches into a single
indirect branch, that is harder to infer, to obfuscate them.
Mitigation: Page Fault Handlers. T-SGX [152] exe-
cutes enclave code in transactions to prohibit page faults,

Attack Dev Intel Leakage Mitigation
Branch predictors [52, 66, 102, 134] (Section 3.1) ✓ ✗ Branches (code) Constant-time code
Caches [27, 38, 47, 62, 115, 147] (Section 3.1) ✓ ✗ 64B accesses (code + data) Constant-time code
Memory dependencies [116] (Section 3.1) ✓ ✗ 4B accesses (code + data) Constant-time code
Port contention [12] (Section 3.1) ✓ ✗ µ-ops (code) Constant-time code
Page faults [153, 180] (Section 3.1) ✓ ✗ 4K accesses (code + data) Constant-time code
A/D bit monitoring [163, 172] (Section 3.1) ✓ ✗ 4K accesses (code + data) Constant-time code
DRAM channel [172] (Section 3.1) ✓ ✗ 1K - 8K accesses (code + data) Constant-time code
FLUSH+RELOAD on PTEs [163, 172] (Section 3.1) ✓ ✗ 4K accesses (code + data) Constant-time code
IA32 segmentation faults [61] (Section 3.1) ✗ ✓ 1B accesses (code + data)* Mitigated
Interrupts [102, 115, 134, 161, 162] (Section 3.1) ✓ ✗ Instructions Constant-time code
CopyCat [119] (Section 3.1) ✓ ✗ Instructions Constant-time code
MicroScope [155] (Section 3.1) ✗ ✗ Instructions Constant-time code
ROP gadgets [22, 101] (Section 3.2) ✓ ✗ Gadget dependent† Memory safety
SmashEx [46] (Section 3.2) ✓ ✗ Gadget dependent† Memory safety
Synchronization [169, 175] (Section 3.2) ✓ ✗ Gadget dependent† Thread safety
SgxPectre [34] (Section 3.3) ✓ ✗ Gadget dependent† lfence & retpoline
Load Value Injection [136, 160] (Section 3.3) ✓ ✗ Gadget dependent† lfence
Foreshadow [159] (Section 3.4) ✗ ✓ Enclave memory, CPU registers No Hyper-Threading
SA-00219 [74] (Section 3.4) ✗ ✓ Enclave memory‡, CPU registers No iGPU
MDS [33, 146, 166] (Section 3.4) ✗ ✓ In-flight loads/stores, vector registers No Hyper-Threading
CacheOut [168] (Section 3.4) ✗ ✓ Enclave memory, CPU registers
Crosstalk [137] (Section 3.4) ✗ ✓ MSRs, egetkey, rdrand
MMIO Stale Data [79] (Section 3.4) ✗ ✓ MSRs, egetkey, rdrand No Hyper-Threading
ÆPIC Leak [11, 24] (Section 3.4) ✗ ✓ Enclave memory§, CPU registers No Hyper-Threading
Downfall [117] (Section 3.4) ✗ ✓ Vector registers
PlunderVolt/V0LTpwn [94, 121] (Section 3.5) ✗ ✓ AES-NI keys No voltage scaling MSRs
VoltPillager [36] (Section 3.5) ✗ ✓ AES-NI keys
PLATYPUS [107] (Section 3.5) ✗ ✓ AES-NI keys, control flow, etc. No RAPL
Frequency Throttling [109, 174] (Section 3.5) ✗ ✓ AES-NI keys

TABLE 1: An overview of the SGX attacks, whether the developer/Intel has to address the issue, what can be leaked and the recommended
mitigations. *: 1B accesses for enclaves ≤ 1 MiB, otherwise 4K accesses. †: (speculative) code execution that can lead to leaking enclave
memory, CPU registers, keys, etc. ‡: 8B of every cache line. §: 75% of even cache lines. Intel: requires mitigation from Intel in microcode
and/or silicon with a future TCB recovery.

but is highly prone to false positives. Another mitigation
proposes to determine the program’s memory access behav-
ior to instrument enclave code to mask page faults [153].
Déjà Vu [35] measures the execution time to detect pre-
emption, whereas Varys [125] runs a co-running thread
to detect enclave pre-emption to determine if the enclave
is being attacked. The Heisenberg defense [157] proposes
to execute trusted code to prefetch enclave pages when
the enclave is resumed before executing the actual enclave
code. Autarky [127] suggests the use of a trusted page-
fault handler in the enclave, which verifies that the faulting
page was allowed to be evicted. The recently proposed
AEX Notify ISA extension to Intel SGX [43, 84] simplifies
the implementation of some of these defenses, as it allows
enclave developers to handle Asynchronous Exception eXits
inside the enclave, and can be used to address some of the
interrupt-based attacks.

Takeaway: Enclave developers should consider using
ORAM and AEX Notify where possible to prevent in-
ferral of access patterns.

Future Research: Since none of the aforementioned tools
adequately address the issue of inferring sensitive informa-

tion from access patterns, as they either focus on constant-
time cryptographic primitives or are otherwise limited by
applicability or performance, this area is still open to fu-
ture research. However, the advent of AEX-Notify and the
implementation of ORAM in the context of SGX show a
promising direction. Furthermore, to prevent control channel
attacks on the enclave’s page tables, it would be interesting
to shift the responsibility of managing these from the OS to
microcode similar to Sanctum [45].

3.2. Memory Corruption Attacks

Memory corruption vulnerabilities such as buffer over-
flows and use-after-free, may also affect enclave code, which
the attacker can exploit to achieve code execution inside the
enclave resulting in the ability to read and/or modify enclave
memory, extract keys, etc. While SGX aims to provide
confidentiality and integrity guarantees, memory corruption
bugs and other bugs introduced by the enclave developer fall
outside of SGX’s threat model, thus the enclave developer
is fully responsible for addressing these. Even more so,
the fact that SGX is often used for sensitive data makes
it much more interesting for attackers to find such bugs
and exploit them. Attacks using memory corruption vulnera-
bilities include return-oriented programming attacks against

SGX enclaves [22, 101], attacks exploiting re-entrancy in
the exception handler [46] and attacks exploiting the page
faulting mechanism to interrupt enclave execution, to con-
sequently control the scheduling order in multi-threaded
enclave applications, to ultimately exploit TOCTOU and
use-after-free vulnerabilities [169, 175].
Mitigation: Memory Safety. One way of mitigating
memory corruption bugs is to consider writing enclaves in
a memory safe programming language. For instance, both
Apache Teaclave [170, 171] and Fortanix eDP [53] are
SGX frameworks to develop enclaves in Rust. Furthermore,
Enarx [50] allows enclave developers to target a more
restricted WASM environment running inside Intel SGX.
Mitigation: ASLR, Bounds Checking & Fuzzing. While
the operating system does provide a system-wide implemen-
tation of Address Space Layout Randomization (ASLR),
an attacker can decide to disable ASLR for SGX applica-
tions. Thus SGX-Shield [151] implements an ASLR scheme
in LLVM to harden SGX enclaves against memory cor-
ruption bugs without the attacker having control over it.
SGXBOUNDS [98] instead relies on pointer tagging to
implement bounds checking by encoding the upper bound
in the upper part of the 64-bit pointers. In addition, SGX-
Fuzz [40] is a coverage-guided fuzzer that can be used to
find memory corruption bugs in SGX enclaves.

Takeaway: Enclave developers should consider using
a memory safe programming language, or harden their
enclaves against memory corruption attacks.

3.3. Speculative Execution Gadgets
SgxPectre [34] shows that various speculative execution

gadgets can be found in SGX enclaves where the attacker
can first train the branch predictor or perform branch target
poisoning to have the processor mispredict branches and
as a result have it speculatively execute arbitrarily chosen
code in the enclave. Such speculative gadgets may leave mi-
croarchitectural traces, e.g., in the cache, allowing attackers
to extract sensitive data, such as keys, from SGX enclaves.
Load Value Injection. Furthermore, Load Value Injec-
tion (LVI) [160], Floating-Point Value Injection [136] and
Gather Value Injection (GVI) [117] show that the attacker
can manipulate the value returned by load instructions in
speculative execution gadgets by injecting data into the
microarchitectural buffers. We provide a more elaborate
overview of attacks that can lead to LVI in Section 3.4. More
specifically, this affects speculative gadgets that consist of
two memory dereferences, where the attacker uses LVI to
poison the first with the target address of interest and where
the second leaves a different microarchitectural trace that
is dependent on the secret value loaded by the first. Such
gadgets allow attackers to read arbitrary enclave memory,
which can then lead to the extraction of keys.
Mitigation: Barrier Instructions & No Hyper-Threading.
These issues all rely on the fact that the attacker can poison
resources shared with the enclave, such as branch prediction

and microarchitectural buffers, before executing the enclave.
Intel provides two MSR-based flags: Single Thread Indirect
Branch Predictors (STIBP) to prevent the sibling thread
from influencing the branch prediction, and Indirect Branch
Restricted Speculation (IRBS) to prevent the attacker from
poisoning branch prediction before executing the enclave.
Finally, Indirect Branch Predictor Barrier (IBPB) provides
a barrier instruction to prevent branch poisoning. To fully
prevent exploitation of speculative execution gadgets, en-
clave developers should use a compiler that inserts the
lfence instruction after direct branches and the retpoline
mitigation for indirect branches, and may use code analysis
tools such as fuzzers to locate such gadgets. The Intel SGX
SDK [70] ships gcc with these mitigations, but these are also
available in LLVM and thus any LLVM-based compiler such
as Clang.

While Intel also recommends this for LVI, a methodol-
ogy similar to that for branch poisoning can be followed
by disabling Intel Hyper-Threading and flushing affected
buffers before enclave entry. Incidentally, the microcode
updates to address issues such as MDS, may thus also
indirectly (partially) address LVI as they require disabling
Hyper-Threading and may flush affected buffers before en-
clave entry. However, without an official statement from
Intel, an enclave developer cannot rely on such assumptions.
LVI-NULL [56] proposes another mitigation using segmen-
tation inside Intel SGX to mitigate LVI.
Mitigation: Uncovering Speculative Gadgets. Finally, var-
ious tools relying on fuzzing and other techniques have been
developed to uncover new potential speculative execution
gadgets and microarchitectural attacks [49, 118, 126, 179].
These tools could be extended to automatically detect such
gadgets in enclave code to ultimately harden the enclave
against these gadgets.

Takeaway: Enclave developers must ensure that the latest
microcode updates are available, i.e., that remote attestion
passes as TRUSTED, and must ensure their compiler
provides mitigations for issues such as LVI.

Future Research: Similar to memory corruption attacks,
speculative execution attacks may benefit from code analysis
tools that help locate speculative execution gadgets in exist-
ing enclave code and harden the code against such attacks.
While frameworks have been developed to uncover existing
gadgets as well as new ones, one potential area for future
research is to extend these to Intel SGX.

3.4. Leaking Enclave Data
We now focus on attacks that leak enclave data, and thus

have an impact on confidentiality and integrity as they can
be used to read enclave memory, CPU register values and
ultimately extract sensitive data such as sealing keys, used
by enclaves to encrypt data to disk, and Intel’s attestation
keys, used to sign attestation reports. Thus, with these keys
an attacker can decrypt sensitive data sealed by the enclave
and forge attestation reports from non-trusted hardware,

Platform SKL KBL CFL CFL-R WHL CML ICL RKL
Attack Year 2015 2016 2017 2018 2019 2020 2021 2021
Foreshadow [159] (Section 3.4) 2018 Q2’18 Q2’18 Q2’18 ✗ ✗ ✗ ✗ ✗
SA-00219 [74] (Section 3.4) 2019 Q4’19 Q4’19 Q4’19 Q4’19 Q4’19 ✗ ✗ ✗
MDS [33, 146, 166] (Section 3.4) 2019 Q3’19 Q1’19 Q1’19 Q1’19* Q1’19* ✗ ✗ ✗
CacheOut [168] (Section 3.4) 2020 Q2’20 Q2’20 Q2’20 Q2’20 Q2’20 ✗ ✗ ✗
Crosstalk [137] (Section 3.4) 2020 Q2’20 Q2’20 Q2’20 Q2’20 Q2’20 Q2’20 ✗ ✗
MMIO Stale Data [79] (Section 3.4) 2022 Q4’22 Q4’22 Q4’22 Q4’22 Q4’22 Q4’22 Q4’22 Q4’22
ÆPIC Leak [24] (Section 3.4) 2022 ✗ ✗ ✗ ✗ ✗ ✗ Q4’22 Q4’22
Downfall [117] (Section 3.4) 2023 EOL Q3’23 Q3’23 Q3’23 Q3’23 Q3’23 Q3’23 Q3’23
PlunderVolt / V0LTpwn [94, 121] (Section 3.5) 2019 Q4’19 Q4’19 Q4’19 Q4’19 Q4’19 Q4’19 Q4’19 ✗
VoltPillager [36] (Section 3.5) 2021 – – – – – – – –
Platypus [107] (Section 3.5) 2020 Q3’20 Q3’20 Q3’20 Q3’20 Q3’20 Q1’21 Q1’21 ✗
Frequency Throttling [109, 174] (Section 3.5) 2022 – – – – – – – –

TABLE 2: An overview of the SGX attacks and the affected platforms marked with a green date representing the microcode update to
address the corresponding attack. ✗: not affected, SKL: Skylake (e.g., Core i7-6700K), KBL: Kaby Lake (e.g., Core i7-7700K), CFL:
Coffee Lake (e.g., Core i7-8700K), CFL-R: Coffee Lake Refresh (e.g., Core i9-9900K), WHL: Whiskey Lake (e.g., Core i7-8665U),
CML: Comet Lake (e.g., Core i9-10900K), ICL: Ice Lake (e.g., Core i7-1065G7, RKL: Rocket Lake (e.g., Xeon E-2334), *: affected
by Vector Register Sampling (VRS) and TSX Asynchronous Abort (TAA), –: out of scope of the threat model for SGX.

respectively. The latter is especially problematic as an at-
tacker can run any enclave code they wish, outside of SGX,
thus violating all integrity guarantees. More specifically, we
demonstrate what can happen if these are not mitigated in a
real-world case study in Section 6. In general, these attacks
can either (partially) read enclave memory, or sample in-
flight data from specific instructions during their execution.
Furthermore, these attacks tend to rely on a page swapping
mechanism that SGX provides to the untrusted OS, that
allows an attacker to target specific enclave data without
executing the enclave, which means that there is nothing
the enclave developer can do to mitigate these attacks.

Foreshadow. Foreshadow [159] allows an attacker to leak
the data for any physical address as long as the corre-
sponding data is cached, essentially allowing an attacker to
read enclave memory, including sensitive data that is part
of the enclave, as well as gain access to Intel’s attestation
keys, which can be used to forge attestation quotes from a
non-trusted machine. Furthermore, the attacker can read the
CPU registers, as they are stored in memory whenever the
enclave is interrupted. Similarly, SA-00219 [74] allows the
integrated GPU to access the first 8 bytes of every cache line
on affected processors, essentially providing access to the
first 64 bits of the key returned by the egetkey instruction.

MDS. Microarchitectural Data Sampling (MDS) attacks
such as RIDL, ZombieLoad and Fallout [33, 118, 146, 165,
166, 167] target various microarchitectural buffers present
in the CPU, including the superqueue [24], the staging
buffer [137], and the sideband buffers [79]. Therefore these
attacks can bypass most of the common security boundaries,
including those between the application and SGX enclaves
by leaking in-flight data from the SGX enclave through
those buffers. In combination with the control flow attacks
as outlined before, MDS attacks can be used to target in-
flight data from specific instructions, such as memory in-
structions [33, 118, 146, 166] and vector instructions [167].
Similarly, Downfall [117] can exfiltrate data from the vec-
tor registers as well, which are commonly used by AES-

NI. Furthermore, CrossTalk [137] and MMIO Stale Data
(SA-00615) [79] enable cross-core attacks that leak sealing
keys from egetkey and extract ECDSA private keys from
enclaves by sampling the rdrand instructions.

Data at rest. While MDS allows an attacker to target in-
flight data, CacheOut [168] shows how to selectively evict
data at rest from the cache into these microarchitectural
buffers to gain a primitive similar to Foreshadow. To over-
come the constraint of getting the enclave’s data into the
affected cache or buffer, several works [24, 159, 168] rely
on the ewb and eldu instructions to swap enclave pages out
and load them back in, respectively. As the untrusted OS can
freely swap enclave pages out and back in, several attacks
can use this to leak arbitrary enclave data, without the
enclave developer being able to protect the enclave against
these attacks, thus requiring Intel to provide mitigations.

Mitigation: Serialization & Barriers. Before discussing
mitigations, in Table 2 we provide an overview of the vari-
ous attacks and platforms they affect, focusing on platform-
specific mitigations. As we show, most vulnerabilities share
similar mitigation strategies, thus, even when a platform
was previously unaffected, it eventually ends up with similar
mitigations as new similar vulnerabilities get disclosed.

The first issue is that the attacker can run code simultane-
ously to the enclave executing on another CPU thread, CPU
core or even the integrated GPU, requiring Hyper-Threading
to be disabled for Foreshadow and MDS and the integrated
GPU for SA-00219. Second, sensitive data may be lingering
around in the caches or microarchitectural buffers upon
enclave exit, whereupon the attacker can leak this data, thus
requiring these caches (e.g., Foreshadow) and buffers (e.g.,
MDS) to be flushed upon enclave exit. Finally, some attacks,
such as Crosstalk, affect buffers shared between multiple
CPU cores, which requires serialized access to these buffers
as well as flushing to ensure no data lingers around. While
Sanctum [45] proposes to flush and partition shared re-
sources, Intel SGX does not follow this advice proactively
and instead Intel has to provide microcode updates to ad-

dress these issues. Table 2 shows an on-going trend of data
leakage through various shared microarchitectural resources
such as caches and buffers, highlighting the need for flushing
and partitioning of shared resources.

Takeaway: Enclave developers must ensure the latest
microcode updates are available to address most data
leakage attacks, i.e., that remote attestation passes as
TRUSTED.

Future Research: As the SGX swapping mechanism is
of interest to attackers, a future improvement would be to
allow enclave developers to mark enclave pages as non-
swappable, to prevent attacks from swapping out sensitive
pages. While this does not address the root cause of these
attacks, it does severely limit the applicability of the attack.
Another improvement would be to add an instruction to
check that the arguments to enclave function calls strictly
point to valid DRAM memory, which could help address the
issue of an attacker providing pointers to memory-mapped
I/O, as the enclave has no access to the physical addresses.

3.5. Power Analysis & Fault Attacks
PlunderVolt [121] and V0LTpwn [94] abuse interfaces

for dynamic voltage scaling on x86 CPUs to perform fault
injection on SGX enclaves. More specifically, Plundervolt
shows how to perform fault injection on the AES-NI,
ereport and egetkey instructions. The keys used for
AES-NI can then be extracted through differential fault anal-
ysis. VoltPillager [36] abuses the SVID interface to perform
a similar attack externally. PLATYPUS [107] uses Intel
RAPL (Running Average Power Limit) to monitor the power
consumption of instructions running inside an SGX enclave
to infer sensitive data, to subsequently extract keys from
AES-NI instructions and determine the control flow among
other attack scenarios. Finally, frequency throttling can be
used to infer the Hamming weight/distance of the processed
data [174], including AES keys from Intel SGX [109].
Mitigation: Restricting Power Interfaces. Since access
to Intel RAPL and the CPU voltage MSRs is outside of
the enclave developer’s control, Intel released microcode
updates to disable access to these interfaces. Access to these
interfaces must be disabled to reach fully trusted status.
In general, interfaces that can be used to monitor resource
consumption (e.g., power, frequency, temperature, perfor-
mance counters, etc.), and thus infer sensitive information
from the enclave’s execution, should not be accessible or
updated to reflect this execution. Similarly, interfaces that
affect the enclave’s execution, such as adjusting the voltage,
should also not be accessible or these adjustments should
be ignored during execution. However, as access to these
interfaces cannot be fully eliminated, developers may want
to consider multi-variant execution to further mitigate these
issues.
Mitigation: Multi-Variant eXecution. Enclave devel-
opers can consider multi-variant execution to run criti-
cal computations more than once and compare their re-

sults [17, 96, 110, 129], as it is highly unlikely that an
attacker can fault adjacent instructions twice.
Mitigation: Frequency Throttling and Masking. One way
of mitigating frequency throttling is to execute enclaves at
a fixed and stable frequency, without features such as Turbo
Boost and SpeedStep. Another mitigation strategy is to use
masking and blinding techniques [85, 86] which randomize
internal values appearing during computations. While this
approach has been implemented for cryptographic appli-
cations [23, 59, 91, 139, 144], much less is known about
applying these techniques to general-purpose computations.

Takeaway: Enclave developers must ensure the latest
microcode updates are available to address most power
analysis and fault attacks, i.e., that remote attestation
passes as TRUSTED. Fully mitigating power analysis and
fault attacks is still an open area of research. However,
multi-variant execution is a potentially promising direc-
tion.

Future Research: One potential research direction is the
use of multi-variant execution in the context of Intel SGX,
e.g., through the use of compiler instrumentation. Further-
more, as masked/blinded implementations may still leak
through power side-channel attacks [16, 19, 54, 111, 131,
142, 143], another future research direction revolves around
hardening cryptographic primitives against such attacks.

3.6. Summary and Discussion
To summarize, we have provided an overview of the

various SGX attacks, whether the developer or Intel is
responsible for their mitigation, what an attacker can achieve
with these attacks, and what the impact is for developers,
as well as takeaways for enclave developers and future
research directions for researchers. In particular, to miti-
gate attacks that infer access patterns, speculative execu-
tion attacks and memory corruption attacks, enclave devel-
opers can rely on compiler extensions and code analysis
tools [40, 98, 102, 124, 138, 151]. Furthermore, there are
options such as the use of constant-time cryptographic prim-
itives [13, 18, 21, 64, 65, 112] and SGX frameworks in
Rust [53, 170, 171]. However, enclave developers cannot
directly mitigate the other attacks in our categorization.
Instead they require Intel to release microcode updates, and
more specifically, OEMs to deploy these as part of BIOS
updates as we discuss in the next section.

4. Surveying SGX Update Timelines
Having provided an overview of the various SGX attacks

and discussed mitigations for them, we now look at how
long it takes for Intel’s mitigations to reach the end-users
of SGX. When a new SGX vulnerability is discovered, Intel
typically issues a microcode update for most affected archi-
tectures. These updates are not persistent, rather they are re-
applied every time the computer boots. Next, for SGX plat-
forms using EPID attestation, Intel’s key derivation is lim-
ited to keys of the current Security Version Number (SVN)
and lower [90]. As these keys are derived before boot, any

OS-applied microcode cannot update the SVN [83, 90],
resulting in the machine reporting GROUP_OUT_OF_DATE
status during remote attestation. Finally, being unable to
trust the (potentially malicious) operating system to keep
SGX updated in the first place, Intel collaborates with moth-
erboard vendors to distribute SGX updates through BIOS
updates. Upon reboot, the BIOS then updates the machine’s
microcode and SVN prior to key derivation, allowing the
machine to pass attestation with TRUSTED status.
The Difficulty of SGX Updates. We argue that this BIOS-
driven SGX update process presents two security issues. The
first is that BIOS updates are manual, potentially dangerous,
and generally only recommended if absolutely necessary.
Next, compared to regular software updates, BIOS updates
are often released very slowly, and in some cases not at all.

In this section, we aim to shed light on SGX update
timelines, by quantifying the time duration between SGX
vulnerability disclosure and microcode availability.
BIOS Scraping. We conducted a web scraping campaign
in which we downloaded and analyzed every BIOS update
we could find for six major manufacturers: ASRock, Dell,
HP, Lenovo, MSI, and Gigabyte. As we found BIOS update
documentation to be inconsistent and generally unhelpful,
we opted instead to programmatically analyze each update
to search for relevant microcode patches using both MC Ex-
tractor [113] and our own microcode header parsing tool. In
all, we identified roughly 173,000 microcode updates, where
about 5300 fixed a specific known attestation-breaking SGX
vulnerability on a unique device for the first time.

Unfortunately for our analysis, BIOS update histories
are not always well-kept: old updates are sometimes re-
moved with no record of what they contained and we
have to assume that the claimed upload times of different
updates are accurate. Furthermore, BIOS packing methods
vary greatly between manufacturers and even product lines,
making it difficult to determine if all microcode updates
have been extracted. Because of these limitations, we only
count updates which include the specific microcode patch
which fixes a vulnerability we consider, and do not make any
claims about how many vulnerabilities are never patched.
SGX Update Lifecycle. We analyzed six common SGX
vulnerability patches [3, 4, 5, 6, 7, 8] and cataloged the
BIOS updates which applied them. Figure 1 presents a
summary of our findings, plotting the percentage of products
with available SGX patches against the elapsed days since
public vulnerability disclosure, optimistically assuming that
every patchable product is patched by the end of the survey.

Among the surveyed vendors, the median patch time
ranged from 25 days (HP) to 125 days (Lenovo). Overall,
the median vendor had a median patch time of 52 days or
almost two months. Issue times varied by vulnerability1 but
we emphasize the large variance in responses: some product
lines shipped patches before the vulnerability’s disclosure,
while others took many months (if they shipped at all).

1. L1D Cache Eviction Sampling [7] is a notable outlier in our dataset,
as Intel publicly released a fix 3 months after first acknowledging the issue
(though Lenovo patched some products months earlier than other vendors).

Figure 1: Time taken to BIOS-patch major SGX vulnerabilities
after they are made public

0 200 400 600 800 1000
0

50

100
Intel

0 200 400 600 800 1000
0

50

100
AMD

Elapsed Days%
 o

f P
at

ch
es

 A
va

ila
bl

e
Dell
Lenovo
ASRock
HP
MSI
Gigabyte

Figure 2: Time between microcode releases and their integration
into a BIOS update

Hardware Update Lifecycle. For comparison purposes, we
also discuss how SGX patching compares to other patching
and update mechanisms, such as general microcode-to-BIOS
propagation. Here, we survey the same six vendors but look
at the time of propagation of all microcode updates to BIOS
updates (security-critical or not) for both Intel and AMD.
Figure 2 presents a summary of our findings, plotting the
percentage of products with BIOS updates containing the
most recent microcode against the elapsed days since that
microcode patch was first seen in any BIOS update.

Among the vendors we survey, we notice a similar trend
as before, with HP and MSI having the fastest median
update time when releasing Intel microcode updates at 37
days, while Lenovo has the slowest at 329 days. For AMD
microcode update propagation, MSI has the fastest time at
just over 70 days, while Dell and Lenovo had the slowest
at 477 days and 1043 days respectively2. Interestingly, we
notice a distinct difference between the Intel and AMD
microcode propagation times with median times of 61 days
and 98 days respectively. We leave analysis of why this
might be the case as an open problem for future work.
Comparison. We conclude that BIOS updates are gen-
erally slow, regardless of the motherboard manufacturer or
processor vendor, even though security-critical microcode
propagates quicker than general-purpose microcode updates.

2. Based on our survey, Lenovo shows exceptionally long update times
for AMD. We are uncertain why, but hypothesize that this is likely a
function of our methodology, which assumes that the first available BIOS
update to contain a specific microcode patch must be a microcode update.

SSB L1TF MDS L1DES SRBDS RAPL
Disclosure 05/21/18 08/14/18 05/14/19 06/09/20 06/09/20 11/10/20
Microsoft 07/10/18 08/21/18 05/14/19 08/31/20 08/31/20 11/10/20
Difference 50 days 7 days 0 days 83 days 83 days 0 days

TABLE 3: An overview of Intel SGX vulnerabilities with their
disclosure date and the release date of Microsoft updates to address
each issue, including the difference in days.

We contrast this with the update life-cycle and timeline
for security-critical bugs in software. Li et al. provide a
detailed study on exactly this topic, noting for example
that for 78.8% of all CVEs, security fixes were released by
public disclosure time, manifesting essentially a zero time
difference [103]. This demonstrates the stark difference in
patch propagation time in software versus hardware.
A Difficult Tradeoff. Even when Intel’s microcode patches
are available and even under the optimistic assumption
that all devices eventually get patched, we are left with a
troubling usability issue on platforms using Intel EPID attes-
tation. With multiple SGX breaks in a year, combined with
multiple months of patch delay per break, service providers
are required to strike a fine balance between usability and
security with respect to trusting SGX.

Ideally, vendors would require that products only run
on fully-updated machines, in TRUSTED status, which can
presumably securely contain the vendor’s secrets. However,
the difficulty of installing BIOS updates means that achiev-
ing TRUSTED status is cumbersome for regular users, which
limits the product’s market share, and hurts user experience.
Alternatively, vendors can prefer compatibility over security,
storing sensitive information inside SGX enclaves running
on unupdated machines with GROUP_OUT_OF_DATE at-
testation status. As we show in Section 6, this choice can
have serious security consequences, up to and including the
removal of all secrecy and integrity properties.
TCB Recovery. To further exemplify this trade off, we look
at the xAPIC and MMIO issues [9, 10, 11, 24], officially
dislcosed on August 9, 2022. We found that platforms af-
fected by these xAPIC and MMIO issues were in TRUSTED
status two months after this disclosure date, with TCB
recovery originally planned to occur no later than March
7, 2023 [80] for platforms using Intel EPID attestation,
jeopardizing any application of Intel SGX. Only following
our disclosure did Intel accelerate this to November 29th,
2022 [81] for some platforms, with popular SGX-enabled
servers and desktops being updated only in January 2023.
The Feasibility of OS Updates. To compare with our BIOS
timeline, Table 3 provides an overview of when Microsoft
released updates for Microsoft Windows to address each
of the Intel SGX vulnerabilities. We note that for half of
the vulnerabilities, Microsoft patched them within a week,
whereas in the worst case it took them about 3 months
to release a patch. However, as these microcode updates
are applied late in the machine’s booting process, they
are unable to modify the machine’s SVN or restore the
machine’s attestation status. Finally, we note that OS updates
do appear to be a viable avenue of releasing mitigations,
assuming a run-time capable SVN updating mechanism.

Supporting Run-time SVN Updates. Recognizing the
above need, Intel recently introduced a mechanism for op-
erating systems to apply microcode updates and update the
SVN for DCAP-based SGX platforms [82], thus sidestep-
ping the need to rely on BIOS vendors. In particular, one
area of future research would be to extend Intel EPID-based
platforms to support a similar mechanism to update the
SVN, avoiding difficult usability-security dilemmas.
Limiting the Impact of Existing Vulnerabilities. In
an ideal world, enclave developers should always ensure
that the latest microcode updates have been deployed, and
that remote attestation passes as TRUSTED. However, as
we have previously shown, this is unfortunately not always
possible. Thus, it is paramount for developers to also limit
the impact of recently discovered vulnerabilities as they are
being disclosed and patched. This can be done, for instance,
by using multiple separate encryption keys rather than a
single master key, and by only allowing clients on a trust
basis, e.g., through the use of single-use invitation tokens or
by restricting the set of group IDs allowed to run the enclave.
We discuss this more extensively in our case studies.

Takeaway: Enclave developers must exercise caution
when balancing security and usability. Ideally, they must
ensure that the latest microcode updates are available,
i.e., that remote attestation passes as TRUSTED. How-
ever, they should also consider limiting the applicability
of encryption keys as well as restricting clients on a
trust/invitation basis.

Case Studies. Having discussed why BIOS updates are
necessary to keep Intel SGX in a trusted status and having
exemplified how long it takes for motherboard vendors
to actually deploy these to customers, we now show the
impact of delays in the update process with our case studies
on SECRET and PowerDVD in Section 5 and Section 6
respectively, and again highlight important takeaways for
developers.

5. Unsealing The Secret Network
For our first case study we focus on the SECRET network,

a privacy-preserving smart contract system that requires all
validator nodes to run SGX-enabled hardware to participate.
More specifically, we look at the consequences following the
long mitigation process of the ÆPIC attack, in particular,
what an attacker can do during this time window and what
kind of impact that has on SECRET. Following this, we also
discuss some mitigation strategies that not only apply to
SECRET, but any TEE-based blockchain in general, such as
the need for a TCB recovery plan, and ensuring enclave
developers push for a TCB recovery as soon as possible.

5.1. Secret Overview
In blockchain systems, smart contracts are stateful pro-

grams that users can interact with that can make automated
decisions regarding the transfer of assets. Most blockchains
are completely transparent by design and all smart contract

state and transaction data can be reviewed by anyone. To re-
gain privacy, the smart contracts community focused mostly
on using zero-knowledge proofs [25, 32, 57, 97]. However,
as this incurs considerable performance overhead, a number
of research projects have proposed an alternative TEE-based
approach [26, 37, 48, 93, 154, 158], by moving the execution
of smart contracts entirely into the enclave.
The SECRET Network. The first TEE-based blockchain
to reach significant adoption is SECRET network, which
launched its smart contracts feature in September 2020, and
has since grown to a total market cap of 150M USD as of
early October 2022. Decentralized Finance (DeFi) apps in
use on SECRET include a Uniswap-like automated market
maker and a Compound-like automated margin lending sys-
tem. Another notable application is Private NFTs that can
attach encrypted payloads that only the owner can access.
Overview of the SECRET Architecture. SECRET con-
sists of two components: a consensus protocol based on
Tendermint [30] to commit transactions and to serve as a
bulletin board, and an SGX-based smart contract execution
layer. Tendermint consensus does not use enclaves, rather it
uses Proof of Stake, requiring significant security deposits to
propose blocks. In SECRET, block proposers must be among
the top 80 nodes by stake [148] (a minimum stake of 38,692
SCRT or $35,100 at the time of writing [149]).
SGX-based Smart Contract Execution Setup. SECRET’s
smart contract execution framework is derived from Cos-
mos [99], but adapted to run within an enclave. To send a
message to a smart contract, users derive an encryption key
from a master public key, consensus_io_exchange_
pubkey, and include the encrypted message in a transac-
tion. The corresponding secret key, derived from the consen-
sus seed, is replicated throughout the network as files sealed
by SGX enclaves. A separate consensus_state_ikm
key, also derived from the consensus seed, encrypts the
database of the current state, e.g., account balances.
Performing Transactions. Once a transaction is committed
to the network, the enclaves decrypt the message and execute
the contract, updating the encrypted state. The consensus
seed is persistent and has not changed over the lifetime of
the blockchain, allowing all validator nodes to inspect the
blockchain’s state at any time.
New Node Registration. To add new enclave nodes
to the network, SECRET implements a registration process
based on remote attestation. First the new node creates an
ephemeral keypair, for future use to seal the new node’s
local copy of the consensus seed. The corresponding public
key and the verified attestation report from IAS are packaged
within a transaction and published on SECRET’s blockchain.

Observing the transaction published by the joining node,
existing nodes verify the IAS response, check that the
node’s mrenclave value matches that used by existing nodes,
and verify that the node’s hardware platform is secure
against known SGX vulnerabilities. If all checks pass, ex-
isting nodes encrypt their consensus seed using the joining
node’s public key, sharing the resulting ciphertext on the
blockchain. Finally, the joining node observes this cipher-
text on the blockchain, and passes it to its enclave. Upon

decryption, the enclave stores the consensus seed locally
using the SGX protected filesystem, avoiding the need to
continuously re-attest upon reboots and platform upgrades.
SECRET’s Integrity and Privacy Guarantees. While
SECRET is designed such that an SGX breach cannot affect
the integrity of the blockchain or allow for theft of funds
or freely issuing new tokens, it nonetheless can eliminate
its privacy guarantees, essentially downgrading SECRET to
an ordinary transparent blockchain and allowing attackers
to read the internal state of all smart contracts.

“It is important to note that the majority of theoretical
attacks that occur on TEEs (SGX in particular) happen
within research labs. In reality, common attack vectors
occur through implementation faults that leverage holes in
protocol design.” - SCRT Network Graypaper

5.2. Extracting the Consensus Seed
Hardware Setup. We set up an SGX-capable CPU
vulnerable to ÆPIC leak [24]. SECRET’s documentation
states that nodes must use SGX with Intel’s Server Platform
Services (SPS), leading its community to believe that ÆPIC
leak did not affect the network, as no architectures attacked
directly in the paper supported SPS.3 We thus investigated
Rocket Lake CPUs, as this is the only Xeon architecture
supporting EPID-based attestation, and is sufficiently new
to be potentially vulnerable to ÆPIC leak.

Thus, we acquired an HPE ProLiant DL20 server
equipped with an Intel Xeon E-2334 (Rocket Lake) CPU
and installed Ubuntu 20.04 LTS with Linux kernel 5.4.0.
Finally, despite being reported on August 2022, Intel did
not perform TCB recovery until quite recently, allowing our
machine to run microcode version 0x53 while still being
considered trusted by the IAS.
Node Setup. Next, to obtain a copy of the consensus
seed inside our node’s SGX enclave, we registered our hard-
ware onto the network as a validator node. While joining
SECRET’s active block proposer pool requires a substan-
tial investment, merely running a non-proposing validator
only requires passing attestation. This is a deliberate design
decision made by SECRET, as block explorers, developer-
friendly API endpoints and other services benefit from the
ability to make queries against the encrypted state.
Attacking the Enclave. To guarantee confidentiality, the
enclave relies on the Intel Protected File System Library
to seal the consensus seed using 128-bit AES-GCM and
then stores the ciphertext on disk. Thus, to extract the
consensus seed, we use Secret’s Go bindings to call into
the initialization code that unseals the consensus seed, stop
the enclave after the AES key expansion using a control
channel attack [180] as we described in Section 3.1, and
partially sample data from the key schedule.
AES Key Recovery. Figure 3 shows the sampled bytes
from the AES key schedule in blue and the recovered bytes

3. During our disclosure process, we discovered that SECRET made this
assertion in error. In particular, SECRET also allows for validator nodes
using non-server machines, thus increasing their exposure to attacks using
other architectures such as Ice Lake-based laptops.

Round Key N

Round Key N+1

Sampled

Recovered

Unknown

Figure 3: A simplified 128-bit AES key schedule for two round
keys with the sampled (blue) and recovered (green) bytes.

in green. More specifically, we exploit the redundancy of the
key schedule [63] to fully recover one of the round keys,
from which we can recover the AES key by reversing the
key schedule. However, unaware of which round key we
recovered, we must bruteforce the AES key for each index,
and try to decrypt the sealed data using each of the 10 recov-
ered keys. As authenticated encryption (128-bit AES-GCM)
is used, decryption only succeeds if the authentication tag
matches, allowing us to identify the correct key.
Unsealing the Consensus Seed. After successfully recov-
ering the AES sealing key, we decrypted SECRET’s sealed
files to obtain the consensus seed. This shows that even
attacks with only partial leakage can be disastrous.
Extracting EPID keys. Note that we can also extract the
sealing key protecting the machine’s private EPID attestation
key [24, 159, 164, 168]. Demonstrating this empirically, we
extracted our server’s EPID key using a similar methodol-
ogy. We conjecture that once an attacker extracts the EPID
key from a trusted platform, the attacker can bootstrap an
entire SECRET node outside of SGX. More specifically,
the attacker would generate a key pair, sign their own
quote containing that public key and the appropriate enclave
measurement, and then retrieve a valid IAS certificate from
Intel, whereupon the other node validates the certificate and
encrypts the consensus seed using the provided public key.

5.3. Decrypting Transactions
One of SECRET’s main applications is privacy-

preserving transactions. While all transactions, including
encrypted ones, can be viewed via common block explorers,
using keys derived from the consensus seed we can directly
decrypt any transaction, completely breaching SECRET’s
confidentiality guarantees. To show this, we decrypted our
own mainnet transaction to obtain its JSON description.
{"transfer":{"recipient":"secret1...","amount":"1333370"}}

Figure 4: Example NFT
we created and decrypted.

Decrypting Private NFTs.
Another use case is the cre-
ation of private NFTs, such as
a collection released by direc-
tor Quentin Tarantino [100].
Using a viewing key, an NFT’s
owner can query its private
metadata and view its con-
tents, hiding it from other users. To show the danger of
our compromise, we created our own private NFT with a
hidden image, then breached its confidentiality on SECRET’s
mainnet using the extracted consensus seed. See Figure 4.
Deanonymizing SECRET. Arguably the most concern-
ing application of our attack, however, is bulk financial

surveillance of SECRET users. With the consensus seed,
we could reconstruct all the confidential account balances
and transfer histories of SNIP-20 fungible tokens, which
include popular bridged assets like Ethereum and the USDC
stablecoin. While users of SECRET desire and expect privacy,
the compromise of the consensus seed threatens them with
comprehensive retroactive surveillance.

5.4. SECRET Mitigations
The first action was to revoke SECRET’s developer keys

to prevent the creation of new attestation reports to block the
registration of new nodes. While this reduced the attack sur-
face, it alone is not sufficient, as vulnerable machines with
existing attestation reports might still be provisioned with
the network’s consensus seed which can then be extracted.

Since attestation reports also contain the attesting ma-
chine’s group-id, uniquely identifying its CPU architec-
ture and microcode version, it is possible to selectively
block registration for machines affected by the xAPIC and
MMIO issues [9, 10, 11, 24] discussed in Section 4. While
Intel does not publish this mapping, we have worked with
SECRET and Intel to make sure that group-id’s of such
machines cannot be registered on the SECRET network.
Hard Fork and New Consensus Seed. As Intel’s xAPIC
and MMIO issues [9, 10, 11, 24] have been public since
August 2022, it is impossible to ensure the confidentiality
of the network’s current consensus seed. This is concerning,
as it allows attackers to decrypt the network’s entire state.

While SECRET’s original protocol made it quite difficult
to update the consensus seed, SECRET implemented a hard
fork and moved to a freshly generated seed. While ad-hoc
measures such as deliberate erasure of the existing seed were
performed by node operators, it is the unfortunate reality that
the privacy of all transactions present in the current chain
should be assumed compromised.
Planning TCB Recovery. Following our discussion in
Section 4, it can take a while from disclosing an SGX
vulnerability to actually deploying BIOS updates with the
appropriate microcode to perform the TCB recovery. With
TCB recovery originally planned for March 7, 2023 for the
xAPIC and MMIO issues, the SECRET network would have
been vulnerable for seven months after the disclosure date.
Thus, for enclave developers it is paramount to push Intel
and partners to move such TCB recovery dates to be as early
as possible, and to carefully lay out a TCB recovery plan
to minimize the risk and impact from these vulnerabilities.

Takeaway: Enclave developers should plan for future
TCB recovery by taking countermeasures against attacks
once known, and push Intel and partners to deploy mit-
igations as early as possible. In the event of a known
vulnerability, they should consider restricting access and
allowing further clients on a trust/invitation basis.

6. Cyberlink PowerDVD
For our second case study, we investigate SGX usage in

CyberLink PowerDVD 20, a popular software application to

play UHD Blu-rays on computers. PowerDVD provides us
with an interesting case study, as its user base is very dif-
ferent than SECRET’s and consists of a large and potentially
non-technical set of users for whom updating the BIOS to
perform a TCB recovery, as outlined in Section 4, may be
challenging. This highlights the need for a seamless update
process as we discuss in our mitigations for PowerDVD and
similar products relying on SGX or other TEEs.

As PowerDVD is closed-source, this involved a signif-
icant reverse-engineering effort to understand its usage of
SGX, which we now describe. Then, we describe our attack
on PowerDVD and AACS2 key extraction.

6.1. Reversing PowerDVD
While the PowerDVD application contains numerous

files and binaries, only a few relate to SGX and AACS2.
First, the CyberLink Trusted Agent (CLTA) contains the
AACS2 implemetation, hardened with Themida [2], a com-
mercial software obfuscator. Next, the CyberLink Key
Downloaded Enclave (CLKDE) contains code to provi-
sion AACS2 keys. Finally, the CyberLink Trusted Enclave
(CLTE) contains the AACS2 algorithms, encrypted with
SGX’s Protected Code Loader (PCL) [71].
Playing UHD-BDs and Initializing SGX. PowerDVD first
checks if the SGX driver is properly initialized. If the verifi-
cation fails, playing is aborted per AACS requirements [42].
CLTA Patching. After initializing SGX, PowerDVD runs
the CLTA. To run PowerDVD with a debugger attached until
it executes any SGX enclave, we had to deobfuscate CLTA’s
Themida protection and patch the main executable.
AACS2 Key Provisioning. The CLTA first verifies that the
AACS2 device keys exist on the device, otherwise it tries to
update the keys from CyberLink’s provisioning server. Note
that unlike legacy AACS 1.x software players, PowerDVD
does not ship any AACS2 keys, requiring at least one key
download to play AACS2 protected content. From reverse-
engineering the CLKDE, we found that CyberLink’s attes-
tation implementation is mostly similar to Intel’s reference
implementation [69]. See Section 2.2 for protocol details.
Blob Sealing. Should Remote Attestation succeed, Cy-
berLink’s provisioning server returns a blob to the CLKDE,
which we discovered is encrypted with AES-GCM using
a hardcoded key and IV, containing all necessary cryp-
tographic material to play UHD Blu-ray discs. Upon de-
crypting the blob, the CLKDE seals it for access by any
CyberLink signed enclave.

6.2. Attacking PowerDVD
Having reverse-engineered PowerDVD’s SGX use, we

now present an end-to-end attack on Blu-ray DRM, allowing
us to extract AACS2 key material. With these keys, we could
playback UHD-BD movies on any hardware, regardless of
SGX status or availability, as well as clone UHD-BDs.
Step 1: Obtaining Attestation Keys. We found that
PowerDVD plays AACS2-protected movies on machines
with GROUP_OUT_OF_DATE attestation status. Thus, we
use the Foreshadow attack [159] to extract SGX attestation

keys from an unpatched Intel Core i7-6820HQ (Skylake)
with microcode revision 0xc2.
Step 2: Constructing a Rogue Quoting Enclave. We
then craft a rogue Quote Enclave (QE) which subverts
SGX’s attestation process by ignoring the actual enclave
measurements and setting the measurements to the desired
values when generating the quote. Otherwise it follows the
original QE’s logic to sign the resulting quote with the keys
from Step 1. Note that as we extracted the attestation keys,
the rogue QE does not need to be an actual SGX enclave.
Step 3: Extracting the CLKDE. We now extract the
CLKDE from inside SGX to run as a normal binary interfac-
ing the QE from Step 2 to produce a signed quote with the
original enclave measurements, using the keys from Step 1.
Step 4: Obtaining AACS2 Keys. We use the forged quote
and extracted CLKDE to contact CyberLink’s AACS2 provi-
sioning service. Unable to distinguish our extracted enclave
from the genuine one, CyberLink provisions our application
with secret key material despite it running outside of SGX.
At this point, we can receive production AACS2 device
keys and host certificates, without ever using SGX hardware.
Finally, this allows us to provide the first public presentation
of the AACS 2.0 and 2.1 protocols, including their key
management and revocations in practice. See Appendix A,
which may be of independent interest.
Step 5: Decrypting Blu-ray Discs. The possession of
AACS2 keys can also be used to entitle software players
other than PowerDVD to play UHD Blu-ray discs. To
demonstrate this, we modified the open-source libaacs
plugin for the VideoLAN VLC video player software to
support the new AACS2 specifications and algorithms we
discovered. When supplied with the keys extracted from
the CyberLink server’s provisioning payload, we were able
to playback an unmodified UHD Blu-ray from a licensed
AACS2 disc drive using VLC, on a Linux machine run-
ning without any SGX support. This constitutes a complete
bypass of AACS2 DRM, as PowerDVD requires both Win-
dows and SGX to operate, thus formerly limiting UHD-BD
playback to only SGX-enabled Windows platforms.

6.3. PowerDVD Mitigations
The deprecation of SGX on client-oriented hardware,

together with PowerDVD’s likely audience of non-technical
users, poses a significant challenge in obtaining a secure
client-oriented deployment. In particular, having to support
older hardware which cannot obtain trusted status due to
numerous SGX side-channel vulnerabilities [24, 33, 74, 75,
76, 77, 78, 79, 121, 137, 146, 159, 160, 166, 168] puts
PowerDVD at risk of compromise. We thus recommend
that PowerDVD divides its user base into small groups,
provisions each group with different AACS keys, and em-
ploys the AACS 2.1 traitor tracing mechanism. In case a
4K copy of a Blu-ray disk is discovered, PowerDVD can
quickly revoke the compromised key, preventing it from
further compromising future disk releases.
Faster and Seamless TCB Recovery. From a usability per-
spective, PowerDVD cannot expect users to continuously in-
stall BIOS updates to maintain a TRUSTED status, thus SGX

platforms in a GROUP_OUT_OF_DATE status can playback
AACS2 content. This choice means that an attacker can use
a number of attacks outlined in Section 3 to extract Intel’s
attestation keys and then use these to extract AACS2 keys.
This highlights the necessity of bypassing the dependency
on motherboard vendors for BIOS updates that integrate
necessary microcode updates addressing these issues. As
discussed in Section 4, one solution would be to provide an
instruction similar to EUPDATESVN for Intel EPID, such
that operating systems can perform such updates.

Takeaway: This case study further illustrates why en-
clave developers must ensure the latest microcode up-
dates are available, i.e., that remote attestation passes as
TRUSTED. In addition, enclave developers should con-
sider limiting the applicability of encryption keys as well
as implementing a revocation scheme for leaked keys.

7. Discussion and Conclusion
In this paper we studied SGX attack techniques, categorized
the impact and information leaked, and discussed what
countermeasures are available for enclave developers. We
have also showed that wide-scale deployments of SGX-
based applications can be hindered by the slow update cycle
of CPU microcode as well as outlined future research direc-
tions. Finally, we argue that SGX forces software vendors
into difficult choices between security and usability, which
are often very hard to balance correctly.
EGX. As part of our in-depth study, we noticed a lack
of tooling for running unmodified production enclaves in
different ecosystems. This can hamper developers’ ability
to test and understand various attacks and how they relate
to their systems. More specifically, for certain attacks [74]
developers are expected to modify their enclave code to
specifically mitigate the attack. However, without tooling
to reproduce the effects of such attacks, it is challenging for
enclave developers to verify their mitigations and perform
security evaluations of enclave code and data. As such, we
designed and developed Emulated Guard eXtensions (EGX),
a framework that runs arbitrary SGX enclaves without re-
quiring actual SGX hardware and present a summary in
Appendix B. With the deprecation of SGX on Intel’s 11th
and 12th generation client platforms [67, 68], EGX also
substantially diversifies the platforms capable of executing
SGX enclaves, supporting AMD, Arm and Apple CPUs.
We note that EGX is a helpful tool for reverse-engineering
enclaves and performing attacks in the manner that we did
in Sections 5 and 6 as well.
Future Designs of Trusted Execution Environments. Fol-
lowing our attack overview and mitigation discussion in
Section 3, future research should look to generalize the idea
of constant-time code, ORAM, AEX-Notify, identifying and
mitigating speculative execution gadgets and applying multi-
variant execution to harden enclaves. Other TEE designs
must tread carefully around handling enclave interrupts,
demand paging, using shared resources and interactions with

memory-mapped I/O, and follow some of the ideas proposed
by works such as Sanctum [45]. Finally, we highlighted a
worrisome trend in Section 3 with the need for frequent
microcode updates to address several vulnerabilities. As we
expect more vulnerabilities to be discovered, these are ulti-
mately inevitable. Thus other TEE designs not only require
a TCB recovery mechanism, but one that can be deployed
timely. We discuss one such improvement in Section 4, and
highlight the impact of not having such a mechanism in both
of our case studies in Section 5 and Section 6.
Planning TCB Recovery. More specifically, as we argue
in Section 4, it can take a while from an SGX vulnerability’s
disclosure to actually deploying BIOS updates with the
appropriate microcode updates. As more vulnerabilities are
to be expected, enclave developers must understand the
implications of potential enclave data leakages and what
needs to be done to protect against them. It is also critically
important for enclave developers to carefully lay out a TCB
recovery plan, in which they prevent affected machines from
accessing sensitive data until microcode and BIOS updates
are available. Furthermore, developers need to carefully
think about how to scrub data on platforms that already
executed the enclave, while the platform was trusted, as
attackers can often breach enclaves after the fact. Finally, it
is paramount for enclave developers to push Intel for prompt
TCB recovery dates, aiming to minimize the risk and impact
from newly-discovered vulnerabilities.

Acknowledgments
This work was supported by the Air Force Office of

Scientific Research (AFOSR) under award number FA9550-
20-1-0425; an ARC Discovery Early Career Researcher
Award DE200101577; an ARC Discovery Project number
DP210102670; the Blavatnik ICRC at Tel-Aviv Univer-
sity; the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strat-
egy - EXC 2092 CASA - 390781972; the National Sci-
ence Foundation under grant CNS-1954712, CNS-2047991,
CNS-2112726 and CNS-1943499; and gifts from Intel and
Qualcomm. Parts of this work were undertaken while Yuval
Yarom was affiliated with the University of Adelaide and
with Data61, CSIRO.

References
[1] “PowerDVD,” CyberLink, https://www.cyberlink.com/products/

powerdvd-ultra/features en US.html.
[2] “Themida,” Oreans, https://www.oreans.com/Themida.php.
[3] “SA-00115,” Intel, May 2018, https://www.intel.com/content/www/

us/en/security-center/advisory/intel-sa-00115.html.
[4] “SA-00161,” Intel, August 2018, https://www.intel.com/content/

www/us/en/security-center/advisory/intel-sa-00161.html.
[5] “SA-00233,” Intel, May 2019, https://www.intel.com/content/www/

us/en/security-center/advisory/intel-sa-00233.html.
[6] “SA-00320,” Intel, June 2020, https://www.intel.com/content/www/

us/en/security-center/advisory/intel-sa-00320.html.
[7] “SA-00329,” Intel, January 2020, https://www.intel.com/content/

www/us/en/security-center/advisory/intel-sa-00329.html.
[8] “SA-00389,” Intel, November 2020, https://www.intel.com/content/

www/us/en/security-center/advisory/intel-sa-00389.html.
[9] “SA-00615,” Intel, June 2022, https://www.intel.com/content/www/

us/en/security-center/advisory/intel-sa-00615.html.

https://www.cyberlink.com/products/powerdvd-ultra/features_en_US.html
https://www.cyberlink.com/products/powerdvd-ultra/features_en_US.html
https://www.oreans.com/Themida.php
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00115.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00161.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00233.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00320.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00320.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00329.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00329.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html

[10] “SA-00645,” Intel, June 2022, https://www.intel.com/content/www/
us/en/security-center/advisory/intel-sa-00645.html.

[11] “SA-00657,” Intel, August 2022, https://www.intel.com/content/
www/us/en/security-center/advisory/intel-sa-00657.html.

[12] A. C. Aldaya, B. B. Brumley, S. ul Hassan et al., “Port contention
for fun and profit,” in IEEE S&P, 2019.

[13] J. B. Almeida, M. Barbosa, G. Barthe et al., “Verifying constant-
time implementations,” in USENIX Security, 2016.

[14] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Innovative tech-
nology for CPU based Attestation and Sealing,” in HASP, 2013.

[15] Arm, “Arm TrustZone technology,” https://developer.arm.com/ip-
products/security-ip/trustzone.

[16] J. Balasch, B. Gierlichs, V. Grosso et al., “On the cost of lazy
engineering for masked software implementations,” in CARDIS,
2015.

[17] T. Barry, D. Couroussé, and B. Robisson, “Compilation of a coun-
termeasure against instruction-skip fault attacks,” in CS2, 2016.

[18] G. Barthe, G. Betarte, J. D. Campo et al., “System-level non-
interference for constant-time cryptography,” in ACM CCS, 2014.

[19] S. Bauer, “Attacking exponent blinding in RSA without CRT,” in
COSADE, 2012.

[20] F. Bellard, “QEMU, a fast and portable dynamic translator.” in
USENIX ATC, 2005.

[21] D. J. Bernstein and B.-Y. Yang, “Fast constant-time GCD computa-
tion and modular inversion,” TCHES, 2019.

[22] A. Biondo, M. Conti, L. Davi et al., “The guard’s dilemma: Efficient
code-reuse attacks against Intel SGX,” in USENIX Security, 2018.

[23] J. Blömer, J. Guajardo, and V. Krummel, “Provably secure masking
of AES,” in SAC, 2004.

[24] P. Borrello, A. Kogler, M. Schwarzl et al., “ÆPIC leak: Archi-
tecturally leaking uninitialized data from the microarchitecture,” in
USENIX Security, 2022.

[25] S. Bowe, A. Chiesa, M. Green et al., “Zexe: Enabling decentralized
private computation,” in IEEE S&P, 2020.

[26] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data
objects: an overview,” arXiv preprint arXiv:1807.05686, 2018.

[27] F. Brasser, U. Müller, A. Dmitrienko et al., “Software grand expo-
sure:SGX cache attacks are practical,” in WOOT, 2017.

[28] E. Brickell and J. Li, “Enhanced privacy ID from bilinear pairing
for hardware authentication and attestation,” IJIPSI, 2011.

[29] D. Bruening and S. Amarasinghe, “Efficient, transparent, and com-
prehensive runtime code manipulation,” Ph.D. dissertation, MIT,
2004.

[30] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” Ph.D. dissertation, University of Guelph, 2016.

[31] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, “One
glitch to rule them all: Fault injection attacks against AMD’s secure
encrypted virtualization,” in ACM CCS, 2021.

[32] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether: Towards
privacy in a smart contract world,” in FC, 2020.

[33] C. Canella, D. Genkin, L. Giner et al., “Fallout: Leaking data on
Meltdown-resistant CPUs,” in ACM CCS, 2019.

[34] G. Chen, S. Chen, Y. Xiao et al., “SgxPectre: Stealing Intel secrets
from SGX enclaves via speculative execution,” in EuroS&P, 2019.

[35] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting priv-
ileged side-channel attacks in shielded execution with déjá vu,” in
AsiaCCS, 2017.

[36] Z. Chen, G. Vasilakis, K. Murdock et al., “VoltPillager: Hardware-
based fault injection attacks against Intel SGX enclaves using the
SVID voltage scaling interface,” in USENIX Security, 2021.

[37] R. Cheng, F. Zhang, J. Kos et al., “Ekiden: A platform for
confidentiality-preserving, trustworthy, and performant smart con-
tracts,” in EuroS&P, 2019.

[38] C. Chuengsatiansup, D. Genkin, Y. Yarom, and Z. Zhang, “Side-
channeling the Kalyna key expansion,” in CT-RSA, 2022.

[39] T. Cloosters, M. Rodler, and L. Davi, “TeeRex: Discovery and
exploitation of memory corruption vulnerabilities in SGX enclaves.”
USENIX Security, 2020.

[40] T. Cloosters, J. Willbold, T. Holz, and L. Davi, “SGXFuzz: Effi-
ciently synthesizing nested structures for SGX enclave fuzzing,” in
USENIX Security, 2022.

[41] A.-L. Consortium, “Advanced access content system (AACS):
Introduction and common cryptographic elements,” https://aacsla.
com/wp-content/uploads/2019/02/AACS Spec Common 0.91.pdf,
2006.

[42] ——, “Advanced access content system (”AACS”): Adopter
agreement,” https://aacsla.com/wp-content/uploads/2021/05/AACS-
Adopter-Agreement 20121115 review-only.pdf, 2009.

[43] S. Constable, J. Van Bulck, X. Cheng et al., “AEX-notify: Thwarting
precise single-stepping attacks through interrupt awareness for Intel
SGX enclaves.”

[44] V. Costan and S. Devadas, “Intel SGX explained,” IACR Cryptology
ePrint Archive 2016/086, 2016.

[45] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hard-
ware extensions for strong software isolation.” in USENIX Security,
2016.

[46] J. Cui, J. Z. Yu, S. Shinde et al., “SmashEx: Smashing SGX enclaves
using exceptions,” in ACM CCS, 2021.

[47] F. Dall, G. De Micheli, T. Eisenbarth et al., “CacheQuote: Efficiently
recovering long-term secrets of SGX EPID via cache attacks,”
TCHES, 2018.

[48] P. Das, L. Eckey, T. Frassetto et al., “FastKitten: Practical smart
contracts on bitcoin,” in USENIX Security, 2019.

[49] C. Easdon, M. Schwarz, M. Schwarzl, and D. Gruss, “Rapid proto-
typing for microarchitectural attacks,” in USENIX Security, 2022.

[50] Enarx, “Enarx: WebAssembly + confidential computing,” https://
enarx.dev, 2022.

[51] S. Eskandarian and M. Zaharia, “ObliDB: Oblivious query pro-
cessing using hardware enclaves,” arXiv preprint arXiv:1710.00458,
2017.

[52] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh et al., “Branchscope:
A new side-channel attack on directional branch predictor,” ACM
SIGPLAN Notices, 2018.

[53] Fortanix Inc., “Fortanix runtime encryption platform,” https://www.
fortanix.com/assets/Fortanix RTE Platform Whitepaper.pdf, 2019.

[54] S. Gao, B. Marshall, D. Page, and E. Oswald, “Share-slicing: Friend
or foe?” TCHES, 2020.

[55] C. P. Garcı́a and B. B. Brumley, “Constant-time callees with
variable-time callers,” in USENIX Security, 2017.

[56] L. Giner, A. Kogler, C. Canella et al., “Repurposing segmentation
as a practical LVI-NULL mitigation in SGX,” in USENIX Security,
2022.

[57] L. Goldberg, S. Papini, and M. Riabzev, “Cairo – a Turing-complete
STARK-friendly CPU architecture,” Cryptology ePrint Archive, Pa-
per 2021/1063, 2021.

[58] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” JACM, 1996.

[59] J. D. Golić and C. Tymen, “Multiplicative masking and power
analysis of AES,” in CHES, 2003.

[60] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks
on Intel SGX,” in EuroSec, 2017.

[61] J. Gyselinck, J. Van Bulck, F. Piessens, and R. Strackx, “Off-
limits: Abusing legacy x86 memory segmentation to spy on enclaved
execution,” in ESSoS, 2018.

[62] M. Hähnel, W. Cui, and M. Peinado, “High-resolution side channels
for untrusted operating systems,” in USENIX ATC, 2017.

[63] J. A. Halderman, S. D. Schoen, N. Heninger et al., “Lest we
remember: Cold-boot attacks on encryption keys,” Communications
of the ACM, 2009.

[64] M. Hamburg, “Accelerating AES with vector permute instructions,”
in CHES, 2009.

[65] G. Hofemeier and R. Chesebrough, “Introduction to Intel AES-NI
and Intel secure key instructions,” Intel, White Paper, 2012.

[66] T. Huo, X. Meng, W. Wang et al., “Bluethunder: A 2-level di-
rectional predictor based side-channel attack against SGX,” CHES,
2020.

[67] 11th Generation Intel® Core™ Processor Desktop, Datasheet, Vol-
ume 1 of 2, Intel, https://cdrdv2.intel.com/v1/dl/getContent/634648.

[68] 12th Generation Intel® Core™ Processor Desktop, Datasheet, Vol-
ume 1 of 2, Intel, https://cdrdv2.intel.com/v1/dl/getContent/655258.

[69] “Code sample: Intel software guard extensions remote
attestation end-to-end example.” [Online]. Available:

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00645.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00645.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
https://aacsla.com/wp-content/uploads/2019/02/AACS_Spec_Common_0.91.pdf
https://aacsla.com/wp-content/uploads/2019/02/AACS_Spec_Common_0.91.pdf
https://aacsla.com/wp-content/uploads/2021/05/AACS-Adopter-Agreement_20121115_review-only.pdf
https://aacsla.com/wp-content/uploads/2021/05/AACS-Adopter-Agreement_20121115_review-only.pdf
https://enarx.dev
https://enarx.dev
https://www.fortanix.com/assets/Fortanix_RTE_Platform_Whitepaper.pdf
https://www.fortanix.com/assets/Fortanix_RTE_Platform_Whitepaper.pdf
https://cdrdv2.intel.com/v1/dl/getContent/634648
https://cdrdv2.intel.com/v1/dl/getContent/655258

https://software.intel.com/content/www/us/en/develop/articles/code-
sample-intel-software-guard-extensions-remote-attestation-end-to-
end-example.html

[70] Intel Software Guard Extensions for Linux OS, Intel, https://github.
com/01org/linux-sgx.

[71] Intel, “Intel Software Guard Extensions (SGX) Protected Code
Loader for Linux OS,” https://github.com/intel/linux-sgx-pcl.

[72] Intel® 64 and IA-32 architectures software developer’s manual
combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4,
Intel, https://cdrdv2.intel.com/v1/dl/getContent/671200.

[73] Intel Software Guard Extensions SDK for Linux OS, Intel,
2016, https://01.org/sites/default/files/documentation/intel sgx sdk
developer reference for linux os pdf.pdf.

[74] Intel, “2019.2 IPU – Intel SGX with Intel processor graphics up-
date advisory,” https://www.intel.com/content/www/us/en/security-
center/advisory/intel-sa-00219.html, Nov. 2019.

[75] Intel, “Deep dive: Intel analysis of microarchitectural data
sampling,” https://software.intel.com/security-software-guidance/
insights/deep-dive-intel-analysis-microarchitectural-data-sampling,
May 2019.

[76] ——, “Deep dive: Intel transactional synchronization extensions
(Intel TSX) asynchronous abort,” https://software.intel.com/security-
software-guidance/insights/deep-dive-intel-transactional-
synchronization-extensions-intel-tsx-asynchronous-abort, Nov
2019.

[77] ——, “Deep dive: Load value injection,” =https://software.intel.com/
security-software-guidance/insights/deep-dive-load-value-injection,
Mar 2020.

[78] ——, “L1D eviction sampling,” https://software.intel.com/security-
software-guidance/software-guidance/l1d-eviction-sampling, Jan
2020.

[79] Intel, “Intel processors MMIO stale data advisory,”
https://www.intel.com/content/www/us/en/security-center/advisory/
intel-sa-00615.html, jun 2022.

[80] Intel, “Intel® software guard extensions (Intel® SGX) trusted
computing base (TCB) recovery plans for stale data read from
legacy xAPIC,” https://web.archive.org/web/20221020202933/https:
//www.intel.cn/content/www/cn/zh/developer/articles/technical/
software-security-guidance/resources/intel-sgx-software-and-tcb-
recovery-guidance.html, 2022.

[81] ——, “Intel® software guard extensions (Intel® SGX) trusted
computing base (TCB) recovery plans for stale data read from
legacy xAPIC,” http://archive.today/2022.11.28-035641/https:
//www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/resources/q4-2022-intel-sgx-tcb-
recovery-guidance.html, 2022.

[82] Intel Corporation, “Runtime microcode updates with Intel
Software Guard Extensions,” https://cdrdv2-public.intel.com/
648682/648682%20Runtime Microcode Update with Intel SGX
rev1p0.pdf.

[83] ——, “XuCode: An innovative technology for implementing
complex instruction flows,” https://www.intel.com/content/www/us/
en/developer/articles/technical/software-security-guidance/secure-
coding/xucode-implementing-complex-instruction-flows.html.

[84] ——, “White paper: Asynchronous enclave exit notify and the
EDECCSSA user leaf function,” https://cdrdv2.intel.com/v1/dl/
getContent/736463?fileName=aex-notify-white-paper-public.pdf,
2022.

[85] Y. Ishai, M. Prabhakaran, A. Sahai, and D. A. Wagner, “Private
circuits II: keeping secrets in tamperable circuits,” in EUROCRYPT,
S. Vaudenay, Ed., 2006.

[86] Y. Ishai, A. Sahai, and D. A. Wagner, “Private circuits: Securing
hardware against probing attacks,” in CRYPTO, 2003.

[87] P. Jain, S. J. Desai, M.-W. Shih et al., “OpenSGX: An open platform
for SGX research.” in NDSS, 2016.

[88] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-Bomb: Locking down
the processor via Rowhammer attack,” in SysTEX, 2017.

[89] S. Johnson, V. Scarlata, C. Rozas et al., “Intel software guard ex-
tensions: EPID provisioning and attestation services,” White Paper,
2016.

[90] ——, “Intel Software Guard Extensions: EPID Provisioning

and Attestation Services,” Available from https://software.intel.
com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%
20provisioning%20and%20attesatation%20final.pdf, 2016.

[91] M. Joye and C. Tymen, “Protections against differential analysis for
elliptic curve cryptography—an algebraic approach—,” in CHES,
2001.

[92] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,”
White paper, 2016.

[93] G. Kaptchuk, I. Miers, and M. Green, “Giving state to the state-
less: Augmenting trustworthy computation with ledgers,” Cryptology
ePrint Archive, 2017.

[94] Z. Kenjar, T. Frassetto, D. Gens et al., “V0LTpwn: Attacking x86
processor integrity from software,” in USENIX Security, 2020.

[95] P. Kocher, J. Horn, A. Fogh et al., “Spectre attacks: Exploiting
speculative execution,” in IEEE S&P, 2019.

[96] K. Koning, H. Bos, and C. Giuffrida, “Secure and efficient multi-
variant execution using hardware-assisted process virtualization,” in
DSN, 2016.

[97] A. Kosba, A. Miller, E. Shi et al., “Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts,” in IEEE
S&P, 2016.

[98] D. Kuvaiskii, O. Oleksenko, S. Arnautov et al., “SGXBOUNDS:
Memory safety for shielded execution,” in EuroSys, 2017.

[99] J. Kwon and E. Buchman, “Cosmos whitepaper,” A Netw. Distrib.
Ledgers, 2019.

[100] S. Labs, “Tarantino NFTs,” https://tarantinonfts.com/, 2022.
[101] J. Lee, J. Jang, Y. Jang et al., “Hacking in darkness: Return-oriented

programming against secure enclaves,” in USENIX Security, 2017.
[102] S. Lee, M.-W. Shih, P. Gera et al., “Inferring fine-grained control

flow inside sgx enclaves with branch shadowing,” in USENIX Secu-
rity, 2017.

[103] F. Li and V. Paxson, “A large-scale empirical study of security
patches,” in ACM CCS, 2017.

[104] M. Li, Y. Zhang, and Z. Lin, “CrossLine: Breaking “security-by-
crash” based memory isolation in AMD SEV,” in ACM CCS, 2021.

[105] M. Li, Y. Zhang, H. Wang et al., “CipherLeaks: Breaking constant-
time cryptography on AMD SEV via the ciphertext side channel,”
in USENIX Security, 2021.

[106] ——, “TLB poisoning attacks on AMD secure encrypted virtualiza-
tion,” in ACSAC, 2021.

[107] M. Lipp, A. Kogler, D. Oswald et al., “PLATYPUS: Software-based
power side-channel attacks on x86,” in IEEE S&P, 2021.

[108] M. Lipp, M. Schwarz, D. Gruss et al., “Meltdown: Reading kernel
memory from user space,” in USENIX Security, 2018.

[109] C. Liu, A. Chakraborty, N. Chawla, and N. Roggel, “Frequency
throttling side-channel attack,” in ACM SIGSAC, 2022.

[110] J. Maebe, R. De Keulenaer, B. De Sutter, and K. De Bosschere,
“Mitigating smart card fault injection with link-time code rewriting:
a feasibility study,” in FC, 2013.

[111] S. Mangard, N. Pramstaller, and E. Oswald, “Successfully attacking
masked AES hardware implementations,” in CHES, 2005.

[112] M. Matsui and J. Nakajima, “On the power of bitslice implementa-
tion on Intel Core2 processor,” in CHES, 2007.

[113] P. Mavropoulos, “MC Extractor,” https://github.com/platomav/
MCExtractor.

[114] F. McKeen, I. Alexandrovich, A. Berenzon et al., “Innovative in-
structions and software model for isolated execution.” in HASP@
ISCA, 2013.

[115] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How
SGX amplifies the power of cache attacks,” in CHES, 2017.

[116] A. Moghimi, J. Wichelmann, T. Eisenbarth, and B. Sunar, “Mem-
Jam: A false dependency attack against constant-time crypto imple-
mentations,” International Journal of Parallel Programming, 2019.

[117] D. Moghimi, “Downfall: Exploiting speculative data gathering,” in
USENIX Security, 2023.

[118] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz, “Medusa: Mi-
croarchitectural data leakage via automated attack synthesis,” in
USENIX Security, 2020.

[119] D. Moghimi, J. Van Bulck, N. Heninger et al., “CopyCat: Controlled
instruction-level attacks on enclaves,” in USENIX Security, 2020.

[120] M. Morbitzer, M. Huber, J. Horsch, and S. Wessel, “Severed:

https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example.html
https://github.com/01org/linux-sgx
https://github.com/01org/linux-sgx
https://github.com/intel/linux-sgx-pcl
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://01.org/sites/default/files/documentation/intel_sgx_sdk_developer_reference_for_linux_os_pdf.pdf
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00219.html
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-analysis-microarchitectural-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
https://software.intel.com/security-software-guidance/insights/deep-dive-intel-transactional-synchronization-extensions-intel-tsx-asynchronous-abort
=https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
=https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://software.intel.com/security-software-guidance/software-guidance/l1d-eviction-sampling
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
https://web.archive.org/web/20221020202933/https://www.intel.cn/content/www/cn/zh/developer/articles/technical/software-security-guidance/resources/intel-sgx-software-and-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
http://archive.today/2022.11.28-035641/https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/resources/q4-2022-intel-sgx-tcb-recovery-guidance.html
https://cdrdv2-public.intel.com/648682/648682%20Runtime_Microcode_Update_with_Intel_SGX_rev1p0.pdf
https://cdrdv2-public.intel.com/648682/648682%20Runtime_Microcode_Update_with_Intel_SGX_rev1p0.pdf
https://cdrdv2-public.intel.com/648682/648682%20Runtime_Microcode_Update_with_Intel_SGX_rev1p0.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/xucode-implementing-complex-instruction-flows.html
https://cdrdv2.intel.com/v1/dl/getContent/736463?fileName=aex-notify-white-paper-public.pdf
https://cdrdv2.intel.com/v1/dl/getContent/736463?fileName=aex-notify-white-paper-public.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://tarantinonfts.com/
https://github.com/platomav/MCExtractor
https://github.com/platomav/MCExtractor

Subverting AMD’s virtual machine encryption,” in EuroSec, 2018.
[121] K. Murdock, D. Oswald, F. D. Garcia et al., “Plundervolt: Software-

based fault injection attacks against Intel SGX,” in IEEE S&P, 2020.
[122] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing

schemes for stateless receivers,” Cryptology ePrint Archive, Report
2001/059, 2001.

[123] B. Ngabonziza, D. Martin, A. Bailey et al., “TrustZone explained:
Architectural features and use cases,” in CIC, 2016.

[124] O. Ohrimenko, F. Schuster, C. Fournet et al., “Oblivious Multi-Party
machine learning on trusted processors,” in USENIX Security, 2016.

[125] O. Oleksenko, B. Trach, R. Krahn et al., “Varys: Protecting SGX
enclaves from practical side-channel attacks,” in USENIX ATC,
2018.

[126] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface,” in USENIX
Security, 2020.

[127] M. Orenbach, A. Baumann, and M. Silberstein, “Autarky: Closing
controlled channels with self-paging enclaves,” in EuroSys, 2020.

[128] M. Orenbach, Y. Michalevsky, C. Fetzer, and M. Silberstein, “CoS-
MIX: a compiler-based system for secure memory instrumentation
and execution of applications in secure enclaves,” in USENIX Secu-
rity, 2019.

[129] S. Österlund, K. Koning, P. Olivier et al., “kmvx: Detecting kernel
information leaks with multi-variant execution,” in ASPLOS, 2019.

[130] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and coun-
termeasures: the case of AES,” in CT-RSA, 2006.

[131] K. Papagiannopoulos and N. Veshchikov, “Mind the gap: Towards
secure 1st-order masking in software,” in COSADE, 2017.

[132] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.
[133] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A compre-

hensive survey,” ACM CSUR, 2019.
[134] I. Puddu, M. Schneider, M. Haller, and S. Capkun, “Frontal attack:

Leaking control-flow in SGX via the CPU frontend.” in USENIX
Security, 2021.

[135] P. Qiu, D. Wang, Y. Lyu, and G. Qu, “VoltJockey: Breaching
TrustZone by software-controlled voltage manipulation over multi-
core frequencies,” in ACM CCS, 2019.

[136] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida, “Rage against the
machine clear: A systematic analysis of machine clears and their
implications for transient execution attacks,” in USENIX Security,
2021.

[137] H. Ragab, A. Milburn, K. Razavi et al., “CROSSTALK: Speculative
data leaks across cores are real,” in IEEE S&P, 2021.

[138] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital side-
channels through obfuscated execution,” in USENIX Security, 2015.

[139] M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in CHES, 2010.

[140] K. Ryan, “Hardware-backed heist: Extracting ECDSA keys from
Qualcomm’s TrustZone,” in ACM CCS, 2019.

[141] S. Sasy, S. Gorbunov, and C. W. Fletcher, “ZeroTrace: Oblivious
memory primitives from Intel SGX,” in NDSS, 2018.

[142] W. Schindler and A. Wiemers, “Power attacks in the presence of
exponent blinding,” Journal of Cryptographic Engineering, 2014.

[143] ——, “Generic power attacks on RSA with CRT and exponent
blinding: new results,” Journal of Cryptographic Engineering, 2017.

[144] K. Schramm and C. Paar, “Higher order masking of the AES,” in
CT-RSA, 2006.

[145] M. Schwarz and D. Gruss, “How trusted execution environments
fuel research on microarchitectural attacks,” in IEEE S&P, 2020.

[146] M. Schwarz, M. Lipp, D. Moghimi et al., “ZombieLoad: Cross-
privilege-boundary data sampling,” in ACM CCS, 2019.

[147] M. Schwarz, S. Weiser, D. Gruss et al., “Malware guard extension:
Using SGX to conceal cache attacks,” in DIMVA, 2017.

[148] SCRT, “Staking secrets: A live guide to staking and delegat-
ing scrt,” https://scrt.network/blog/staking-secrets-guide-to-staking-
delegating-scrt, 2020.

[149] ——, “Keplr dashboard,” https://wallet.keplr.app/chains/secret-
network, 2022.

[150] ——, “Secret network overview - private smart contracts on the
blockchain,” https://scrt.network/about/about-secret-network/, 2022.

[151] J. Seo, B. Lee, S. M. Kim et al., “SGX-Shield: Enabling address

space layout randomization for SGX programs.” in NDSS, 2017.
[152] M.-W. Shih, S. Lee, T. Kim, and M. Peinado, “T-SGX: Eradicat-

ing controlled-channel attacks against enclave programs.” in NDSS,
2017.

[153] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing
page faults from telling your secrets,” in AsiaCCS, 2016.

[154] R. Sinha, S. Gaddam, and R. Kumaresan, “LucidiTEE: A TEE-
blockchain system for policy-compliant multiparty computation with
fairness,” Cryptology ePrint Archive, 2019.

[155] D. Skarlatos, M. Yan, B. Gopireddy et al., “Microscope: Enabling
microarchitectural replay attacks,” in ISCA, 2019.

[156] E. Stefanov, M. v. Dijk, E. Shi et al., “Path ORAM: an extremely
simple oblivious RAM protocol,” JACM, 2018.

[157] R. Strackx and F. Piessens, “The Heisenberg defense: Proactively
defending SGX enclaves against page-table-based side-channel at-
tacks,” arXiv preprint arXiv:1712.08519, 2017.

[158] M. Tran, L. Luu, M. S. Kang et al., “Obscuro: A bitcoin mixer using
trusted execution environments,” in ACSAC, 2018.

[159] J. Van Bulck, M. Minkin, O. Weisse et al., “Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient out-of-order
execution,” in USENIX Security, 2018.

[160] J. Van Bulck, D. Moghimi, M. Schwarz et al., “LVI: Hijacking
transient execution through microarchitectural load value injection,”
in IEEE S&P, 2020.

[161] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical
attack framework for precise enclave execution control,” in SysTEX,
2017.

[162] ——, “Nemesis: Studying microarchitectural timing leaks in rudi-
mentary CPU interrupt logic,” in ACM CCS, 2018.

[163] J. Van Bulck, N. Weichbrodt, R. Kapitza et al., “Telling your secrets
without page faults: Stealthy page table-based attacks on enclaved
execution,” in USENIX Security, 2017.

[164] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom, “SGAxe: How
SGX fails in practice,” https://sgaxe.com/files/SGAxe.pdf, 2020.

[165] S. van Schaik, A. Milburn, S. Osterlund et al., “Addendum 1 to
RIDL: Rogue in-flight data load,” 2019.

[166] S. van Schaik, A. Milburn, S. Österlund et al., “Rogue in-flight data
load,” in IEEE S&P, 2019.

[167] S. van Schaik, A. Milburn, S. Osterlund et al., “Addendum 2 to
RIDL: Rogue in-flight data load,” 2020.

[168] S. van Schaik, M. Minkin, A. Kwong et al., “CacheOut: Leaking
data on Intel CPUs via cache evictions,” in IEEE S&P, 2021.

[169] J. R. S. Vicarte, B. Schreiber, R. Paccagnella, and C. W. Fletcher,
“Game of threads: Enabling asynchronous poisoning attacks,” in
ASPLOS, 2020.

[170] H. Wang, P. Wang, Y. Ding et al., “Towards memory safe enclave
programming with Rust-SGX,” in ACM CCS, 2019.

[171] P. Wang, Y. Ding, M. Sun et al., “Building and maintaining a third-
party library supply chain for productive and secure SGX enclave
development,” in ICSE, 2020.

[172] W. Wang, G. Chen, X. Pan et al., “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in SGX,” in ACM CCS,
2017.

[173] X. Wang, H. Chan, and E. Shi, “Circuit ORAM: On tightness of the
Goldreich-Ostrovsky lower bound,” in ACM SIGSAC, 2015.

[174] Y. Wang, R. Paccagnella, E. T. He et al., “Hertzbleed: Turning power
side-channel attacks into remote timing attacks on x86,” in USENIX
Security, 2022.

[175] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Async-
Shock: Exploiting synchronisation bugs in Intel SGX enclaves,” in
ESORICS, 2016.

[176] S. Weiser, R. Spreitzer, and L. Bodner, “Single trace attack against
RSA key generation in Intel SGX SSL,” in AsiaCCS, 2018.

[177] J. Werner, J. Mason, M. Antonakakis et al., “The severest of them
all: Inference attacks against secure virtual enclaves,” in ACM CCS,
2019.

[178] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, “SEVu-
rity: No security without integrity: Breaking integrity-free memory
encryption with minimal assumptions,” in IEEE S&P, 2020.

[179] Y. Xiao, Y. Zhang, and R. Teodorescu, “SPEECHMINER: A frame-
work for investigating and measuring speculative execution vulner-

https://scrt.network/blog/staking-secrets-guide-to-staking-delegating-scrt
https://scrt.network/blog/staking-secrets-guide-to-staking-delegating-scrt
https://wallet.keplr.app/chains/secret-network
https://wallet.keplr.app/chains/secret-network
https://scrt.network/about/about-secret-network/
https://sgaxe.com/files/SGAxe.pdf

abilities,” in NDSS, 2020.
[180] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: De-

terministic side channels for untrusted operating systems,” in IEEE
S&P, 2015.

[181] Y. Yarom and N. Benger, “Recovering OpenSSL ECDSA nonces
using the FLUSH+RELOAD cache side-channel attack,” Cryptology
ePrint Archive, 2014.

[182] Y. Yarom and K. Falkner, “Flush+Reload: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security, 2014.

[183] N. Zhang, K. Sun, D. Shands et al., “TruSpy: Cache side-channel
information leakage from the secure world on ARM devices,” IACR
Cryptology ePrint Archive 2016/980, 2016.

[184] W. Zheng, A. Dave, J. Beekman et al., “Opaque: An oblivious and
encrypted distributed analytics platform,” in NSDI, 2017.

Appendix A. The AACS2 Protocol
AACS-LA, the consortium that maintains AACS stan-

dards, has not published any public specifications for
AACS2 and has mandated that any AACS code is obfus-
cated and/or encrypted [42]. In PowerDVD, the enclave
containing the AACS2 algorithms is encrypted using SGX
PCL [71]. To decrypt the application, the PCL unseals an
AES-GCM key (contained in the blob returned by Cyber-
link’s provisioning server in Step 4 of Section 6.2).

This key allows us to provide the first public presentation
and deployment analysis of the AACS 2.0 and 2.1 protocols
and gives us insight into how AACS manages keys and re-
vocations in practice, which may be of independent interest.
We note that the AACS 2.0 and 2.1 protocols are similar to
the public 1.0 specification [41], with notable changes to
the traitor-tracing scheme, an altered Media Key derivation
process, and an upgrade to cryptographic primitives. The
AACS2 protocol seems technically well designed, but is
nonetheless defeated because of reliance on SGX’s security.
AACS Primitives. On an AACS protected disc, the Title
Key is used to encrypt the content in 6144-byte Aligned
Units (through derived keys). For most cryptographic oper-
ations, AACS uses 128-bit AES in CBC mode with fixed
IV. AACS defines AES-G, a cryptographic one-way function
based on the AES cipher, and an extended version AES-G3
which repeats the AES-G operation thrice to produce 384
bits of output. AACS also defines a cryptographic hashing
function AES-H. Additionally, AACS uses ECDSA-SHA.
Key Derivation. To decrypt and play an AACS-protected
disk, a software player (or “host”) must perform a mutual
authentication with the disc drive. If successful, the host will
request the Volume ID (VID) of the disc. The VID is only
returned upon successful authentication, and is protected
by AES-CMAC. Next, the host must process the Media
Key Block (MKB) on the disc. The MKB enables licensed,
non-revoked hosts to derive Processing Keys Kp using the
NNL subset-difference algorithm [122] and the hosts’ built-
in device keys. If a host can derive a Kp, it knows it has
not been revoked. Kp is used to decrypt a Media Key Km

(contained in the MKB). Km and the VID are together
used to generate a Volume Unique Key Kvu, which finally
decrypts the Title Key. AACS 2.0 and 2.1 are similar, but
AACS 2.1 uses sequence keying with multiple Km as an
improvement to the traitor tracing scheme.

Key Revocation. AACS uses the NNL Subset-Cover
framework [122] to efficiently handle key revocation. NNL
uses a binary tree where each host is viewed as a leaf.
The disc manufacturer finds a subset cover of the tree that
encompasses all non-revoked users and generates an MKB
with Kp for all members of that subset cover. Hosts cannot
be retroactively revoked but must be omitted from the subset
cover calculation in future disc releases.
In Practice. PowerDVD assigns a host a leaf and provisions
it 253 keys, corresponding to the subset-differences of root-
path and off-root-path nodes for a subtree of height 23. This
indicates that host allocations are made from a space of 222
leaves. This may have been done to reduce recomputation
after revocation (only this subtree must be recomputed).
Our analysis of published Blu-ray Discs found that between
MKB versions 61 and 70, 9 ranges of keys are revoked,
corresponding to 45 hosts. Between versions 70 and 72, one
single range of 1000 hosts is revoked.

Appendix B. Emulated Guard eXtensions
As we have discussed previously, there is a lack of

existing tooling for running unmodified, production-quality
enclaves in a variety of different ecosystems. This hampers
developers’ ability to evaluate the impact of attacks on
existing enclave code or develop tools than can help find
known software and side-channel attacks. In this section, we
tackle this problem by presenting Emulated Guard eXten-
sions (EGX), a framework that runs arbitrary SGX enclaves
without actual SGX hardware (albeit without any of the
typical hardware security properties). Favoring the support
of diverse architectures over performance, we envision that
EGX could be used by developers in conjunction with
the information we present in Section 3 to audit their
production-quality enclaves against known attacks and help
test mitigation efforts. We note that building EGX involves
unique challenges not considered by other emulators (e.g.,
OpenSGX [87], TeeRex [39], and SGXFuzz [40]), including
compatibility with existing (sometimes obfuscated) binaries
and SGX interfaces, fully executing production enclaves, as
well as supporting attestation using extracted keys.

To emulate arbitrary enclaves, we must support the
SGX instruction set, loading enclaves into memory, and
application-enclave or enclave-CPU interactions. We use the
publicly available Intel Architectures Software Developer’s
Manual [72] to develop a framework featuring two different
methods that achieve our goal: a full-system emulation
mode virtualizing SGX hardware in QEMU [20], and an
instrumentation mode modifying code at runtime using Dy-
namoRIO [29]. This two-method approach offers the best
of both worlds for SGX emulation, as QEMU targets more
architectures, while DynamoRIO offers performance on x86.

We now discuss emulating the SGX instruction set, how
both approaches address loading enclaves, and handling
transitions from the application to and from the enclave.

B.1. Enclave Loading and Running
While we can piggyback on the existing implementation

of SGX uRTS in the full-system emulation mode, the instru-

Platform (Mode) Creation ECALL OCALL AES-256 Fib (ibig) Fib (num-bigint)
Intel Xeon Platinum 8352Y (N) 69.053ms 0.006ms 0.012ms 0.010ms 0.017ms 0.018ms
Intel Xeon Platinum 8352Y (I) 18.390ms 0.570ms 0.590ms 0.591ms 0.532ms 0.424ms
AMD Ryzen 5 PRO 5650G (I) 9.404ms 0.093ms 0.100ms 0.363ms 0.109ms 0.105ms
Apple M1 (E) 10385.082ms 0.197ms N/A 0.613ms 0.636ms 0.619ms
Intel Core i9-9980HK (N) 61.155ms 0.013ms 0.015ms 0.027ms 0.035ms 0.032ms
Intel Core i9-9980HK (I) 8.030ms 0.123ms 0.120ms 0.252ms 0.115ms 0.135ms
Intel Core i9-9980HK (E) 7407.324ms 0.453ms N/A 0.669ms 0.663ms 0.713ms

TABLE 4: The results of running the microbenchmarks measuring the cost of enclave creation (10 runs), ECALLs, OCALLs, 1,000,000
AES-256 encryptions and calculating the 10,000th Fibonacci number (100 runs). Modes: Native, Instrumentation, Emulation.

mentation mode has to replace certain functions provided by
uRTS responsible for enclave management and interaction.
More specifically, it replaces the sgx_create_enclave
and sgx_destroy_enclave functions with simulated
versions that are responsible for loading and managing SGX
enclaves, and cleaning up SGX enclaves respectively.
Enclave Setup. While loading an SGX enclave is mostly
similar to loading an executable, SGX extends the exe-
cutable format with a metadata section to provide informa-
tion to set up the enclave. First, our implementation parses
this metadata to allocate sufficient enclave memory, and then
maps in the entire enclave file to ensure that debugging sym-
bols are available to DynamoRIO. Then, as is conventional,
it iterates over the program header to map in the program
segments. Finally, our loader patches the enclave memory
with the correct data, and corrects the permissions of the
memory layout based on information from the enclave file.
Enclave Measurement. To verify that an enclave has
not been tampered with prior to execution, mrenclave
is computed over the entire contents as described in Sec-
tion 2. Specifically, the mrenclave value is a SHA-256
sum computed with inputs from ecreate, eadd, and
eextend. In full-system emulation mode, we implement
these instructions and have full control over how the value
is calculated, allowing us to load a modified enclave that
still has its original mrenclave value. In instrumentation
mode, EGX simply assumes that the enclave measurement
provided by the enclave is correct and does not validate it,
though it does compute the mrsigner field by calculating
the SHA-256 hash of the modulus.
ECALLs/OCALLs. The application uses eenter to call
enclave functions, and vice versa an enclave uses eexit to
call untrusted code outside SGX. To handle ECALLS, the
instrumentation mode replaces the sgx_ecall provided
by the uRTS, while full-system emulation emulates eenter
to transparently handle them. Both modes handle OCALLs
by instrumenting and emulating eexit respectively.

B.2. EGX Performance
EGX can successfully run a number of given debug and

non-debug hardware enclaves. We tested EGX on a variety
of systems: an Intel Core i9-9980HK, an AMD Ryzen 5
PRO 5650G, and an Intel Xeon Platinum 8352Y, all running
Ubuntu 20.04 LTS; and an Apple M1 running macOS 11.3.
When testing the full-system emulation mode, we used
Ubuntu 18.04 as the guest. To run EGX, we must first install

Figure 5: A successful run of an Intel-provided sample SGX
enclave using our full-emulation mode on an Arm-based Mac.

the Linux SGX SDK and PSW packages. (In emulation
mode, this is performed on the guest). We then successfully
used EGX to run a modified version of Intel’s sample
enclave that prints “Hello, world!” to the screen using an
OCALL in each of the aforementioned configurations. We
demonstrate a successful run of our full-system emulation
mode on an Apple M1 processor in Figure 5.
Benchmarks. Being a framework aimed at running pro-
duction enclaves, EGX is optimized for strong enclave com-
patibility with many hardware platforms, rather than per-
formance. Nonetheless, to evaluate the performance of our
implementation, we implemented a number of microbench-
marks that measure the cost of enclave creation (avg. 10
runs), ECALLs, OCALLs, performing 1,000,000 AES-256
encryptions and calculating the 10,000th Fibonnaci number
using the ibig and num-bigint libraries (avg. over 100 runs).
The results are shown in Table 4.

Appendix C. Meta-Review
The following meta-review was prepared by the program

committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary
This paper systematically analyzes the landscape of at-

tacks, mitigations, and patching lifecycle of Intel SGX. It
approaches this by providing a taxonomy of attack classes,
discussing the practical challenges in the patching process,
and identifying the difficult tradeoffs faced by users, enclave
developers, and hardware vendors. It then presents two case
studies that tie together the vulnerabilities and tradeoffs
made for real-world SGX deployments.

C.2. Scientific Contributions
• Independent Confirmation of Important Results with

Limited Prior Research
• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance
1) The paper independently confirms important results in

the space. Vulnerabilities in TEEs (in particular, SGX)
have been a central subject of recent research and
development efforts as TEE-based products gain market
traction. It empirically demonstrates that the vulner-
abilities exist in real systems with two case studies
(PowerDVD and the SECRET Network) and discusses
the practical challenges with mitigation.

2) The paper creates a new tool to enable future science.
The paper introduces a new emulator called Emulated
Guard eXtensions (EGX), which provides a framework
that runs arbitrary SGX enclaves without actual SGX
hardware, for rapid prototyping of attacks and defenses
with SGX.

3) The paper provides a valuable step forward in an
established field. An influx of attacks and mitigation
techniques have made it intractable for researchers and
engineers to understand the current landscape of attacks
and defenses. This paper provides a central reference
surveying attacks, mitigations, patching challenges, and
offers promising insights for future work in the space.

	Introduction
	Our Contribution
	Disclosure and Ethics

	Background and Related Work
	Intel Software Guard Extensions
	SGX's Attestation Mechanism

	Categorization of SGX Attacks, Consequences, and Mitigations
	Inferring Access Patterns
	Memory Corruption Attacks
	Speculative Execution Gadgets
	Leaking Enclave Data
	Power Analysis & Fault Attacks
	Summary and Discussion

	Surveying SGX Update Timelines
	Unsealing The Secret Network
	Secret Overview
	Extracting the Consensus Seed
	Decrypting Transactions
	secret Mitigations

	Cyberlink PowerDVD
	Reversing PowerDVD
	Attacking PowerDVD
	PowerDVD Mitigations

	Discussion and Conclusion
	Appendix A: The AACS2 Protocol
	Appendix B: Emulated Guard eXtensions
	Enclave Loading and Running
	EGX Performance

	Appendix C: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance

