
SNARKProbe: An Automated Security Analysis
Framework for zkSNARK Implementations

Yongming Fan1, Yuquan Xu1,2, and Christina Garman1

1 Purdue University
{fan322, xu1210, clg}@purdue.edu

2 Georgia Tech

Abstract. With the growing interest in privacy-enhancing technologies,
we are seeing a complementary growth in the desire to build and de-
ploy complex cryptographic systems that involve techniques like zero-
knowledge proofs. Of these, general purpose proof systems like zkSNARKs
have seen the most interest, due to their small proof size, fast verification,
and expressiveness. Unfortunately, as we have seen with many areas of
cryptography, guaranteeing correct implementations can be tricky, as the
protocols themselves are complicated and often require substantial low-
level manual effort to achieve maximum performance. To help with this
problem, and gain better assurances about the correctness and security of
already implemented zkSNARK protocols and the privacy-enhancing ap-
plications that use them, we design and build SNARKProbe, an automated
security analysis framework for zkSNARKs that can scan R1CS-based
libraries and applications to detect various issues, such as edge case crash-
ing, cryptographic operation errors, and/or inconsistencies with protocol
descriptions. SNARKProbe leverages a variety of analysis techniques, in-
cluding fuzzing and SMT solvers. We test the performance of SNARKProbe
on a variety of different experimental parameters to demonstrate its prac-
ticality and reasonable runtime, and we also evaluate its ability to find
potential inconsistencies and errors in implementations.

Keywords: Cryptography, zkSNARKs, automation, software security

1 Introduction

We have seen a growing interest in privacy and privacy-enhancing technologies
from the general public [49], which has led to subsequent increased interest from
parties that build and deploy the technologies that we use every day, with even
the US government expressing interest in ways to best deploy privacy-enhancing
technologies for data analytics [45]. One of the key components in many privacy-
enhancing protocols are zero-knowledge proofs [37], which are cryptographic al-
gorithms that allow one party (the prover) to prove to another (the verifier) that
a statement is true, without revealing any information beyond the validity of the
statement itself. Of these, one of the most popular instantiations are zkSNARKs
(Zero-Knowledge Succinct Non-Interactive Arguments of Knowledge) [26, 52, 39],
because of their small proof size, fast verification, and expressiveness.

2 Y. Fan et al.

Because of this popularity, we have seen an explosion of new zkSNARK pro-
tocols and libraries being developed in academia, and substantial interest from
industry and other domains in actually deploying these protocols for real world
usage [19, 6, 8, 20, 7]. Unfortunately, they can be quite difficult to implement cor-
rectly, as the protocols themselves can be complicated and involved, and much
of the work to generate a single proof for a single application is often done man-
ually and hand-tuned to ensure maximum performance, with developers often
working at the circuit or gate level to design the best protocols. Additionally, as
we have seen in the past, deploying complex cryptography has not come with-
out its challenges [35, 48, 51, 56], and applications that use zkSNARKs have not
been immune to these either, as Zcash for example has found various crypto-
graphic bugs in different components [2, 1, 4]. And checking any cryptographic
implementation manually can be time consuming and potentially error prone.

While automated techniques like fuzzing have been used to test cryptographic
implementations specifically before [21], we cannot use existing cryptographic
fuzzers here as they generally test only for known weaknesses in certain schemes
and are unable to produce the types of inputs that we need in a cost-effective way.
Additionally, most general purpose fuzzing tools cannot detect what we refer to
as cryptographic logic errors, i.e., errors that might result in an incorrect compu-
tation but not a program crash, particularly with regards to zkSNARK libraries.

All of this motivates us to ask the question:

Can we develop better tooling to automatically check the security of and precisely
locate software bugs and cryptographic logic errors in the proof generation pro-
cesses and libraries of zkSNARK protocols and the applications that use them?

To help answer this question in the affirmative, we design and build SNARKProbe
to automatically both check the correctness and consistency of proof programs
generated by R1CS-based zkSNARK libraries, as well as inspect the security of
the libraries themselves and flag any inconsistencies between a protocol’s imple-
mentation and its description, no matter how minor3. Our primary goal is to
make the process as automated as possible, thus reducing the chance of human
error in the process, as well as lowering the barrier to entry for usage. We wish
to enable even those who might not be cryptographic experts to inspect a li-
brary or proof implementation without understanding details of the underlying
protocol or specifics of the library. Users need only indicate some configuration
settings such as the fuzzer parameters and expected proof statement, and our
tool will automatically analyze the library and proof program to detect possible
implementation and cryptography related errors.

In order to achieve this, we utilize a combination of techniques. Dynamic
analysis allows us to trace real-time data and variable values, as well as han-
dle a variety of different zkSNARK libraries written in different programming
languages without needing additional (manual) language specific adaptations.
Custom fuzzing techniques allow us to produce a variety of valid or invalid R1CS

3 Note that this is something that professional security audits do flag, as these can
lead to potential future problems, see [4].

SNARKProbe 3

matrices (i.e., proofs) to exercise the different codepaths in a library. SMT (Satis-
fiability Modulo Theory) solvers allow us to help verify the consistency of a user-
specified set of statement equations (i.e., the desired proof) with the actual R1CS
matrix used in the application. And the notion of ideal files and a value checker
helps ensure that a library correctly realizes the given underlying protocol.

While one could tackle some of this from a formal analysis approach [15],
we view SNARKProbe to be complementary, as formal analysis works best for
specific, static protocol implementations (like libraries), and we wish to also be
able to check application-specific proofs. Formal verification in such a scenario
would need to be done for each individual proof, which is both time-consuming
and requires expertise in such techniques for every project that wishes to use a
zkSNARK. SNARKProbe, on the other hand, is designed to work with a variety
of different protocols and to be easy to run on a given proof implementation
in an application, without requiring substantial expertise. We will see later on
how a formally verified library for a specific protocol could be adapted as part
of SNARKProbe to provide stronger guarantees, though we leave this for future
work. As such, we believe SNARKProbe is a step in the right direction for ensuring
the correctness of existing zkSNARK implementations and applications.

We choose to focus on two widely used zkSNARK protocols, Pinocchio [52, 27]
and Groth16 [39], and four libraries, libsnark [3], Bellman [10], arkworks [14],
and gnark [13]. libsnark implements both Pinocchio and Groth16 in C++,
while Bellman and arkworks implement Groth16 in Rust, and gnark implements
Groth16 in Go. These represent four of the most popular and widespread open
source libraries that have seen real world usage and underpin many projects that
use zkSNARKs. This selection also demonstrates the flexibility of SNARKProbe to
handle different R1CS-based zkSNARK protocols, as well as diverse languages.

In addition to designing and implementing SNARKProbe, we tested its per-
formance extensively, using a number of different statement types to test the
Constraint Checker, and a wide variety of R1CS matrix sizes and configurations
(which are representative of statements of varying complexity) to test Snark-
Fuzzer. We demonstrate performance that we believe is both reasonable and
scalable for existing zkSNARK use cases4. We also evaluated SNARKProbe’s abil-
ity to detect potential inconsistencies or different types of errors. While we did
not find any new exploitable errors, we did find a number of issues across the
various libraries that we consider to be potentially unsafe or that might require
special care by a developer to navigate correctly.

Our contributions. In this paper we make the following contributions:

– We design SNARKProbe, a tool that can automatically check for potential soft-
ware errors and cryptographic logic errors, as well as for consistency in the
implemented proof statement, in R1CS-based zkSNARK libraries.

4 And, in fact, in one instance the underlying library was actually unable to scale
and run before we ran into any issues with our tool.

4 Y. Fan et al.

– We implement and build SNARKProbe5 for two zkSNARK protocols, Pinoc-
chio [52, 27] and Groth16 [39], and four libraries, libsnark [3], Bellman [10],
arkworks [14], and gnark [13], to demonstrate its flexibility and extensibility.

– To the best of our knowledge, we are the first to explore applying fuzzing and
other analysis techniques to zkSNARKs specifically.

– We evaluate the performance of SNARKProbe in an extensive set of experi-
ments, demonstrating its acceptable performance for real world applications.

– We demonstrate and discuss SNARKProbe’s ability to automatically catch dif-
ferent types of errors in zkSNARK libraries, finding seven inconsistencies and
successfully locating a prior CVE.

Possible ethical considerations. While our tool did find a few inconsisten-
cies in gadgets and protocol specification versus implementation throughout our
testing, all of these issues were either not exploitable, already known, or just
require care from a developer when implementing a proof, and as such we do
not believe there is anything to disclose.

2 Background and Related Work

In this section, we introduce relevant background and prior work.
zkSNARKs. In a zero-knowledge protocol [37] a user (the prover) proves
a statement to another party (the verifier) without revealing anything about
the statement other than that it is true. zkSNARKs (Zero-Knowledge Succinct
Non-Interactive Arguments of Knowledge) [26, 52, 39] are one of the current most
popular zero-knowledge proof systems, and have begun to see increasingly com-
plex, real world deployment in a number of privacy-preserving applications [19,
6, 8, 20, 7]. At a very high level, zkSNARKs work as follows. The first step in
proof creation is to turn the statement that one wishes to prove into an equiv-
alent form that relies on knowing a solution to some algebraic equations. This
representation is then broken down into an arithmetic circuit. To ensure the cor-
rect evaluation of the circuit (and thus the proof), a programmer must express
a series of constraints on the wires, called a constraint system, which is typically
a Rank 1 constraint system or R1CS. zkSNARK libraries often provide an ab-
straction called a gadget, as expressing large programs with constraints can be
quite difficult. A gadget allows programmers to specify a series of inputs, hidden
internal variables and constraints on the inputs and internal variables. Rather
than expressing a large program as many constraints, one can instead express it
as some gadgets, and a few constraints binding them together.
Fuzzing. Fuzzing is an automated software security testing technique to explore
software for bugs that cause incorrect or unexpected results, program crashes,
or in some extreme cases, lead to exploit paths. Fuzzing works by generating in-
puts and monitoring the program for crashing, assertions, and memory leaks [30]
without the need for manual review by developers, security engineers, and au-
ditors. An important part of fuzzing is code coverage, a metric used to evaluate

5 https://github.com/BARC-Purdue/SNARKProbe

SNARKProbe 5

Fuzzer
Adapt to
zkSNARK

Error Types Error Location

Program
Logic

Code Scheme
Crypto zkSNARK

AFL [60] # # #

CDF [21] # G# # # #

SHA-3 Test [46] # # # #

TLS-Attacker [57] # G# # G#

SNARKProbe

Table 1: Comparison of SNARKProbe and a selection of cryptographic and generic
fuzzing tools. A G# means achieves in select instances.

how much of the target program is tested. Early fuzzing systems only gener-
ated inputs by mutating a seed input and watching for crashes or errors. Over
time, fuzzing test structure has been improved and other techniques have been
developed to improve the effectiveness [29, 28, 40, 59, 36, 60, 38].
SMT Solvers. Satisfiability modulo theory (SMT) is a complex version of
the boolean satisfiability problem (SAT) that can determine if a mathematical
equation is satisfiable or unsatisfiable. Z3 (which we choose to use in this paper)
is an efficient SMT solver that has been used in various software verification
and analysis applications [47]. Typically, SMT solvers such as Z3 can only han-
dle first-order logic, but recent research [23] proposed a pragmatic extension for
SMT solvers to support higher-order logic.

2.1 Prior Work

There has been work to automate the conversion between proof statement and
R1CS [33, 44, 42, 41], but they do not necessarily guarantee the correctness of the
translation. Manually writing/editing R1CS is also still popular as it can result
in substantial efficiency gains. Such work can help secure new applications but
cannot help with the security of existing implementations.

Fuzzing has been used for some cryptographic implementations. Special-
purpose fuzzing has been used for TLS [57, 58]. CDF [21] targets cryptographic
algorithms such as DSA, ECDSA, and RSA. We are inspired in part by these
ideas, though we have no known test vectors or reference implementations to
compare against and use more targetted input generation techniques.

We provide a comparison of SNARKProbe and the most relevant existing
fuzzing tools in Table 1, focusing on the types of errors they are able to catch,
if they can precisely locate such errors, and their adaptability to zkSNARKs.
Currently, most fuzzing tools are limited to identifying software errors. While
some tools such as CDF and SHA-3 Test have the capability to identify cryp-
tographic logic errors, their functionality is restricted and cannot be easily ex-
tended. Presently, our SnarkFuzzer stands as the only fuzzing tool capable of
detecting both software and cryptographic logic errors for zkSNARKs, accom-
panied by source code references and protocol location information.

Additionally, an important part of many fuzzers is how they handle code
coverage analysis. While off-the-shelf tools like LLVM might seem to fit well for
this, as it natively provides a source code line coverage data report [11], this is

6 Y. Fan et al.

insufficient for our desired application. Our fuzzer focuses specifically on branch
coverage and coverage of critical cryptographic components, not generic line cov-
erage. Additionally, we found that many existing zkSNARK libraries may not
work well (or even compile) with LLVM. This motivates our development of the
Branch Model and its use of GDB, as existing tools do not suffice.

There has also been prior work on automating the development of cryp-
tographic attacks. Much of this work has focused on side-channels [54, 53, 22],
though it has also seen other applications [25]. Prior work has also sought to
automatically deploy existing, known attacks [43]. These are largely orthogonal
and do not extend to existing zkSNARK systems.

There is a growing trend towards computer aided cryptography and formal
verification of implementations (see [24] for a detailed discussion). Project Ever-
est [15] contains a variety of formally verified software components. While we
are seeing increasingly complex protocols being formally verified [55], we have
not yet seen these techniques applied to zkSNARKs. We see our work both as a
step towards a formally verified zkSNARK implementation, bridging the current
gap through the use of heuristic techniques like fuzzing, as well as a complement
to it. A formally verified implementation could be used to provide a trustwor-
thy ground truth for our fuzzing techniques, for example. In addition, formal
verification is typically targeted at a single implementation, which necessitates
re-running the often complicated process for each new application. SNARKProbe
is designed to streamline the process and make it easy for a user to check a
variety of applications or libraries, with little manual effort.

3 Overview

Before diving into the details of our design, we give a brief high-level overview
of our SNARKProbe system, its workflow, and the intended use cases and users.

3.1 Users and Use Cases

We view the targeted users of SNARKProbe to fall into three main categories:
1. An application user that wishes to evaluate if a given (open-source) appli-
cation correctly implemented their specified proof statement without having to
dig through source code or understand the protocol; 2. Developers who want to
build applications using zkSNARKs and wish to gain assurances in the correct-
ness of a library and that a proof they built correctly realizes a given statement;
and 3. Security engineers that want to automatically scan a library/application
and detect various issues, such as edge case crashing, cryptographic operation
errors, and/or inconsistencies with protocol descriptions, allowing them to focus
their time and manual effort on potential issues. SNARKProbe helps achieve all
these use cases by outputting a full evaluation report that includes a notion of
security confidence, any discovered (known) security vulnerabilities or warnings,
and potential risks of the target library or proof.

SNARKProbe 7

(a) Constraint Checker (b) SnarkFuzzer

Fig. 1: Workflow of SNARKProbe. White boxes represent subcomponents universal
for all zkSNARK libraries, forward diagonal stripes represent those designed for a
specific library, and backward diagonal stripes represent those designed for a specific
programming language.

3.2 Workflow

We now outline the workflow of running SNARKProbe, as well as establish termi-
nology, before presenting the details and implementation in subsequent sections.
SNARKProbe is composed of two broad sub-tools: the Constraint Checker and
SnarkFuzzer. These components can operate both independently of each other
as well as in sequence, depending on what the user wishes to check.

Recall that at a high level, a zkSNARK proof is generated in two main
phases. First (circuit generation), the user has a (proof) statement that they
wish to prove about, which requires converting this statement into a circuit that
the zkSNARK protocol understands. R1CS is a specific form of this that we
focus on in this work. Second (proof generation), a zkSNARK library takes the
circuit (R1CS) as input and produces a proving key, verification key, and a proof.

The first step verifies the consistency of a user-specified set of proof statement
equations with the actual R1CS matrix used in the application, to ensure that
the circuit generation process generates the same proof as the developer states.
The Constraint Checker uses an SMT solver to compare the input values, output
values, domain, and range of the given statement equations with R1CS matrix
to find any errors in the conversion. Figure 1a shows the internal steps of the
Constraint Checker, which we discuss in detail in Section 4.1.

The second step checks the correctness of the library and proof generation
process. Figure 1b shows the steps of SnarkFuzzer, which we discuss in de-
tail in Section 4.2. First, the Input Generator produces an R1CS matrix (i.e.,
proof) using a variety of fuzzing techniques and compiles this into an executable
proof program with the selected library, which serves as the input for the Branch
Model. Then, the Branch Model investigates the visitation status for each branch
during execution and provides feedback to the Input Generator to determine if
another input is needed. This coverage feedback fuzzing helps improve the cov-
erage rate of SnarkFuzzer, which improves the chance of catching errors in the

8 Y. Fan et al.

target library. Finally, the Value Model re-evaluates the protocol calculations
to detect any potential cryptographic logic errors and looks for inconsistencies
caused by unexpected value changes or implementation errors.

Together, these two components allow SNARKProbe to evaluate the end-to-end
correctness and security of a specific implementation of a given proof statement
for a given library (or to individually check different parts if desired).

Unlike standard fuzzers, SnarkFuzzer can detect both software and crypto-
graphic logic errors. We consider a software error to be a bug or fault in the
software that causes unintended behaviors or incorrect performance, such as
crashing, overflow, or a system error. A cryptographic logic error, on the other
hand, is one that causes a program to produce an incorrect result due to errors
in the cryptographic protocol implementation, such as incorrect mathematical
operations or disregarding the specification. A cryptographic logic error will not
cause a software crash or raise an error message, making them much harder to
detect. For a basic example, in RSA, software errors might cause a program
crash, but cryptographic logic errors are issues where the ciphertext value was
not computed correctly (me mod N computed incorrectly) or too large a ci-
phertext was used (e.g., larger than the modulus).

While we currently focus on R1CS-based zkSNARKS, we believe this high
level design can be adapted without major changes to support additional (newer)
types of proofs, particularly in the case of SnarkFuzzer, which would largely only
involve changing the input generation methodology and format.

Why dynamic analysis? Dynamic analysis supports our goal of finding cryp-
tographic logic errors by allowing us to trace and extract real-time data and
variable values, which we can then use to check for cryptographic protocol con-
formance and implementation errors. It also allows us to easily support a number
of different zkSNARK libraries written in different languages without the need
for additional manual intervention, extensions, or program instrumentation by
the user, making SNARKProbe flexible as well.

4 Design and Implementation

In this section, we introduce both the high level goals and concrete implemen-
tation decisions, tools, and techniques that allow us to realize SNARKProbe. We
start with the Constraint Checker and then discuss the various components of
SnarkFuzzer. These two sub-tools can be used either in conjunction with each
other, or separately, depending on what the developer wishes to check.

4.1 Constraint Checker

Goals: The Constraint Checker helps ensure that the realized proof is equivalent
to a specified statement. This also allows the Constraint Checker to find errors
in flattening and/or gadget use. It achieves this by comparing the equivalence of

SNARKProbe 9

a user-specified proof statement and the compiled R1CS gates to ensure that the
proof generated by the library represents the developer’s specified statement6.

Design. The first step in generating a zkSNARK proof is converting the de-
sired proof statement equations into R1CS. These R1CS gates should have the
same domain, range, and output value as input statement equations. To check
this, we developed our Constraint Checker, which leverages an SMT solver and
associated techniques to verify the equivalence of R1CS gates to the specified
proof statement functions7. To run the tool, the user only needs to write a short
script to define the statement function, primary inputs, and auxiliary inputs in
their zkSNARK proof, and everything else then happens automatically. Figure
1a shows the key steps in the Constraint Checker, and we also provide an example
in Appendix A.3. We note that our SMT solver could be replaced by any other
techniques that allow one to check for function equality and fit the desired goals.

Implementation. The Constraint Checker contains two major components—
the Circuit Extractor and a three step equivalence check—which we discuss now.
We discuss optimizations in Appendix A.1.

Circuit Extractor. The Circuit Extractor can extract R1CS gates with pri-
vate inputs, witness, and gadget relations from an executing zkSNARK binary
program. We do this using GDB. We set a GDB breakpoint at the circuit decla-
ration line, convert the circuit to an R1CS matrix when the program reaches the
breakpoint, and save the formatted R1CS matrix for equivalence comparison.
Automatic extraction both makes the tool more usable and reduces the poten-
tial for human errors in the equivalence comparison. Many zkSNARK libraries
use Montgomery modular multiplication as an optimization. We also developed
a Montgomery representation translator that can convert the Montgomery form
to a standard integer format, so that our circuit extractor can produce a z3py
(our SMT solver of choice) readable integer format.

After extracting the circuit, the Constraint Checker uses the SMT solver to
verify the equivalence of functions through a three step process: a function valid
check, equivalence comparison, and domain comparison. If one or more tests fail,
then we determine that the given statement equation is not equivalent to the
produced program. Otherwise, then we can provide assurances that it is highly
likely that the proof realizes the specified statement correctly8.

Function Valid Check. As the witness should be a solution in both the state-
ment equations and equations built by the R1CS gates, we first create two SMT
solvers S1 and S2 to verify that fact (see Appendix A.2 (b)). The Constraint

6 We note that we cannot do anything about the garbage-in-garbage-out problem (for
example, the case where a developer implements a proof that misses a necessary
case, such as omitting checking if a value is greater than 0). We can just help
determine if the specified statement and realized proof are likely equivalent.

7 We work around the general undecidability of function equality by operating in the
more constrained setting (over the finite fields) and adding special rules for primary
variables and auxiliary variables.

8 We cannot guarantee equivalence due to the fact that the SMT solver might output
UNKNOWN, as well as possible domain gaps (see Appendix A.4).

10 Y. Fan et al.

Checker considers the statement equations and R1CS gates to not be equivalent
if the witness is not a valid solution for both.
Equivalence comparison. The equivalence comparison verifies if the statement
equations y1 = f(x1) and R1CS gates y2 = f(x2) have the same output for
all the same inputs. First, the Constraint Checker creates a solver S, and adds
y1 = f(x1), y2 = f(x2), x1 = x2 and y1 ̸= y2 to the solver S (see Appendix A.2
(c)). If S results in SAT, then the SMT solver has discovered that the statement
equations and R1CS gates have a different output for at least one input and
thus considers them not equivalent, and otherwise, it results in UNSAT. Like in
many other use cases, the Constraint Checker cannot guarantee equivalency if
the SMT solver returns UNSAT or UNKNOWN. Note that the SMT solver may re-
turn UNKNOWN for a variety of reasons, including running out of memory, or if the
quantifier-free fragment is undecidable (such as nonlinear integer arithmetic) or
too “expensive” (such as finding primes p ∗ q = N for some N).
Domain comparison. The SMT solver cannot directly calculate an equation’s
domain, but it can find the maximum and minimum values for an equation
(Figure 4a in Appendix A.4 shows an example of different upper and/or lower
bounds). We also use the SMT solver to find out if there is a gap between the do-
mains’ of the statement equations and R1CS gates, though we cannot guarantee
to find all such gaps that may exist (see Appendix A.4 for a detailed discussion).

4.2 SnarkFuzzer

Goals: SnarkFuzzer is a smart fuzzing tool with the primary goal of finding
potential logic or software errors in zkSNARK libraries. It produces zkSNARK
programs with different proofs as input, to detect and catch these errors and
provide full (important) code coverage.

SnarkFuzzer is composed of four major subcomponents: the Input Generator,
Branch Model, Value Model, and Value Monitor. The Input Generator is respon-
sible for generating an R1CS matrix and converting it to a zkSNARK program
as input for the target library. The Value Model and Value Monitor are designed
to detect implementation and cryptography related errors. The Branch Model
helps manage branch coverage and provides feedback to help SnarkFuzzer decide
if it needs to generate another input program. Figure 1b shows the structure of
SnarkFuzzer with both its high level design as well as its implementation details.

SnarkFuzzer: Input Generator

Goals: The Input Generator produces valid or invalid R1CS matrices and com-
piles them into executable proof programs for use by other components as testing
inputs. This should be done in a “smart” manner to help better catch errors.
Design. The first step for our fuzzer is the generation of inputs to test a target
library. In SnarkFuzzer, these inputs are simply valid or invalid R1CS matrices
that represent a variety of (possibly random) proof statements. To improve the
chances of catching potential logic or software errors in the library, we desire this
input generator to be “smart”, in the sense that it should not just randomly gen-
erate inputs, but should take into consideration both the concept of valid/invalid

SNARKProbe 11

proofs, as well as proof or R1CS edge cases. At a high level, the Input Generator
generates an R1CS matrix, and then the Program Generator uses this matrix
to produce and compile an executable zkSNARK program with a given library.
The compiled program will then be used as input for other components, like the
Branch Model, Value Model, and Value Monitor. Before generating the R1CS
matrix, the Input Generator needs to decide on the size of the generated ma-
trix (number of rows nr and columns nc) and the number of public inputs np.
This can be done by simply choosing randomly, or in a smarter way by choosing
from a specified distribution. The Input Generator can be instantiated with any
type of fuzzer that meets the aforementioned goals, giving it the flexibility and
adaptability to use new techniques and tools, as they are developed.

Implementation. We developed four different methods of input generation to
produce these matrices based on mutation-based and generation-based fuzzing.
These methods are complementary and all work in tandem to generate the
fuzzing inputs (the user can specify the percentage of inputs generated by each
method). Each method targets a specific type of R1CS matrix to provide better
overall coverage and comes with its own set of unique benefits (and trade-offs).

Generation-based invalid matrix. Our generation-based fuzzer is designed to
create an R1CS matrix from scratch. Generation-based fuzzing has the advantage
of not depending on input seeds, allowing it to function without (user) input. The
random number generator will generate nr ∗ nc integers as an R1CS matrix and
nr−1 integers as the witness w (since the first value of the witness is always equal
to 1), and we use the constraint relation w·A×w·B−w·C = 0 to verify the ground
truth of the matrix. This tests a library with possible but unrealistic examples
to search for edge case errors that are hard to reach with traditional examples.

Generation-based valid matrix. To produce a valid matrix that simulates a real
world proof example, the random number generator will generate nr−1 integers
as a witness w. Then, a valid matrix will be calculated with z3py based on this
witness and the constraints relations in w · A × w · B − w · C = 0. Depending
on the actual values in the randomly chosen witness, the complexity of solving
the equations to fill out the matrix may vary, but a larger matrix (i.e., larger
witness) usually results in a longer generation time. As such, we recommend
that for testing large R1CS matrices, the generation-based fuzzer is run once to
generate an input seed that can be given to the mutation-based fuzzer.

Mutation-based invalid matrix. The mutation-based fuzzer requires an R1CS
matrix with a number of public variables as a seed, and then flips values to gen-
erate a new matrix. We use Atheris, a mutation-based, coverage-guided fuzzer
developed by Google [9]. The seed is converted into a byte array, then Atheris will
flip the array, and then it is converted back to a (new) R1CS matrix. Because we
have randomly flipped values in the matrix, the R1CS constraint relations will be
destroyed, and the matrix will be invalid. This technique can work off of and mu-
tate input examples that might be hard to produce by generation-based fuzzing.

Mutation-based valid matrix. Our mutation-based fuzzer can also produce a
valid R1CS matrix. Instead of flipping random values, a random number c will
be generated, and the new matrix M will be calculated based on the seed matrix

12 Y. Fan et al.

M0 as M = cM0. This multiplication will not break the constraint relations, so
the new matrix is still valid. This can be used with the generation-based fuzzer to
produce valid large R1CS matrices in a short time, thus increasing performance.

SnarkFuzzer: Ideal Files

Goals: The ideal files act as a guide for the Branch Model and Value Model to
check code coverage and protocol calculations. They contain information related
to the source zkSNARK library such as branch locations, variable names, and
data types.
Design. Each library and protocol needs two ideal files: an ideal branch file
that contains the locations of the branches in a library (automatically gener-
ated), and an ideal value file that contains information about the variables in a
program (manually generated). Manually creating the ideal value file does not
require any specialized knowledge related to zkSNARK protocols, the library, or
cryptographic techniques, and the user only needs basic skills such as defining
functions, conditions, and assigning variables. These ideal files can be reused for
any program using the same protocol and library.
Ideal Branch File. An ideal branch file contains protocol-specific information
related to the branches in a library. Function calls, if-conditions, and loops are all
considered branches. The branch file also contains information about IMPORTANT
versus UNIMPORTANT branches to help the Value Model. Important branches in-
clude cryptographic calculations and other core protocol components that we
wish to ensure testing and coverage of, while unimportant branches are those
that do not involve relevant computation.
Ideal Value File. An ideal value file contains location information for all variables
that must be used to evaluate the protocol calculation. The Value Model will use
line and path information in this file to extract all variables’ values. Only vari-
ables defined in the official protocol paper should be added to the ideal value file.
Implementation. We have already developed the ideal files for Pinocchio and
Groth16 in libsnark and Groth16 in Bellman, arkworks, and gnark.
Ideal Branch File. By default, all branches are marked as IMPORTANT and thus
covered. We asked four researchers in our group (including people with experi-
ence using zkSNARKs and those with only programming experience) to label
branches as IMPORTANT or UNIMPORTANT. To ensure SnarkFuzzer does not miss
any critical components, only branches labeled as UNIMPORTANT by all four re-
searchers could be marked as UNIMPORTANT in our example ideal branch files9. We
provide an example snippet of an ideal model file for libsnark in Appendix B.1.

In order to find uncallable functions, we used a static analysis tool called
Doxygen [12] to draw the library functions’ call graph. Doxygen can help a user
generate the call graph for a library, and by using this call graph, the user can
easily find unused and uncallable functions to reduce fuzzing costs.
Ideal Value File. The ideal value file contains “official” variable names, variable
types, and variable names, path, and line number (the final assignment location

9 Incorrectly labeling UNIMPORTANT branches as IMPORTANT only increases the fuzzing
time without affecting the accuracy of the analysis.

SNARKProbe 13

for a variable) in the library’s source code. We provide an example snippet of an
ideal value file for the libsnark library in Appendix B.1. While line numbers
might change as code is maintained, one should not need to manually create a
new file often. If there are only minor or non-cryptographic related changes, our
tool will automatically match the new line numbers.

SnarkFuzzer: Branch Model

Goals: The Branch Model monitors and records branch visitation status as
SnarkFuzzer runs, and informs and stops it after all IMPORTANT branches have
been covered.
Design. The Branch Model is used to evaluate if the target library has been
fully tested. Traditional fuzzers often work by examining utilized memory bytes
in a binary or lines of source code hit to check for program coverage, and then
mapping this coverage to an input to determine the next one. However, in a
zkSNARK library, it is difficult to correlate the exact relation between a spe-
cific branch and values in the input program that could trigger it. Therefore, we
instead use the idea of function and condition branches to evaluate coverage.

Since any unvisited branches may cause errors, the Branch Model evaluates
each input program to acquire the list of branches that the program visited. The
Input Generator will continuously generate new program inputs with different
proof statements/matrices until all IMPORTANT branches have been visited.

To ensure that we achieve both breadth and depth in code coverage, the
Branch Model also works to ensure that each branch is covered multiple times
with different inputs, keeping a count of the number of times each IMPORTANT

branch is hit. We allow the user to define a visitation threshold to balance per-
formance with coverage and confidence. As more inputs are generated, we have
a higher chance of finding potential issues in the target library or, conversely,
more confidence that the target library is safe, at the cost of runtime.
Implementation. Our Branch Model uses GDB breakpoints to investigate the
visitation status for each branch defined in the ideal branch file. A GDB break-
point stops the program whenever the selected location in the program is reached
for debugging, and it can be set by line number, function name, or address in the
program. When the Input Generator produces a zkSNARK program, the Branch
Model sets a GDB breakpoint at the start line for each branch. If a branch is
then visited during runtime, GDB will temporarily stop the input program at
the corresponding breakpoint. After the program is finished running, the Branch
Model records a list of visited branches for the current program. If all important
branches have not been visited at least once, or the visitation threshold has not
been met, the Branch Model will instruct the Input Generator to generate a new
program with a different proof until all important branches have been covered.

SnarkFuzzer: Value Model

Goals: The Value Model’s goal is to find cryptographic logic errors, such as in-
consistencies with the protocol definition or incorrect cryptographic operations.
Design. The Value Model is one of the most important components in Snark-
Fuzzer, and one of the biggest improvements compared with other fuzzers. Its

14 Y. Fan et al.

job is to detect cryptographic logic errors in a library. At a high level, the Value
Model must extract all necessary variable values from the input program, which
it then feeds to the other components. It achieves this through two major sub-
components: the Value Extractor and Value Checker.

Value Extractor. The Value Extractor extracts variables’ values from the source
zkSNARK program, which are then used in the Value Checker. The ideal value
file provides a list of variables that need to be extracted. Then, the Value Extrac-
tor recursively extracts these values from the last assignment location in the pro-
gram and library, and reformats the values to the Value Checker readable format.

Value Checker. The Value Checker re-evaluates all protocol calculations and
compares these ground-truth values to the values extracted from the input pro-
gram by the Value Extractor to find any possible logic errors. In the re-evaluation
process, the Value Checker will faithfully follow the protocol from the formal
specification without any optimization, simplification, or reformatting. To build
a trustable re-evaluation process, our Value Checker uses ECC libraries that have
been tested and widely used. In the future, this component could be replaced by
any trusted evaluation source, such as a formally verified implementation.

Implementation.

GDB PrettyPrint. GDB can display both the structure and value(s) for a vari-
able. However, for more complicated variables GDB displays some unnecessary
variable structure and data. Also, different libraries usually have different data
structures (even for the “same” variables), and, as such, the Value Checker can-
not directly use the raw, unformatted variable value extracted from the library.
For example, Figures 7a, 7b, and 7c in Appendix B.2 show a G1 type variable
that represents the same number in both libsnark, Bellman, and arkworks but
has different structure and value when printed naively.

To make the Value Checker more universal, we developed a PrettyPrint func-
tionality for each library to convert all data structures into the same format. The
goals of PrettyPrint are twofold: 1) to allow the extractor to keep only the nec-
essary values for a variable, and 2) to convert the same types of variables from
different libraries into a common universal format that the Value Checker can
then accept. Figure 7d in Appendix B.2 shows an example of the PrettyPrint
result for the same G1 variable as before.

Value Extractor. The Value Extractor extracts all variables defined in the ideal
value file using GDB and PrettyPrint. As the ideal value file contains the line
number where each variable is assigned, the Value Extractor can automatically
set up a breakpoint for each variable immediately after its assignment. Then,
when the input program reaches this, the Value Extractor uses PrettyPrint to
save the variable’s formatted value.

Value Checker. We developed the Value Checker for Pinocchio by following [52]
and [27] and Groth16 by [39] and [50]. To help ensure accurate re-evaluation
of the protocol calculations, the Value Checker uses exactly the same variable
names as the original papers, and we follow the protocol description exactly,
without any optimizations, to avoid introducing mistakes.

SNARKProbe 15

ECC Libraries. We use two well-tested elliptic curve libraries to demonstrate
diversity and flexibility. py ecc [31], developed by Ethereum in Python, supports
both the BN128 and BLS12-381 curves. CIRCL [32], developed by Cloudflare in
Go, supports BLS12-381. Since it is written in Go, we developed the necessary
APIs so that our Python-based Value Checker can access the functions. If users
would like to test a new zkSNARK library using a curve that py ecc or CIRCL do
not support, they can easily plug it into the Value Checker in this same manner.

SnarkFuzzer: Value Monitor

Goals: The Value Monitor detects any unexpected value changes after the ex-
traction of initial variable values from the source program.
Design. While the Value Model extracts all necessary variables’ values at the
location where the variables are first assigned, and we also need to check if there
is a value change after the model extracts these values to ensure consistency
between the library and the Value Checker. The Value Monitor can also detect
any unexpected side effects caused by the library or dependent functions due to
incorrect implementation, out of memory, or other unexpected errors.
Implementation. GDB watch allows SnarkFuzzer to monitor value changes
in a debugging session with four CPU debug registers called hardware watch-
points. A hardware watchpoint is very efficient, but it does not support larger
data structures given the limited debug registers. Software watchpoints will be
automatically applied if GDB tries to setup a watchpoint for a variable that
cannot be handled by a hardware watchpoint. Unlike hardware watchpoints,
software watchpoints are extremely slow, and watching dozens of variables may
require unacceptable processing time. For example, using GDB software watch
for a single variable A query in libsnark takes more than 30 minutes.

Therefore, we instead used Valgrind, a dynamic analysis tool that analyzes
a program to automatically detect memory management and threading bugs.
Valgrind has a gdbserver to simulate traditional GDB hardware watchpoints.
Simulation still takes longer than pure GDB hardware watchpoints, but the
hardware watchpoint simulation is much faster than GDB software watchpoints.
Meanwhile, Valgrind hardware watchpoint simulation does not have any limi-
tation on the number and length of variables, so Valgrind can be used for any
zkSNARK source program and libraries with complex data structures.

5 Performance Evaluation

Our first set of evaluations for SNARKProbe explores its performance and scala-
bility. All experiments run on an Intel Core i7-8700 CPU @ 3.20GHz × 12 with
32GB of RAM running 64-bit Ubuntu 22.04 LTS.

5.1 Performance of the Constraint Checker

We start by testing the Constraint Checker and evaluate its performance on
statements with different types of operations and complexities, and present the

16 Y. Fan et al.

Statement Equation
Runtime (in seconds)
SMT Solver Overall

Cube y = x3 + x+ 5 0.49 4.18
Cube with Error y = x3 + x+ 5 0.24 3.94

Comparison x < 60 0.54 12.39
SHA-256 Hash y = sha256(x) 0.71 15.39
Inner Product ⟨u, v⟩ < c1 ∧ ⟨u, v⟩ > c2 0.59 18.34

Table 2: Constraint Checker runtime for different proof statements

runtimes in Table 2. There are two runtime results for each experiment. We first
recorded the runtime for the SMT solver, which is the most important step in the
Constraint Checker, and we also recorded the total runtime, including the pro-
cessing time of the Circuit Extractor, SMT solver, and other internal evaluations.

We tested different types of proofs, including the well-known cube example, a
comparison (which requires using a gadget), a hash (a complicated mathematics
equation), and a proof with inner product, logical operators, and comparison
(which requires multiple gadgets and more complex logic). As expected, as we
progress in terms of “complexity”, runtime generally increases. Interestingly, the
hash proof takes the longest in the SMT solver, demonstrating that there are
different notions of “complexity” than just statement size.

We also sought to test if the correctness of the statement checked had any im-
pact on performance. We did this by running two different experiments with the
cube proof, one where we model a developer correctly flattening the statement
equation into R1CS, and a second where we model a mistake in the flattening
that introduces an error. Our Constraint Checker took a shorter time to evaluate
the incorrect cube program since the Constraint Checker aborts as soon as it
finds an error (such as a different domain or output value).

5.2 Performance of SnarkFuzzer

We tested SnarkFuzzer on libsnark, Bellman, arkworks, and gnark to evaluate
the processing time and performance in different configurations. All experiments
run on a single core, except for the Value Monitor which is trivially parallelizable
across all cores. We start by evaluating the overall tool to examine the runtime
percentage that is dedicated to each sub-component. We then drill down and
individually explore the scalability of each sub-component to gain a fuller un-
derstanding of SnarkFuzzer’s overall scalability.

Overall Runtime with Different Libraries and Protocols. We first ex-
plore the proportion of total running time that each different facet of SnarkFuzzer
takes, and present the results in Figure 2.

We ran with five different configurations: libsnark with Pinocchio, libsnark
with Groth16, Bellman with Groth16, arkworks with Groth16, and gnark with
Groth16. All of these experiments use generation-based fuzzers to produce valid
R1CS matrices (the slowest of the four fuzzing methods we provide) with dimen-
sions in [30, 60]. We ran 30 iterations of the Branch Model (since as shown in

SNARKProbe 17

Fig. 2: Runtime of each component in SnarkFuzzer with different libraries and
protocols, both in terms of actual time as well as percentage of the total.

Figure 3 that provides reasonable coverage) and calculated the average runtime
to complete a full “run”10 and proof check for each library and protocol.

We observe that for all libraries and protocols, the majority of time is spent
in the Value Monitor and Value Model phases. This is somewhat expected, as the
cryptographic operations in the Value Model require time to calculate, and Val-
grind’s simulation hardware watch also introduces substantial overhead. Since
Groth16 has fewer elliptic curve and pairing operations than Pinocchio, testing
that involves Groth16 costs less time. However, Valgrind spends a longer time
executing a program in Rust than a program in C and Go. Since we use Valgrind
in the Value Monitor to find and monitor value changes, we see a longer overall
runtime with Bellman and arkworks than libsnark and gnark.

We do use small R1CS matrices in these experiments, as the primary goal is
to demonstrate the runtime proportion for each component. We make a few key
observations about this. We noticed that unless one uses only generation-based
fuzzing to produce valid inputs, the size of the R1CS matrix (i.e., the proof) will
not substantially affect the performance of the Input Generator. The Branch
Model does not work with the R1CS matrix, so different sizes will result in the
same runtime. However, a large matrix will significantly increase the runtime of
the Value Model and Value Monitor (see Table 4 for more realistic values). For to-
tal runtime reference, an R1CS matrix of size 100×5000 takes about 940 seconds
to run the complete SnarkFuzzer with our generation-based invalid matrix fuzzer.
Performance of the Input Generator. Unlike a mutation-based or generation-
based fuzzer for an invalid matrix (which are very quick since they only re-
quire straightforward operations), generating a valid R1CS matrix with our
generation-based fuzzer requires the SMT solver to produce a matrix based on
the random witness array. Thus the processing time depends on the matrix size

10 We define a “full run” to be using the Input Generator to produce one zkSNARK
program, analyzing coverage status with the Branch Model, and looking for any
software and cryptographic related bugs with the Value Model and Value Monitor.

18 Y. Fan et al.

and random value(s) in the witness list, which generally results in a larger matrix
taking longer to process. To validate this, we used our various fuzzers to pro-
duce matrices of varying sizes (remember that the rows represent the number of
constraints and columns the number of variables). In Table 3, we present the pro-
cessing time for each method (generally under one second for most methods),
which confirms our general intuition. We also note that the Input Generator
must compile the input matrix (proof) and source code into a binary program,
which can require substantial time that is outside of our control.

Matrix Size 5 × 10 20 × 40 50 × 100 50 × 200

Generation Based Invalid Matrix <0.01 <0.01 <0.01 0.02
Valid Matrix 0.16 2.06 23.02 51.27

Mutation Based Invalid Matrix 0.38 0.49 0.65 0.77
Valid Matrix <0.01 <0.01 <0.01 0.02

Table 3: Runtime (in seconds) of the Input Generator to produce R1CS matrices of
different sizes.

Performance of the Branch Model. Next, we explore the coverage ability
of the Branch Model in terms of breadth, as well as how quickly we achieve a
high percentage of branch coverage. We ran 50 iterations of the Branch Model
with libsnark, which covers more than 85% of all branches. We stopped our
experiments after 50 iterations as SnarkFuzzer did not reach any new branches
over the previous 10 prior iterations. Even with this, we note that after roughly
30 iterations we see the breadth of our coverage begin to taper off. A graph can
be found in Figure 3.

Fig. 3: Percentage (breadth) of library coverage after a given number of iterations

Performance of Value Model and Value Monitor. The primary effects
on overall performance are our Value Model and Value Monitor. Table 4 shows

SNARKProbe 19

Matrix Setting Processing Time (in second)
Matrix Size Items in Matrix Value Model Value Monitor

10 × 10 100 23.33 29.21
10 × 30

300
25.96 33.09

30 × 10 32.78 34.21
20 × 45

900
29.52 43.99

30 × 30 33.01 46.30
45 × 20 40.14 47.68
45 × 60

2700
41.29 81.69

60 × 45 46.03 80.21
100 × 1500 150000 200.84 223.49
100 × 5000 500000 580.97 344.83

Table 4: Runtime of the Value Model and Value Monitor to process an R1CS matrix
of varying size. For example, 10 × 30 is a matrix with 10 variables and 30 constraints.

the runtime with different matrix sizes. We expect the size of our matrices to be
one of the primary influences on the runtime of these components.

Recall that the computation of the proving key requires calculations with
the circuit. Therefore, a larger R1CS matrix will result in longer runtime in our
Value Model. At the same time, the shape of the matrix will also affect its run-
time. As we can see in Table 4, a matrix of size 20 × 45 takes less time than
one of size 30 × 30 or 45 × 20, even though they all contain 900 integers. In
fact, the number of variables (columns) plays a greater role than the number of
constraints (rows) in Value Model runtime, since this plays a larger role in the
size of the proving and verification keys.

Similarly, the Value Monitor requires more time to watch variables in a pro-
gram with a larger matrix. However, the reason for this is different. Since the
runtime of Valgrind depends on the space complexity of a variable, the matrix
shape will not have an effect. Instead, the Value Monitor spends more time mon-
itoring a program with a larger matrix, but it takes similar time for programs
with the same number of integers but different shapes. For example, each matrix
of size 20 × 45, 30 × 30, and 45 × 20 has 900 integers, and the Value Monitor
takes around 46 seconds to run, even though they have a different shape.

Discussion of Total Runtime. Our experiments only provide an upper bound
on the worst case runtime for SnarkFuzzer. We did not perform any runtime op-
timizations, and in all of our experiments, we used the slowest options or config-
urations that we knew of. While SnarkFuzzer does require extra runtime in the
Value Monitor and Value Checker for each individual input seed, in comparison
to a traditional fuzzer, which might spend hundreds or thousands of core hours
to produce inputs, the framework and Branch Model designs allowSnarkFuzzer
to find issues with a relatively small number of generated input seeds. In fact,
most errors that SnarkFuzzer detected (see Section 6) were found with less than
ten seeds. Therefore, we view performance to be acceptable for real world usage.

20 Y. Fan et al.

Error/Vulnerability Type Affected Component Program Found by

Potentially Locatable in Current Libraries
Incorrect manual flattening by developer Logic Error R1CS Circuit All libraries ConstraintChecker
Multiple gadget misuse Logic Error R1CS Circuit All libraries ConstraintChecker

Found in Current Libraries
Incorrect bit/comparison gadget implementation Logic Error R1CS Circuit libsnark ConstraintChecker
Mismatch in circuit generation and usage Logic Error R1CS Circuit All libraries ConstraintChecker
Groth16 pre-pairing computation in Setup Logic Error Groth16 Protocol bellman/arkworks SnarkFuzzer
Inconsistent QAP extension index usage Logic Error PGHR13 Protocol libsnark SnarkFuzzer
Toxic waste not safely destroyed Logic Error PGHR13 Protocol playsnark SnarkFuzzer
Program out of memory with large circuit Software Error - libsnark SnarkFuzzer

Found in Previous Versions of Libraries
CVE-2019-7167 Logic Error PGHR13 Protocol libsnark (2018) SnarkFuzzer

Table 5: Summary of the current potential errors and inconsistencies, and previous
vulnerabilities, that SNARKProbe is able to catch and locate.

6 Error Catching Evaluation

Our second set of evaluations demonstrates SNARKProbe’s ability to automati-
cally catch different types of errors in zkSNARK libraries. We test SNARKProbe
on libsnark, Bellman, arkworks, and playsnark, as well as on the circuit gen-
erator Circom. Additionally, we show how SNARKProbe would have caught a pre-
vious CVE in the zkSNARK component of Zcash, a popular privacy-preserving
cryptocurrency. In total, SNARKProbe detected seven inconsistencies in current
zkSNARK libraries, successfully automatically located the previous vulnerabil-
ity, and could potentially detect two additional types of errors. We summarize
our results in Table 5.

6.1 Potentially Locatable in Current Libraries

Incorrect Flattening. There is always a possibility that a developer may
generate an incorrect R1CS matrix for their circuit, since this process is often
done by hand. While we did not find any examples of this in the few applica-
tions we tested, consider the following scenario. Take a statement equation like
x3 + x + 5 = y which the developer will typically flatten into R1CS gates with
private input x = 3 and public input y = 35. This set of equations is then equal
to x3+x+5 = 35. However, the developer may incorrectly flatten the statement
equation into R1CS gates 2.

R1CS gates =


x ∗ x = w1

w1 ∗ x = w2

w2 + x = w3

w3 + 5 = y

R1CS gates 2 :=


x ∗ x = w1

w1 ∗ x = w2

w2 + 2 ∗ x = w3

w3 + 2 = y

While R1CS gates 2 still satisfies the private input x = 3 and public input
y = 35, causing the underlying library to output an acceptable proof, this flat-
tening does not in fact equal the statement equation x3 + x + 5 = y. Although
the statement equation and R1CS gates 2 satisfy the witness, and their domains

SNARKProbe 21

have the same upper and lower bounds, they have a different output range, which
our Constraint Checker will catch and flag as an error.
Combining Multiple Gadgets. Recall that a gadget is an abstraction that
many zkSNARK libraries contain to make developing proofs easier for develop-
ers. Multiple gadgets may also be combined to create a single proof. Gadgets are
generally created and provided independently, which means that one must com-
bine them with care. For example, say a developer uses the gadgets greater than
and equal to to create a proof that a prover has a value which is greater than or
equal to a certain number. For this proof, only one input should be used for both
gadgets. However, a naive developer may create a proof that has an individual
input for each gadget instead of a single input for the entire circuit. In this case,
a malicious prover can create a separate program with the same circuit and use
two inputs with different values to satisfy each gadget and hence the entire circuit
(when in reality these two inputs need to be identical). In this case, our Con-
straint Checker can detect the inconsistency between the R1CS matrix and state-
ment equations to find potential issues with using multiple gadgets incorrectly.

6.2 Found in Current Libraries

Defective Gadgets. Gadgets may be implemented incorrectly, causing incon-
sistencies between the original (desired) statement equation and the R1CS gates
generated. Our Constraint Checker is able to find these inconsistencies in its
checks for equivalence, regardless of whether a gadget was used or not.

The comparison gadget in libsnark uses bit shifting to compare two vari-
ables A and B by calculating 2n+B−A and then counting the number of 0s and
1s in the resulting bit array (the corresponding R1CS constraints are shown in
Appendix C). If the developer incorrectly specifies a bit length smaller than the
size of A or B, the comparison gadget will not generate the correct R1CS, which
may result in a “fake proof”11. libsnark will not block this behavior or raise
any warning messages. Consider a developer that uses the comparison gadget

to generate the statement equation x < 60 where x ∈ Fp. The R1CS should
then only have a valid solution in [0, 60). However, if an incorrect bit length is
provided, we found that all numbers in the range (218882428718392752222464
05745257275088548364400416034343698204186575808494653, p) still satisfy this
incorrect R1CS, allowing a dishonest prover to generate a valid proof without
knowledge of a correct secret value. After our tool flagged this potential issue, on
further manual investigation we did see that the libsnark source code contains
a comment about using the correct bit size, though this could go unnoticed by
a novice user or be abused by a malicious one to forge proofs.
Mismatch Between Circuit Generation and Usage. In addition to end-to-
end libraries, there are a growing number of circuit generators available to assist
developers in constructing R1CS/circuits for proof generation, with Circom [41]
being a widespread example12. Circom generates R1CS files that can then be

11 One that will verify even though the prover does not actually have a valid witness.
12 We note that Circom is just an example that we tested, and that the same should

hold true for other circuit generators as well.

22 Y. Fan et al.

utilized by libraries such as snarkjs [17], wasmsnark [18], and rapidSnark [16].
However, during our evaluation process, our Constraint Checker identified a cru-
cial potential issue: the absence of attribute cross-checking between the circuit
generator and formal proof generation library.

While the circuit generator may produce valid R1CS that accurately rep-
resents the prover’s original statement, the proof generation library might, for
example, employ a different elliptic curve and finite field to generate the proof
by default. Consequently, when operating under distinct elliptic curve and finite
field settings, the circuit no longer maintains equivalence with the original state-
ment. This discrepancy can be problematic both for a developer and a verifier
who are unaware that a circuit can yield different representations under different
elliptic curve configurations. In such cases, the prover can produce a seemingly
“valid” proof for the verifier without knowledge of the secret value.

Groth16 Pre-Pairing. The Groth16 protocol produces P = gα and Q = hβ

as part of Setup, which are subsequently used in Verify to calculate the pair-
ing e(P,Q). However, our Value Checker found that Bellman stores the pairing
e(P,Q) as part of the verification key instead of P and Q. Pre-computing and
directly providing e(P,Q) is an optimization that helps make verification more
efficient (as pairings are quite slow to calculate). As this is a well-known opti-
mization, we can confidently say that this will not cause any sort of vulnerability,
but we err on the side of caution and flag all inconsistencies between the source
code and protocol for further review since these can greatly increase the risk of
actual vulnerabilities.

Pinocchio Protocol Inconsistencies. In the Pinocchio key generator, there

exist values
−→
A ,

−→
B , and

−→
C that need to be extended via Am+1 = Bm+2 = Cm+3

and Am+2 = Am+3 = Bm+1 = Bm+3 = Cm+1 = Cm+2 per the specification [27].

However, our Value Checker found that libsnark only extended
−→
A ,

−→
B , and

−→
C

via Am+1 = Bm+1 = Cm+1 as an optimization for space complexity. After a
review of the libsnark source code and protocol, we believe this inconsistency
will not lead to a security vulnerability given how the values are used in practice.
However, this instance is more subtle and less well-known than the previous one,
so while it might not be exploitable, we believe inconsistencies of this nature are
still valuable to flag for further review as this might not always be the case.

Toxic Waste. As part of the zkSNARK setup process, a set of private pa-
rameters informally referred to as “toxic waste” are generated. This toxic waste
must be destroyed after the setup process, as possession of it allows one to forge
proofs. However, our SnarkFuzzer identified an actual implementation error in
a zkSNARK library called playsnark, whereby toxic waste is not properly de-
stroyed during the setup phase. playsnark [5] serves as a learning playground
for proof systems, including Pinocchio and Groth16. While playsnark makes no
claims that it should be used for security-sensitive applications, we feel that this
example still exemplifies valuable use cases for SNARKProbe. First, it can indeed
catch errors that would be exploitable in real applications. And second, while
libraries like Bellman and libsnark are professionally audited, this will likely
not always be the case for all zkSNARK code in production usage in the future

SNARKProbe 23

(as we have seen in many other domains). Tooling such as SNARKProbe can be
an invaluable resource for non-experts and small organizations, enabling them
to assess the security posture of unaudited zkSNARK libraries, audit their own
code throughout the development process, and facilitating informed decisions
regarding future security implementations.

libsnark Out of Memory. SnarkFuzzer detects a corner-case software error
in libsnark. When our Input Generator tried to produce a large R1CS matrix
with tens of thousands of variables and constraints, we discovered that libsnark
cannot compile and produce a zkSNARK program with such a large R1CS ma-
trix without throwing a segmentation fault or memory error. Intuitively, this
occurs because the input matrix we generated was quite dense, i.e., it had a
large number of both variables and constraints, as opposed to being quite sparse
like most typical R1CS matrices. libsnark’s R1CS storage format is clearly not
setup to handle such cases. In general, this would not impact the typical usage
of the libsnark, as our fuzzer is designed to look for extreme cases like this that
might not happen with a typical real world proof statement.

We take this example as a chance to take a step back and revisit our compar-
ison of SnarkFuzzer to a traditional, more generic fuzzer like AFL. As generic
memory and software errors such as this have nothing to do with the actual cryp-
tography and zkSNARK logic, traditional fuzzers are also able to detect them.
However, it is likely to take a generic fuzzer significantly longer (and many more
inputs) to catch such errors, as they lack the context to understand what an
“extreme” input means in this instance, and, as we have seen, it is not easy to
instrument a fuzzer with this context. Additionally, all previous instances that
we discussed would not be detectable by a generic fuzzer, as they are specifically
cryptographic logic errors.

6.3 Found in Previous Versions of Libraries

CVE-2019-7167 Problem. Finally, we discuss how SNARKProbe (specifi-
cally SnarkFuzzer) is able to detect real world vulnerabilities by demonstrat-
ing its ability to pinpoint a previous CVE. CVE-2019-7167 [34] was found in
libsnark through a manual code audit, as part of its usage in the popular
privacy-preserving cryptocurrency Zcash [19] (and has since been patched). At
a high level, this vulnerability produced a bypass element in the key genera-
tion that damaged the soundness of the zkSNARK proof system. To fix this
vulnerability, the value of pk

′

A must be replaced from {Ai(τ)αAρAP}m+3
i=0 to

{Ai(τ)αAρAP}m+3
i=n+1, with all other values the same.

To test this, we downloaded a version of libsnark from 2018 (Commit
hash: bf2146b). When running SnarkFuzzer, the Value Checker automatically
found this inconsistency and vulnerability in key generation. Additionally, while
libsnark has since fixed this issue, it did not directly modify the structure of
pk

′

A in order to keep consistency with the structure of the other proving keys.

Therefore, pk
′

A still has size m+ 3 instead of (m+ 3) − (n+ 1). libsnark just

added an extra handler to reformat the pk
′

A size in the prover, and while this

24 Y. Fan et al.

does not appear to have caused any additional issues, it is unclear if this could
result in other corner case issues.

7 Conclusion

In this paper we present SNARKProbe, a framework that can automatically and
systematically check for potential software errors and cryptographic logic er-
rors, as well as for consistency in the implemented proof statement, in R1CS-
based zkSNARK libraries, with little manual input from the user. We demon-
strated SNARKProbe’s design flexibility by implementing it for multiple different
zkSNARK protocols and libraries. In addition, we performed extensive perfor-
mance evaluations, as well as tested its ability to detect potential errors and
inconsistencies. We believe SNARKProbe is a step in the right direction for ensur-
ing the correctness of existing zkSNARK implementations and applications.

Acknowledgments

This work was supported by NSF grant CNS-2047991.

References

1. Fixing vulnerabilities in the zcash protocol. https://electriccoin.co/blog/

fixing-zcash-vulns/ (2016)
2. Zcash counterfeiting vulnerability successfully remediated. https://

electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-

remediated/ (2019)
3. libsnark: a c++ library for zksnark proofs. https://github.com/scipr-

lab/libsnark (2020)
4. Nu4 cryptographic specification and implementation review. https:

//research.nccgroup.com/wp-content/uploads/2020/09/NCC_Group_Zcash\

_ZCHX006_Report_2020-09-03_v2.0.pdf (2020)
5. Playsnark: a playground to learn proofs systems. https://github.com/

nikkolasg/playsnark (2020)
6. Dark forest. https://blog.zkga.me/ (2022)
7. Zero-knowledge rollups. https://ethereum.org/en/developers/docs/scaling/

zk-rollups/ (2022)
8. Aleo. https://www.aleo.org/ (2023)
9. atheris, atheris: A coverage-guided, native python fuzzer. https://github.com/

google/atheris (2023)
10. bellman, a zk-snark library. https://github.com/zkcrypto/bellman (2023)
11. Clang’s source-based code coverage. https://clang.llvm.org/docs/

SourceBasedCodeCoverage.html (2023)
12. doxygen, doxygen. https://github.com/doxygen/doxygen (2023)
13. gnark zk-snark library. https://github.com/Consensys/gnark (2023)
14. libsnark: A rust implementation of the groth16 zksnark. https://github.com/

arkworks-rs/groth16 (2023)

SNARKProbe 25

15. Project everest. https://project-everest.github.io/ (2023)
16. rapidsnark. https://github.com/iden3/rapidsnark (2023)
17. snarkjs. https://github.com/iden3/snarkjs (2023)
18. wasmsnark. https://github.com/iden3/wasmsnark (2023)
19. Zcash. https://z.cash/ (2023)
20. zksnarks for the world. https://research.protocol.ai/sites/snarks/ (2023)
21. Aumasson, J.P., Romailler, Y.: Automated testing of crypto software using

differential fuzzing. Black Hat USA (2017)
22. Bang, L., Rosner, N., Bultan, T.: Online synthesis of adaptive side-channel attacks

based on noisy observations. In: IEEE EuroS&P (2018)
23. Barbosa, H., Reynolds, A., Ouraoui, D.E., Tinelli, C., Barrett, C.: Extending smt

solvers to higher-order logic. In: CADE (2019)
24. Barbosa, M., Barthe, G., Bhargavan, K., Blanchet, B., Cremers, C., Liao, K.,

Parno, B.: Sok: Computer-aided cryptography. In: IEEE S&P (2021)
25. Beck, G., Zinkus, M., Green, M.: Automating the development of chosen ciphertext

attacks. In: USENIX Security (2020)
26. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: Snarks for c:

Verifying program executions succinctly and in zero knowledge. Cryptology ePrint
Archive, Report 2013/507 (2013)

27. Ben-Sasson, E., Chiesa, A., Tromer, E., Virza, M.: Succinct non-interactive zero
knowledge for a von neumann architecture. In: USENIX Security (2014)

28. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox
fuzzing. In: ACM CCS (2017)

29. Böhme, M., Pham, V.T., Roychoudhury, A.: Coverage-based greybox fuzzing as
markov chain. IEEE TSE (2017)

30. Chen, C., Cui, B., Ma, J., Wu, R., Guo, J., Liu, W.: A systematic review of
fuzzing techniques. Computers & Security (2018)

31. Ethereum: Python implementation of ECC pairing and bn 128 and
bls12 381 curve operations. Ethereum (Dec 2021), available at https:

//github.com/ethereum/py_ecc. Accessed Dec 2021
32. Faz-Hernández, A., Kwiatkowski, K.: Introducing CIRCL: An Ad-

vanced Cryptographic Library. Cloudflare (Jun 2019), available at
https://github.com/cloudflare/circl. v1.2.0 Accessed Jun 2022

33. Fredrikson, M., Livshits, B.: Zø: An optimizing distributing zero-knowledge
compiler. In: USENIX Security (2014)

34. Gabizon, A.: Auroralight: Improved prover efficiency and srs size in a
sonic-like system. Cryptology ePrint Archive, Paper 2019/601 (2019),
https://eprint.iacr.org/2019/601

35. Garman, C., Green, M., Kaptchuk, G., Miers, I., Rushanan, M.: Dancing on the
lip of the volcano: Chosen ciphertext attacks on apple {iMessage}. In: USENIX
Security (2016)

36. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: Machine learning for input
fuzzing. In: ASE (2017)

37. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design. In: FOCS (1986)

38. Google: syzkaller - kernel fuzzer (2017), available at https://github.com/google/
syzkaller. Accessed July 2022

39. Groth, J.: On the size of pairing-based non-interactive arguments. In: Eurocrypt
(2016)

40. Householder, A.D., Foote, J.M.: Probability-based parameter selection for
black-box fuzz testing. Tech. rep., Carnegie Mellon University, SEI (2012)

26 Y. Fan et al.

41. iden3: circom - Curcuit Compiler for ZK Proving Systems (2023), available at
https://github.com/iden3/circom. Accessed August 2022

42. Kosba, A.: xJsnark (2022), available at https://github.com/akosba/xjsnark.
Accessed August 2022

43. Kupser, D., Mainka, C., Schwenk, J., Somorovsky, J.: How to break {XML}
encryption–automatically. In: USENIX WOOT (2015)

44. o1 labs: snarky (2023), available at https://github.com/o1-labs/snarky.
Accessed August 2022

45. Macgillivray, A., deBlanc Knowles, T.: Advancing a vision for privacy enhancing
technologies. https://www.whitehouse.gov/ostp/news-updates/2022/06/28/

advancing-a-vision-for-privacy-enhancing-technologies/ (2022)
46. Mouha, N., Raunak, M.S., Kuhn, D.R., Kacker, R.: Finding bugs in cryptographic

hash function implementations. IEEE transactions on reliability (2018)
47. Moura, L.d., Bjørner, N.: Z3: An efficient smt solver. In: TACAS (2008)
48. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving

encrypted databases. In: ACM CCS (2015)
49. Nicas, J., Isaac, M., Frenkel, S.: Millions flock to telegram and signal as fears grow

over big tech. https://www.nytimes.com/2021/01/13/technology/telegram-

signal-apps-big-tech.html (2021)
50. Nitulescu, A.: zk-snarks: A gentle introduction. Tech. rep., Technical report (2020)
51. NSA: Patch critical cryptographic vulnerability in microsoft windows clients and

servers. https://media.defense.gov/2020/Jan/14/2002234275/-1/-1/0/CSA-

WINDOWS-10-CRYPT-LIB-20190114.PDF (2020)
52. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: Nearly practical

verifiable computation. In: IEEE S&P (2013)
53. Pasareanu, C.S., Phan, Q.S., Malacaria, P.: Multi-run side-channel analysis using

symbolic execution and max-smt. In: IEEE CSF (2016)
54. Phan, Q.S., Bang, L., Pasareanu, C.S., Malacaria, P., Bultan, T.: Synthesis of

adaptive side-channel attacks. In: IEEE CSF (2017)
55. Protzenko, J., Beurdouche, B., Merigoux, D., Bhargavan, K.: Formally verified

cryptographic web applications in webassembly. In: IEEE S&P (2019)
56. Rupprecht, D., Kohls, K., Holz, T., Pöpper, C.: Call me maybe: Eavesdropping

encrypted {LTE} calls with {ReVoLTE}. In: USENIX Security (2020)
57. Somorovsky, J.: Systematic fuzzing and testing of tls libraries. In: ACM CCS (2016)
58. Walz, A., Sikora, A.: Exploiting dissent: towards fuzzing-based differential

black-box testing of tls implementations. IEEE TDSC (2017)
59. Woo, M., Cha, S.K., Gottlieb, S., Brumley, D.: Scheduling black-box mutational

fuzzing. In: ACM CCS (2013)
60. Zalewski, M.: American fuzzy lop (2016), available at https://github.com/

mirrorer/afl. v2.52b Accessed July 2022

SNARKProbe 27

A Additional Information for Constraint Checker

A.1 An optimization for the SMT solver

The SMT solver may take a while to solve some complicated equations. To reduce
the processing time in the equality check, we introduce optimizations and sim-
plify some equations in the R1CS matrix. For example, many libsnark gadgets
use bit shifting, which produces the equation (x ∗ (1 + (p − 1) ∗ x)) mod p = 0
in R1CS gates. This equation represents x = 0 or x = 1. For our optimiza-
tion, if the Constraint Checker detects such a relation, it will be replaced with
0 ≤ x ∧ x ≤ 1 where x ∈ F. These are logically equivalent, but our replacement
is much easier for the SMT solver to work with. A real world gadget like the
comparison gadget in libsnark has 16 constraints, and there are 11 constraints
representing x = 0 or x = 1 (see Appendix C).

A.2 Protocol of the Constraint Checker by the SMT Solver

(a) Parameters.

A set of statement equations E1 in size p where equation ei1 ∈
E1 and i ∈ [1, p].

A set of equations E2 converted from R1CS gates in size q where

ei2 ∈ E2 and i ∈ [1, q].

m private variables xi
1 in E1 where i ∈ [1,m] and n private

variables xi
2 in E2 where i ∈ [1, n] and n ≥ m. A set of

auxiliary input vi
x.

k public variables yi
1 in E1 and k public variables yi

2 in E2

where i ∈ [1, k]. A set of primary input vi
y.

A SMT Pro Solver S and Optimizer O with modulus P . 0 ≤ x1 <
P , 0 ≤ x2 < P , 0 ≤ y1 < P , and 0 ≤ y2 < P without

optimization.

(c) Equivalent comparison.
INPUTS: E1, E2, S.

OUTPUTS: Boolean result of function equality.

Set two solvers S1 and S2 ∈ S.

1. Comparing with public variables:

Add ei1 ∈ E1 where i ∈ [1, p] and range of xi
1, yi

1 to

S1.

Add ei2 ∈ E2 where i ∈ [1, q] and range of xi
2, yi

2 to S1.

Add xi
1 == xi

2 where i ∈ [1,m] to S1.

Add yi
1 ̸= yi

2 where i ∈ [1, k] to S1.
Check if S1 is SAT, UNSAT, or UNSURE as c1.

2. Comparing with Boolean variables:

Set b1 and b2 ∈ BOOLEAN

Add b1 = AND (E1) to S2.
Add b2 = AND (E2) to S2.

Add xi
1 == xi

2 where i ∈ [1,m] to S2.

Add yi
1 == yi

2 where i ∈ [1, k] to S2.
Add b1 ̸= b2 to S2.
Check if S2 is SAT, UNSAT, or UNSURE as c2.

3. Output (c1 == UNSAT AND c2 == UNSAT).

(b) Function valid check.
INPUTS: E1, E2, S.

OUTPUTS: Boolean result of function validation.

1. Check and solve the R1CS gates:

Set a solvers S1 ∈ S.

Add ei1 ∈ E1 where i ∈ [1, p] and range of xi
1, xi

2 to

S1.
Solve S1 and get the set of private variables solution as

Mi
1x

and set of public variables solution as Mi
1y

.

2. Check and solve the statement equations:

Set a solvers S2 ∈ S.

Add ei2 ∈ E1 where i ∈ [1, q] and range of yi
1, yi

2 to S2.
Solve S2 and get the set of private variables solution as

Mi
2x

and set of public variables solution as Mi
2y

.

3. Output vi
x ∈ Mi

1x
AND vi

x ∈ Mi
2x

AND vi
y ∈ Mi

1y
AND

vi
y ∈ Mi

2y
.

(d) Domain comparison.
INPUTS: E1, E2, S, O.

OUTPUTS: Boolean result of domain comparison.

1. Comparing upper and lower bond:

Add ei1 ∈ E1 where i ∈ [1, p] and range of xi
1, xi

2 to

O.

Add ei2 ∈ E1 where i ∈ [1, q] and range of yi
1, yi

2 to O.

Solve the upper bond u1 and lower bond l1 from O
Solve the upper bond u2 and lower bond l2 from O

2. Check if R1CS is valid outside statement domain:

Add NOT(AND(range of xi
1, xi

2)) to S.

Add ei2 ∈ E1 where i ∈ [1, q] and range of xi
2, yi

2 to S.

Check if S is SAT, UNSAT, or UNSURE as c.

3. Output (c == UNSAT AND u1 == u2 AND l1 == l2).

28 Y. Fan et al.

A.3 Example Constraint Checker

For the interested reader, we provide an example of our Constraint Checker to
show how a developer can run the tool. More examples can be found in our code.

x = z3.Int("x")

Indicate the public variables and private variables

allocate = ["x"]

variables = [x]

Indicate the statement of a proof

statement = [x < 60]

Provide the snark program to automatically extract the R1CS matrix

Developer can also manually provide the R1CS matrix

path = os.path.join(currentdir, "range")

Call the functions in ConstraintChecker to evaluate the correctness

fcmp = FunctionComparison(path)

fcmp.allocate(allocate)

fcmp.set_input_sizes(0)

fcmp.addVariables(variables)

fcmp.addStatement(statement)

fcmp.addGadget(gadget1.comparison_gadget("max")) ## Optional

fcmp.addRange(x, z3.And(x < 60))

fcmp.runComparisonTests()

A.4 Domain Gap Issues

The same upper bound and lower bound does not guarantee that statement
equations and R1CS gates have the same range. Figure 4c and 4d shows an
example of an unmatched domain with the same upper bound and lower bound.

Domain Gap in Statement Equations

The ground truth domain of statement equations is known and provided by
the user (which means we know the domain gap in the statement equations),
the Constraint Checker can use the SMT solver to find if the R1CS gates have
solution(s) outside the domain of statement equations (e.g. in the gap). If the
SMT solver returns SAT, then the domains’ of the statement equations and R1CS
gates do not match and thus they are not equivalent. This example corresponds
to Figure 4d.

Domain Gap in R1CS Gates

Since the domain of the R1CS gates is unknown, the Constraint Checker cannot
use the SMT solver to detect an unmatched domain as in the previous example.
However, in this instance, the prover likely will not be able to generate a proof
for a secret value in the gap because these secret values are not in the domain
of R1CS Gates even though they are valid solutions to the original statement
equations. That is, the set of allowable input values for the implemented R1CS
matrix is a subset of the set of input values for the desired proof statement.

SNARKProbe 29

Therefore, while this leads to undesirable behavior as the prover cannot gener-
ate proofs for the entire valid input range, it does not lead to any exploits or
“fake” proofs (i.e., the ability to generate a valid proof without knowledge of the
secret value). This example corresponds to Figure 4c.

We believe this type of gap is very rare, but we still try to find this issue by
producing a set of uniform random numbers as input for statement equations
and R1CS gates. If the R1CS gates do not have a solution but the statement
equations do have a valid solution for an input number, then there is a gap in
the statement equations, which is not equivalent to the statement equations’ do-
main. This test does not guarantee finding an existing domain gap, but a larger
set of numbers has higher confidence in finding any existing gaps.

(a) Upper Bound and Lower Bound Do
Not Match

(b) Upper Bound and Lower Bound
Match

(c) R1CS Gates Has Gap Between
Bound

(d) Statement Equations Has Gap
Between Bound

Fig. 4: Examples of Domain Comparison

B Additional Information for SnarkFuzzer

B.1 Example Ideal Model Files

Relative Path: knowledge_commitment/kc_multiexp.tcc

FUNCTION,2,99,127,kc_batch_exp_internal,IMPORTANT

CONDITION,4,117,124,2,IMPORTANT

CONDITION,5,119,123,2,IMPORTANT

RETURN,2,126,126,2,IMPORTANT

Fig. 5: Example file for the ideal branch file

tau,Fr,t,zk_proof_systems/.../r1cs_ppzksnark.tcc,252

rhoA,Fr,rA,zk_proof_systems/.../r1cs_ppzksnark.tcc,300

rhoB,Fr,rB,zk_proof_systems/.../r1cs_ppzksnark.tcc,301

Fig. 6: Example file for the ideal value file

30 Y. Fan et al.

B.2 PrettyPrint Example

(a) Content without PrettyPrint in libsnark

(b) Content without PrettyPrint in Bellman

(c) Content without PrettyPrint in arkworks

(d) Content with PrettyPrint in any library

Fig. 7: Content of variable type G1

C Equations comparison gadget Represents

(w14 ∗ (1 + (p− 1) ∗ w14)) mod p = 0

(1024 + w3 + 2 ∗ w4 + 4 ∗ w5 + 8 ∗ w6 + 16 ∗ w7 + 32∗
w8 + 64 ∗ w9 + 128 ∗ w10 + 256 ∗ w11 + 512 ∗ w12)

modp = w13

(w3 ∗ (1 + (p− 1) ∗ w3)) mod p = 0

(w4 ∗ (1 + (p− 1) ∗ w4)) mod p = 0

(w5 ∗ (1 + (p− 1) ∗ w5)) mod p = 0

(w6 ∗ (1 + (p− 1) ∗ w6)) mod p = 0

(w7 ∗ (1 + (p− 1) ∗ w7)) mod p = 0

(w8 ∗ (1 + (p− 1) ∗ w8)) mod p = 0

(w9 ∗ (1 + (p− 1) ∗ w9)) mod p = 0

(w10 ∗ (1 + (p− 1) ∗ w10)) mod p = 0

(w11 ∗ (1 + (p− 1) ∗ w11)) mod p = 0

(w12 ∗ (1 + (p− 1) ∗ w12)) mod p = 0

(1024− 1 ∗ w1 + w2) mod p = w13

(w15 ∗ (w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10+

w11 + w12)) mod p = w14

((1 + (p− 1) ∗ w14) ∗ (w3 + w4 + w5 + w6 + w7 + w8

+w9 + w10 + w11 + w12)) mod p = 0

w14 mod p = 1

