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Abstract—Anonymous credentials provide a powerful tool
for making assertions about identity while maintaining privacy.
However, a limitation of today’s anonymous credential systems is
the need for a trusted credential issuer — which is both a single
point of failure and a target for compromise. Furthermore, the
need for such a trusted issuer can make it challenging to deploy
credential systems in practice, particularly in the ad hoc network
setting (e.g., anonymous peer-to-peer networks) where no single
party can be trusted with this responsibility.

In this work we propose a novel anonymous credential scheme
that eliminates the need for a trusted credential issuer. Our
approach builds on recent results in the area of electronic cash
that, given a public append-only ledger, do not need a trusted
credential issuer. Furthermore, given a distributed public ledger, as
in, e.g., Bitcoin, our system requires no credential issuer at all and
hence is decentralized. Using such a public ledger and standard
cryptographic primitives, we propose and provide a proof of
security for a basic anonymous credential system that allows users
to make flexible identity assertions with strong privacy guarantees
without relying on trusted parties. Finally, we discuss a number
of practical applications for our techniques, including resource
management in ad hoc networks and prevention of Sybil attacks.
We implement our scheme and measure its efficiency.

I. INTRODUCTION

Traditionally, making statements about identity on the
Internet, whether actual assertions of identity (“I am Spartacus”)
or about one’s identity (“I am a gladiator”) involves centralized
providers who issue a credential attesting to that verification.
These organizations, which include Certificate Authorities, DNS
maintainers, or login providers like Google and Facebook,
play a large role in securing internet infrastructure, email, and
financial transactions. Our increasing reliance on these providers
raises concerns about privacy and trust.

Anonymous credentials, introduced by Chaum [22] and
developed in a line of subsequent works [4, 10, 14, 15, 17],
represent a powerful solution to this privacy concern: they
deprive even colluding credential issuers and verifiers of the
ability to identify and track their users. Although credentials
may involve direct assertions of identity, they may also be
used for a large range of useful assertions, such as “my TPM
says my computer is secure,” “I have a valid subscription for

content,” “I have a certain reputation,” or “I am eligible to
vote.”

Indeed, anonymous credentials have already seen several
practical applications. The most widely deployed example
is the Direct Anonymous Attestation (DAA) portion of the
Trusted Platform Module specification [2, 11]. DAA extends
the standard attestation capabilities of the Trusted Platform
Module to allow for anonymous attestations of TPM state and
to admit pseudonyms that are cryptographically bound to the
TPM’s internal identity certificate.

Unfortunately, current anonymous credential systems such
as DAA have a fundamental limitation: while identity certifi-
cation itself can be performed by a variety of centralized and
decentralized processes, all existing anonymous credential sys-
tems employ blind signatures and thus require the appointment
of a central, trusted party to issue the credentials. This issuer
represents a single point of failure and its signing key an obvious
target for compromise, either of which can seriously damage
the reliability of the credential system. Moreover, compromise
or issuer malfeasance can be particularly difficult to detect in
an anonymous credential system. As a result, in distributed
settings such as ad hoc or peer-to-peer networks, it may be
challenging to identify parties who can be trusted to play this
critical role or verify that the trust is well placed. The ability to
remove this trusted party or even verify their continued good
behavior is a distinct advantage.

These challenges raise two questions: 1) is it possible to
build practical anonymous credential systems where the process
of issuing credentials — if not the establishment of identity
itself — no longer depends on a trusted party? And 2) is it
possible to do so without the need for a central party?

Our contribution. In this paper we answer both questions in
the affirmative, proposing a new technique for constructing
anonymous credentials which does not rely on the continued
integrity of signature keys. A consequence of this result is
that our anonymous credential system can be instantiated on-
demand and operated by an ad hoc group of mistrustful peers.
We further show how to extend our credential scheme to create
updatable (e.g., stateful) anonymous credentials in which users
obtain new credentials based on changing properties of their
identity.

As a basic ingredient, our protocols require the existence of
a public append-only ledger. When the ledger is implemented
using trusted hardware, or a central party who is audited by
the rest of the network, we obtain a positive answer only to
the first question. To answer both questions in the affirmative
we require that 1) this ledger be maintained in a distributed
manner that need not require a trusted party or parties and 2) the
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identity claims we are issuing credentials on must be verifiable
by everyone participating in the system. We refer to this new
primitive as a decentralized anonymous credential system and
elaborate on its properties herein. We note that one promising
instantiation of a decentralized ledger is the “block chain”
construction used by Bitcoin [39] to implement a decentralized
digital currency. Not only can this technology be used to actually
construct a separate distributed ledger for identities, but using
existing techniques for embedding small amounts of data in
the block chain [23] we can leverage Bitcoin’s existing ledger
and protocol without modification to transform any reliable
storage mechanism (whether a central server or a distributed
mechanism like a DHT) into an append-only ledger.

We show that our techniques have several immediate applica-
tions. They include:

• Decentralized Direct Anonymous Attestation. We show
how to decentralize the Direct Anonymous Attestation
protocol [11], allowing individual collections of nodes in
an ad hoc or distributed system to securely assert properties
of their system state. We provide an exemplary description
of our decentralized (dDAA) construction.

• Anonymous resource management in ad hoc networks.
Peer-to-peer networks are vulnerable to impersonation
attacks, where a single party simulates many different
peers in order to gain advantage against the network [30].
We show that our credentials may be useful in mitigating
these attacks. The basic approach is to construct an
anonymous subscription service [13, 26, 36] where parties
may establish unique or costly pseudonyms (for example
by submitting a valid TPM credential or paying a sum
of digital currency). They can then assert possession on
their identity under a specific set of restrictions, e.g., a
limit to the number of requests they can make in each
time period.

• Auditable credentials. Our techniques may also be used
to extend existing centralized credential systems by allow-
ing for public audit of issued credentials. This helps to
guard against compromised credential issuers and allows
the network to easily detect and revoke inappropriate
credential grants. For example, in Direct Anonymous
Attestation (DAA) one might want to prevent a malicious
DAA authority from covertly granting certificates to users
who do not have a TPM or whose TPM did not attest.

Is decentralized credential issuance valuable? Before proceed-
ing to describe our protocols, it is worth asking whether
decentralizing the issuance of anonymous credentials is a
useful goal at all. After all, identity credentialing is frequently
a centralized process. One might ask: what do we gain by
decentralizing the issuance of anonymous credentials?

A first response to this question is that most anonymous
credential systems separate the process of issuing anonymous
credentials from the process of certifying the underlying identity
claims. Frequently, the claims being certified are publicly
verifiable. For example, each TPM ships with an Endorsement
Key (EK). Identity assertions using the EK could be publicly
verifiable merely by checking the certificate chain on the EK

certificate and engaging in a challenge/response protocol to
ensure the TPM can read nonces encrypted to the EK.1 The
problem is that transactions conducted using this certificate are
linked to the particular TPM device.

DAA solves this issue by having a central party issue
new anonymous credentials to a device. Organizations must
configure a local server to validate identity certifications and
issue the corresponding anonymous credential. All this server
does is transform a publicly verifiable identity assertion into an
anonymous one. This adds a cumbersome step to the anonymous
attestation system and also introduces a point of failure. Indeed,
this pattern of a trusted party transforming existing credentials
into an anonymous credential repeats in many settings. Allowing
for the distributed issue of anonymous credentials, even if they
can only certify centrally validated assertions, removes this
additional point of trust.

An obvious question is why, if the identity assertion is
publicly verifiable, do we need any transformation mechanism
at all? Why not present the information we used to convince the
authority to issue the credential to everyone? The issue is that
proving an identity statement may reveal far more information
than the statement itself. For example, a driver’s license can
prove to anyone that the bearer is over 21 but also reveals a
whole host of other information that the statement that “some
trusted mechanism says I am over 21” does not. Because
anonymous credentials add a layer of indirection between
certifying that an identity statement is true and actually showing
that statement, they fix this issue and avoid linking any use of
the credential to the information used to issue it.

A more interesting question is whether identity certification
itself can be decentralized. At least for certain claims, this
seems like a promising direction. For example, non–extended
validation SSL certificates are simply an assertion that the
bearer controls the specified domain.2 Similarly, DNS names
are generally an assertion that the owner was the first to register
that name and wants it mapped to certain values (e.g., an IP
address). In both cases, since these claims are publicly verifiable
by simple criteria, a distributed set of entities can easily validate
these claims for themselves.

In fact, a now largely unused fork of Bitcoin, Namecoin [40],
shows that such modifications are readily achievable. Namecoin
uses Bitcoin’s append-only ledger mechanism to maintain such
first-come first-serve name-value mappings. Individuals register
a name and an owning public key. Provided they are the first
to register that name, they can make arbitrary updates to the
associated value by signing them with the registered key. A DNS
system built atop this — DotBIT — is already in experimental
deployment. Namecoin can also be used to maintain mappings
from names to public keys. One could imagine more complex
semantics for allowing name registration — e.g., proofs of
work, proofs of payment, TPM attestations, publicly verifiable
proofs of storage and retrievability of files [49] — supporting

1Conceptually the TPM’s EK can sign a statement and forgo any interactive
issuing process. The TPM 1.1 spec places an arbitrary restriction against using
the EK RSA key for signing.

2In practice, CA’s usually verify that the bearer controls some administrator
email such as admin@domain or webmaster@domain.
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more sophisticated functionality than simple DNS.

A. Overview of Our Construction

We now provide a brief overview for our construction,
which is inspired by the electronic cash proposals of Sander
and Ta-Shma [47] and Miers et al. [38].

Issuing and showing credentials. The ability to establish iden-
tities and bind them to a public key ensures that users can assert
their identity in a non-anonymous fashion, simply by issuing
signatures from the corresponding secret key. Unfortunately,
this does not immediately show us how to construct anonymous
credentials, since traditional anonymous credentials consist of
a signature computed by a credential issuer. Since no central
party exists to compute the credential signature, this approach
does not seem feasible without elaborate (and inefficient) use
of threshold cryptography.3

We instead take a different approach. To issue a new
credential in our decentralized system, the user establishes
an identity and related attributes as described above. She then
attaches a vector commitment to her secret key skU along
with the identity and attribute strings that are contained within
her identity assertion. Finally, she includes a non-interactive
proof that the credential is correctly constructed, i.e., that the
attributes in the commitment correspond to those revealed in
the identity assertion. The network will accept the identity
assertion if and only if the assertion is considered correct and
the attached proof is valid.

At a later point an individual can prove possession of such
a credential by proving the following two statements in zero-
knowledge:

1) She knows a commitment Ci in the set (C1, . . . , CN ) of
all credentials previously accepted to the block chain.

2) She knows the opening (randomness) for the commitment.

In addition to this proof, the user may simultaneously
prove additional statements about the identity and attributes
contained within the commitment Ci. The challenge in the
above construction is to efficiently prove statements (1) and (2),
i.e., without producing a proof that scales with N . Our solution,
which adapts techniques from distributed e-cash systems [38],
circumvents this problem by using an efficient publicly-
verifiable accumulator [15] to gather the set of all previous
commitments together. Using this accumulator in combination
with an efficient membership proof due to Camenisch and
Lysyanskaya [16], we are able to reduce the size of this proof
to O(λ) for security parameter λ, rather than the O(N · λ)
proofs that would result from a naive OR proof.

Of course, merely applying these techniques does not lead to
a practical credential system. A key contribution of this work is
to supply a concrete instantiation of the above idea under well-
studied assumptions and to prove that our construction provides
for consistency of credentials (ensuring multiple users cannot

3A possibility is to use ring signatures [46], which do not require a
single trusted signer. Unfortunately, these signatures grow with the number of
participating signers and require expensive communication to generate.

pool their credentials), the establishment of pseudonyms, and a
long set of extensions built upon anonymous credentials. Last
but not least, we need to formally define and prove the security
of a distributed anonymous credential scheme and provide some
model for the distributed ledger. Our instantiation requires a
single trusted setup phase, after which the trusted party is no
longer required.4

B. Outline of This Work

The remainder of this work is organized as follows. In
the next section we discuss how to get a distributed bulletin
board. In §III we discuss specific applications for decentralized
anonymous credentials and argue that these systems can be
used to solve a variety of problems in peer-to-peer networks.
In §IV we define the notion of a decentralized anonymous
credential scheme and provide an ideal-world security definition.
In §V we describe the cryptographic building blocks of our
construction, and in §VI we provide an overview of our basic
construction as well as a specific instantiation based on the
Discrete Logarithm and Strong RSA assumptions. In §VII
we extend our basic construction to add a variety of useful
features, including k-show credentials, stateful credentials, and
credentials with hidden attributes. In §VIII we describe the
implementation and performance of a prototype library realizing
our credential system. Finally, in §IX, we show how to use our
library to build a distributed version of anonymous attestation.

II. REAL-WORLD BULLETIN BOARDS AND
DECENTRALIZED BULLETIN BOARDS

A core component of our system is an append-only bulletin
board we can use to post issued credentials. The board must
provide two strong security guarantees: (1) that credentials
must not be tampered with once added to the board and (2)
all parties will share a consistent view of the board. For the
distributed instantiation we additionally require (3) no party
can control the addition of credentials to the board. We detail
ways to achieve both distributed and centralized versions of
such a bulletin board here.

A. Bitcoin

Bitcoin is a distributed currency system [39], which has
grown since 2009 to handle between $2–$5 million USD/day
in transaction volume in a highly adversarial environment. The
heart of Bitcoin is the block chain, which serves as an append-
only bulletin board maintained in a distributed fashion by the
Bitcoin peers. The block chain consists of a series of blocks
connected in a hash chain.5 Every Bitcoin block memorializes
a set of transactions (containing an amount of bitcoin, a sender,
and a recipient) that are collected from the Bitcoin broadcast
network. Thus the network maintains a consensus about what
transactions have occurred and how much money each user
has.

Bitcoin peers, who are free to enter and leave the network,
compete to generate the next block by trying to calculate

4In §VII we discuss techniques for removing this trusted setup requirement.
5For efficiency reasons, the hash chain is actually a Merkle Tree.
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H(block || nonce) < t where H is a secure hash function and
t is an adjustable parameter. This process is known as mining,
and the difficulty level t is adjusted so that a block is created
on average every 10 minutes. When a block is generated, it
is broadcast to the network and, if valid, accepted as the next
entry in the block chain. Bitcoin and related systems provide
two incentives to miners: (1) mining a block (i.e., completing
the proof of work) entitles them to a reward6 and (2) nodes
can collect fees from every transaction in a block they mine.

While Bitcoin uses the hash chain for the specific purpose
of implementing an electronic currency, the usefulness of the
Bitcoin bulletin board has already been recognized by several
related applications. One spinoff of the Bitcoin concept is
Namecoin [40], a fork of Bitcoin that uses the block chain to
maintain key–value mappings. Namecoin is currently being used
to implement an experimental DNS replacement, dotBIT [29].
Users pay a small fee to register a key–value pair along with
a controlling public key. They can then make updates to the
pair provided (1) the updates are signed by that key and (2) if
necessary, they pay a transaction fee.7 Due to this flexibility
we use the Namecoin software in our implementations, but we
stress that the same techniques can be used with nearly any
hash chain based network, including mature deployments such
as Bitcoin.

Because of the way Bitcoin’s block chain is constructed, re-
cently added blocks maybe be removed, and, more importantly,
it is possible to introduce short-term forks in the block chain
that could be used to convince a single party that a poisoned-
pill credential was issued and hence identify them (see §IV-C
for more details). One solution, which is commonly used in
Bitcoin, is to wait until a block has several blocks on top of it
(known as confirmations) before using it. Typically, waiting six
blocks, or roughly 60 minutes, is sufficient. Of course, peers
are free to show credentials based off blocks sooner than that
as doing so does not make the show less secure. However it
comes at an increased privacy risk.

B. A Central Ledger

An alternative to using Bitcoin’s block chain technology
is to simply use a central service to maintain an append-only
ledger. This service must be trusted to give a consistent view
of the credential ledger to all parties. The most effective way
to do this is with trusted hardware (e.g., TPM attestations)
that ensures that (1) the list is append only and (2) the same
version of the list is shown to everyone for a given time period.

For lower security systems, it may be possible to simply
run a service that signs the list and have users audit the
system by periodically comparing the list they received. Similar
mechanisms exist for auditing SSL authorities (e.g., Google’s
Certificate Transparency project). Tampering would not only be
readily apparent but, due to the signature on the list, provable.
This, however, only acts as a deterrent to tampering as it
would not be detected until the next such comparison. As such
tampering can identify users when they authenticate, we only

6For Bitcoin this reward is set at 25 BTC but will eventually diminish and
be eliminated.

7Currently, neither Namecoin nor Bitcoin require significant transaction fees.

recommend this approach when either the consequences of such
a privacy breach are low or loss of reputation to an authority
when its malfeasance is subsequently detected is prohibitively
high.

C. A Hybrid Approach

A third approach is to use some reliable storage mechanism
(e.g., a central server or a robust DHT) to store credential
requests and insert checkpoints into Bitcoin’s actual block
chain to ensure the ledger is append only. This can be done
without any modification to Bitcoin. We can achieve this by
periodically (e.g., every 10 minutes) inserting the digest of the
ledger into the Bitcoin block chain. One way to accomplish
this is by using CommitCoin [23] which encodes information
into the keys used for transactions without destroying funds.8

Our one last technical challenge is to actually mark these
transactions as checkpoints for anyone to see. To accomplish
this we propose leveraging multi–sig transactions9 where one
key encodes the checkpoint with CommitCoin’s techniques
and another is a marker address that designates a checkpoint.
For a distributed storage service, this requires that the network
elect a node or set of nodes to hold the marker key and insert
checkpoints and elect a new set of nodes with a fresh marker
if the current set either fails to insert checkpoints or inserts
too many (either case is a denial of service attack and will not
compromise the integrity or anonymity of credentials).

III. APPLICATIONS

In this section we discuss several of the applications
facilitated by decentralized anonymous credentials. While we
believe that these credential systems may have applications in
a variety of environments, we focus specifically on settings
where trusting a central credential issuer is not an option or
where issued credentials must be publicly audited.

Mitigating Sybil attacks in ad hoc networks. Impersonation
attacks can have grave consequences for both the security and
resource allocation capabilities of ad hoc networks. A variety
of solutions have been proposed to address this problem. One
common approach is to require that clients solve computational
puzzles [7]. For example, for a challenge c and a difficulty
target t, find a nonce n such that H(c||n) < t. Solving such a
puzzle takes a meaningful amount of effort — thus deterring
Sybil attacks — and, as anyone can hash n and c, is publicly
verifiable. For a centralized service, this proof can be done once
per client on registration. In a peer-to-peer system, however,
far more complex mechanisms are needed to avoid having to
provide a proof of work per each pair of interacting peers [7].
We stress that the issue with distributed approaches is not the
lack of publicly verifiable puzzles but the number of puzzles
and who they are sent to. This is even more difficult if we
require the system to be anonymous.

8The naive approach replaces the public key specifying the recipient with
the hash of the data, making it impossible to retrieve the funds. CommitCoin
fixes this.

9Transactions that require signatures from multiple parties to redeem.
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Our solution to this problem is to use k-show anonymous
credentials. In this approach, peers establish a single credential
by solving a proof of work (similar to using a central service).
This allows the peer to obtain a credential that can be used a
limited number of times or a limited number of times within a
given time period. When a peer exceeds the k-use threshold
(e.g., by cloning the credential for a Sybil attack), the credential
can be identified and revoked. We note that this proposal is
a distributed variant of the anonymous subscription service
concept, which was first explored by Damgård et al. [26] and
Camenisch et al. [13].

Managing resource usage. In networks where peers both con-
tribute and consume resources, ensuring fair resource utilization
can be challenging. For example, a storage network might wish
to ensure peers provide as much storage as they consume [42] or
ensure that peers fairly use network bandwith [43]. This can be
problematic in networks that provide anonymity services (e.g.,
Tor), where peers may be reluctant to identify which traffic
they originated. An anonymous credential system allows peers
to identify their contributions to routing traffic in exchange
for a credential which they can then use to originate traffic.
Of course, we are restricted to issuing credentials on metrics
which peers can publicly establish. Thankfully this is a fairly
expressive set. Eigenspeed [50] allows peer-to-peer networks
to form accurate bandwidth estimates for all peers even in
the presence of active attackers. Similarly, there exist publicly
verifiable proofs of retrievability that can be used to verify
storage of a file [49]. Both of these are effective metrics for
resource management.

IV. DECENTRALIZED ANONYMOUS CREDENTIALS

A traditional anonymous credential system has two types
of participants: users and organizations. Users, who each have
a secret key skU , are known by pseudonyms both to each other
and organizations. NymO

A , for example, is the pseudonym of
user A to organization O. Decentralized anonymous credentials
have no single party representing the organization. Instead, this
party is replaced with a quorum of users who enforce a specific
credential issuing policy and collaboratively maintain a list of
credentials thus far issued. For consistency with prior work,
we retain the term “organization” for this group.

A distributed anonymous credential system consists of a global
transaction ledger, a set of transaction semantics, as well as
the following (possibly probabilistic) algorithms:

• Setup(1λ)→ params. Generates the system parameters.
• KeyGen(params)→ skU . Run by a user to generate her

secret key.
• FormNym(params,U,E, skU ) → (NymE

U , skNymE
U
).

Run by a user to generate a pseudonym NymE
U and an

authentication key skNymE
U

between a user U and some
entity (either a user or an organization) E.

• MintCred(params, skU , NymO
U , skNymO

U
, attrs, aux)

→ (c, skc, πM ). Run by a user to generate a request for
a credential from organization O. The request consists
of a candidate credential c containing public attributes
attrs; the user’s key skU ; auxiliary data aux justifying

the granting of the credential; and a proof πM that (1)
NymO

U was issued to the same skU and (2) the credential
embeds attrs.

• MintVerify(params, c,NymO
U , aux, πM ) → {0, 1}. Run

by nodes in the organization to validate a credential.
Returns 1 if πM is valid, 0 otherwise.

• Show(params, skU ,Nym
V
U , skNymV

U
, c, skc,CO) → πS .

Run by a user to non-interactively prove that a given
set of attributes are in a credential c in the set of issued
credentials CO and that c was issued to the same person
who owns NymV

U . Generates and returns a proof πS .
• ShowVerify(params,NymV

U , πS ,CO)→ {0, 1}. Run by
a verifier to validate a shown credential. Return 1 if πS
is valid for NymV

U , 0 otherwise.

We now describe how these algorithms are used in the
context of an anonymous credential system.

A. Overview of the Protocol Semantics

To realize the full anonymous credential system, we
integrate the above algorithms with a decentralized hash chain
based bulletin board as follows. We assume a bulletin board
such as Namecoin that provides a means for storing arbitrary
key–value pairs.10 We provide a concrete realization of our
protocols in §VI and §VIII.

Formulating a pseudonym. Prior to requesting a new credential,
the user executes the KeyGen algorithm to obtain skU and then
runs the FormNym algorithm to obtain a pseudonym for use
with this organization. This requires no interaction with the
bulletin board, hence the user can perform these actions offline.

Obtaining a credential. To obtain a credential, the user places
the organization name and some public identity assertion — for
example, a TPM attestation and AIK certificate chain — into
the auxiliary data field aux, then executes the MintCred routine
to obtain a credential and a signature of knowledge on that
information. She then formulates a transaction including both
the resulting credential and the auxiliary data and broadcasts it
into the hash chain network, along with (optionally) some sum
of digital currency to pay for the transaction fees. She retains
the secret portion of the credential.

Once received by the network, all parties can verify the
correctness of the credential and the identity assertion using the
MintVerify routine and whatever external procedures are needed
to verify the auxiliary data. This process can be conducted
directly by the network nodes, or it can be validated after the
fact by individual credential verifiers.

Showing a credential. When a user wishes to show a credential
to some Verifier, she first scans through the bulletin board to
obtain a set CO consisting of all candidate credentials belonging
to a specific organization. She next verifies each credential using
the MintVerify routine (if she has not already done so) and
validates the auxiliary identity certification information. She

10While this functionality is supported by default in Namecoin, it is also
possible to store arbitrary data in existing block chains such as the Bitcoin
chain.
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• RegNym(NymO
U , U,O): U logs into TP with skU to register a nym with organization O. If she does not have an account,

she first creates one. She gives TP a unique random string NymO
U for use as her nym with O. TP checks that the string is

indeed unique and if so stores (NymO
U , U,O) and informs U .

• MintCred(NymO
U , O, attrs, aux): U logs into TP authenticating with skU . If NymO

U is not U ’s nym with O or skU is
wrong, reject. Otherwise, TP checks that aux justifies issuing a credential under O’s issuing policy and if so generates a
unique random id ID and stores (NymO

U , U, ID, attrs). It then adds ID to its public list of issued credentials for O.
• ShowOnNym(NymO

U ,Nym
V
U , O, V, attrs,C): U logs into TP with skU . If NymO

U is not U ’s nym with O or NymV
U is

not U ’s nym with V , reject. Else, TP checks if the tuple (NymO
U , U) exists, if ID associated with that tuple is in the set

of credentials C that U provided, and if the given attributes attrs match the attributes associated with that tuple. If all
conditions hold, TP informs V that NymV

U has a credential from O in the set C. V then retrieves the set of credentials CO

issued by O from TP and accepts TP ’s assertion if and only if C ⊆ CO and O’s issuing policy is valid ∀c′ ∈ CO.
• GetCredList(O): TP retrieves the list of credentials for organization O and returns it.

Fig. 1: Ideal Functionality. Security of a basic distributed anonymous credential system.

then runs the Show algorithm to generate a credential, which
she transmits directly to the Verifier. The Verifier also collects
the set of credentials in CO and validates the credential using
the ShowVerify routine. She accepts the credential certification
if this routine outputs 1.

B. Security

We define our system in terms of an ideal functionality
implemented by a trusted party TP that plays the role that our
cryptographic constructions play in the real system. All com-
munication takes place through this ideal trusted party. Security
and correctness for our system comes from a proof that this
ideal model is indistinguishable from the real model provided
the cryptographic assumptions hold. Our ideal functionality is
outlined in Figure 1.

It consists of organizations who issue credentials and users
who both prove that they have these credentials and verify such
proofs. Organizations have only two things: 1) an efficient
and publicly evaluable policy, policyO, for granting credentials
and 2) an append-only list of credentials meeting that policy
maintained by the trusted party.

C. Trusting the Ledger

An obvious question is whether the append-only transaction
ledger is necessary at all. Indeed, if the list of valid credentials
can be evaluated by a set of untrusted nodes, then it seems that
a user (Prover) could simply maintain a credential list compiled
from network broadcasts and provide this list to the Verifier
during a credential show. However, this approach can enable
sophisticated attacks where a malicious Verifier manipulates
the Prover’s view of the network to include a poisoned-pill
credential that — although valid by the issuing heuristic — was
not broadcast to anyone else. When the Prover authenticates,
she has completely identified herself.

The distributed transaction ledgers employed by networks
such as Bitcoin and Namecoin provide a solution to this
problem, as their primary purpose is to ensure a shared view
among a large number of nodes in an adversarial network. In
practice this is accomplished by maintaining a high degree of
network connectivity and employing computational proofs of
work to compute a hash chain.

For an attacker to execute the poisoned credential attack
against such a ledger, she would need to both generate and
maintain a false view of the network to delude the Prover.
This entails both simulating the Prover’s view of the rest of
the network complete with all its computational power and
forging any assurances the Prover might expect from known
peers about the present state of the network. If the Prover
has a reasonable estimate of the actual network’s power (e.g.,
she assumes it monotonically increases), then an attacker must
actually have equivalent computational power to the entirety
of the network to mount such an attack. For the purposes of
this paper we assume such active attacks are impossible even
if the attacker controls a simple majority of the computational
power. Attackers are still free to attempt any and all methods
of retroactively identifying a user and mount any other active
attacks.

V. PRELIMINARIES

We make use of the following complexity assumptions and
cryptographic building blocks to construct our scheme.

A. Complexity Assumptions

The security of our scheme relies on the following two
complexity assumptions:

Strong RSA Assumption [3, 32]. Given a randomly generated
RSA modulus n and a random element y ∈ Z∗n, it is hard
to compute x ∈ Z∗n and integer exponent e > 1 such that
xe ≡ y mod n. We can restrict the RSA modulus to those of
the form pq, where p = 2p′ + 1 and q = 2q′ + 1 are safe
primes.

Discrete Logarithm (DL) Assumption [27]. Let G be a cyclic
group with generator g. Given h ∈ G, it is hard to compute x
such that h = gx.

B. Cryptographic Building Blocks

Zero-knowledge proofs. In a zero-knowledge protocol [34]
a user (the prover) proves a statement to another party (the
verifier) without revealing anything about the statement other
than that it is true. Our constructions use zero-knowledge proofs
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that can be instantiated using the technique of Schnorr [48], with
extensions due to, e.g., [9, 18, 20, 25]. We convert these into non-
interactive proofs by applying the Fiat-Shamir heuristic [31].
When we use these proofs to authenticate auxiliary data, we
refer to the resulting non-interactive proofs as signatures of
knowledge as defined in [21].

When referring to these proofs we will use the notation of
Camenisch and Stadler [19]. For instance, NIZKPoK{(x, y) :
h = gx ∧ c = gy} denotes a non-interactive zero-knowledge
proof of knowledge of the elements x and y that satisfy both
h = gx and c = gy. All values not enclosed in ()’s are
assumed to be known to the verifier. Similarly, the extension
ZKSoK[m]{(x, y) : h = gx ∧ c = gy} indicates a signature
of knowledge on message m.

Accumulators [38]. An accumulator allows us to combine
many values into one smaller value (the accumulator). We
then have a single element, called the witness, that allows us
to attest to the fact that a given value is actually part of the
accumulator. Our constructions use an accumulator based on
the Strong RSA assumption. The accumulator we use was first
proposed by Benaloh and de Mare [6] and later improved by
Baric and Pfitzmann [3] and Camenisch and Lysyanskaya [15].
We describe the accumulator using the following algorithms:

• AccumSetup(λ)→ params. On input a security parame-
ter, sample primes p, q (with polynomial dependence on
the security parameter), compute N = pq, and sample a
seed value u ∈ QRN , u 6= 1. Output (N, u) as params.

• Accumulate(params,C)→ A. On input params (N, u)
and a set of prime numbers C = {c1, . . . , ci | c ∈
[A ,B]},11 compute the accumulator A as uc1c2···cn mod
N .

• GenWitness(params, v,C) → ω. On input params
(N, u), a set of prime numbers C as described above, and
a value v ∈ C, the witness ω is the accumulation of all
the values in C besides v, i.e., ω = Accumulate(params,
C \ {v}).

• AccVerify(params,A, v, ω)→ {0, 1}. On input params
(N, u), an element v, and witness ω, compute A′ ≡
ωv mod N and output 1 if and only if A′ = A, v is
prime, and v ∈ [A ,B] as defined previously.

For simplicity, the description above uses the full calculation
of A. Camenisch and Lysyanskaya [15] observe that the
accumulator may also be incrementally updated, i.e., given
an existing accumulator An it is possible to add an element
x and produce a new accumulator value An+1 by computing
An+1 = Axn mod N .12

Camenisch and Lysyanskaya [15] show that the accumulator
satisfies a strong collision-resistance property if the Strong
RSA assumption is hard. Informally, this ensures that no p.p.t.
adversary can produce a pair (v, ω) such that v /∈ C and yet

11“Where A and B can be chosen with arbitrary polynomial dependence
on the security parameter, as long as 2 < A and B < A2." [16] For a full
description, see [16, §3.2 and §3.3].

12This allows the network to maintain a running value of the accumulator
and prevents individual nodes from having to recompute it [38].

AccVerify is satisfied. Additionally, they describe an efficient
zero-knowledge proof of knowledge that a committed value is
in an accumulator. We convert this into a non-interactive proof
using the Fiat-Shamir transform and refer to the resulting proof
using the following notation:

NIZKPoK{(v, ω) : AccVerify((N, u), A, v, ω) = 1}.

Verifiable Random Functions. A pseudorandom function
(PRF) [33] is an efficiently computable function whose output
cannot be distinguished (with non-negligible advantage) from
random by a computationally bounded adversary. We denote the
pseudorandom function as fk(·), where k is a randomly chosen
key. A number of PRFs possess efficient proofs that a value is
the output of a PRF on a set of related public parameters. Two
examples of this are the Dodis-Yampolskiy (DY) PRF [28] and
the Naor-Reingold PRF [41].

Pedersen Commitments. A commitment scheme allows a user
to bind herself to a chosen value without revealing that value
to the recipient of the commitment. This commitment to the
value ensures that the user cannot change her choice (i.e.,
binding), while simultaneously ensuring that the recipient of
the commitment does not learn anything about the value it
contains (i.e., hiding) [24]. In Pedersen commitments [45],
the public parameters are a group G of prime order q, and
generators (g0, . . . , gm). In order to commit to the values
(v1, . . . , vm) ∈ Zmq , pick a random r ∈ Zq and set C =
PedCom(v1, . . . , vm; r) = gr0

∏m
i=1 g

vi
i .

VI. A CONCRETE INSTANTIATION

We now provide a concrete instantiation of our construction
and prove the security of our construction under the Discrete
Logarithm and Strong RSA assumptions.

A. Overview of the Construction

Alice’s pseudonym with a given organization/user is an
arbitrary identity that she claims in a transaction. She tags this
value with a Pedersen commitment to her secret key sk and
signs the resulting transaction using a signature of knowledge
that she knows the secret key. There is no separate process for
registering a pseudonym: instead they are simply used in issue
and show to allow operations to be linked if necessary. Alice’s
credential c is a vector Pedersen commitment to both sk and a
set of public attributes attrs = a0, . . . , am, which Alice also
includes in her credential. To issue a credential, Alice provides
the network with a credential, a pseudonym, her attributes,
optionally some auxiliary data justifying the credential issue
(e.g., a proof of work that Alice is not a Sybil), and a proof
that (1) the commitment and the pseudonym contain the same
secret key and (2) the attributes are in some allowed set. If
all of this validates, the entry is added to the ledger. Alice
shows the credential under a different pseudonym by proving in
zero-knowledge that (1) she knows a credential on the ledger
from the organization, (2) the credential opens to the same sk
as her pseudonym, and (3) it has some attributes.
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• Setup(1λ)→ params. On input a security parameter λ, run AccumSetup(1λ) to obtain the values (N, u). Next generate
primes p, q such that p = 2wq + 1 for w ≥ 1. Let G be an order-q subgroup of Z?p, and select random generators g0, . . . , gn
such that G = 〈g0〉 = · · · = 〈gn〉. Output params = (N, u, p, q, g0, . . . , gn).

• KeyGen(params)→ sk . On input a set of parameters params, select and output a random master secret sk ∈ Zq .
• FormNym(params, sk)→ (Nym , skNym ). Given a user’s master secret sk , select a random r ∈ Zq and compute Nym =
gr0g

sk
1 . Set skNym = r and output (Nym , skNym ).

• MintCred(params, sk ,NymO
U , skNymO

U
, attrs, aux) → (c, skc, πM ). Given a nym NymO

U and its secret key skNymO
U

;

attributes attrs = (a0, . . . , am) ∈ Zq; and auxiliary data aux, select a random r′ ∈ Zq and compute c = gr
′

0 g
sk
1

m∏
i=0

gaii+2

such that {c prime | c ∈ [A ,B]}.13 Set skc = r′ and output (c, skc, πM ) where πM is a signature of knowledge on aux that
the nym and the credential both belong to the same master secret sk , i.e.:

πM = ZKSoK[aux]{(sk , r′, r) :

c = gr
′

0 g
sk
1

m∏
i=0

gaii+2 ∧ NymO
U = gr0g

sk
1 }

Finally, submit the resulting values (c, πM , attrs,Nym
O
U , aux) to the public transaction ledger.

• MintVerify(params, c, attrs,NymO
U , aux, πM )→ {0, 1}. Given a credential c, attributes attrs, a nym NymO

U , and proof
πM , verify that πM is the signature of knowledge on aux. If the proof verifies successfully, output 1, otherwise output 0.
The organization nodes should accept the credential to the ledger if and only if this algorithm returns 1.
• Show(params, sk ,NymV

U , skNymV
U
, c, attrs, skc,CO)→ πS . Given a user’s master secret sk ; a nym NymV

U between the
user and the verifier and its secret key skNymV

U
; a credential c and its secret key skc; the attributes (a0, . . . , am) used in the

credential; and a set of credentials C, compute A = Accumulate(params,CO) and ω = GenWitness(params, c,CO) and
output the following proof of knowledge:

πS = NIZKPoK{(sk , ω, r′, c, r,NymV
U ) :

AccVerify(params,A, c, ω) = 1 ∧ c = gr
′

0 g
sk
1

m∏
i=0

gaii+2 ∧ NymV
U = gr0g

sk
1 }

• ShowVerify(params,NymV
U , πS ,CO)→ {0, 1}. Given a nym NymV

U , proof of possession of a credential πS , and the set
of credentials issued by organization O CO, first compute A = Accumulate(params,CO). Then verify that πS is the
aforementioned proof of knowledge on c, CO, and NymV

U using the known public values. If the proof verifies successfully,
output 1, otherwise output 0.

Fig. 2: Our basic decentralized anonymous credential scheme.

B. The Construction

The full construction is provided in Figure 2. We use
Pedersen commitments and a Strong RSA based accumulator
to instantiate the core of the protocol. The proofs of knowledge
in the Show algorithm are conducted using Schnorr-style
proofs modified using the Fiat-Shamir heuristic as in previous
work [15, 48]. The implementation of the proofs are similar to
those used by Miers et al. in [38].

Theorem 6.1: The basic distributed anonymous credential
system described in Figure 2 is secure in the random oracle
model under the Strong RSA and the Discrete Logarithm
assumptions.

We provide a sketch of the proof of Theorem 6.1 in Ap-
pendix A.

VII. EXTENSIONS

We consider extending the basic system in several ways.

13“Where A and B can be chosen with arbitrary polynomial dependence
on the security parameter, as long as 2 < A and B < A2." [16]. For a full
description, see [16, §3.2 and §3.3].

A. k-show Credentials

Damgård et al. [26] first suggested a credential system where
users could only authenticate once per time period. Camenisch
et al. [13] independently proposed a significantly more efficient
construction that allows for up to k authentications per
time period, with the ability to revoke all cloned credentials
if a credential was used beyond this limit. Camenisch et
al. suggested that these techniques might be used to build
anonymous subscription services, allowing users to access a
resource (such as a website) within reasonable bounds. We
briefly show that these same techniques can be applied to our
basic credential system.

In the system of [13] an authority issues a credential on a
user’s secret seed s. To show a credential for the ith time in
validity period t, the user generates a serial number S using a
verifiable random function (VRF) as S = fs(0||t||i). She also
includes a non-interactive zero-knowledge proof that this serial
number is correctly structured.14 This technique can be applied

14The re-use of a credential would result in a repeated serial number, and
yet the nature of the VRF’s output (for an honest user) ensures that attackers
cannot link individual shows.

8



• Update(params, sk , c, skc,CO, update_relation, state′) → (c′, sk′c, πu). Given a credential c and associated secret key
sk c, a set of credentials CO, an updated state state′ = (s′0, . . . , s

′
m) ∈ Zq , and an update relation update_relation, generate

a fresh random serial number S′ ∈ Zq and random value r′ ∈ Zq to form a new credential c′ = gr
′

0 g
sk
1 g

S′

2

m∏
i=0

g
s′i
i+3 with

the aforementioned restrictions. Compute A = Accumulate(params,CO) and ω = GenWitness(params, c,CO). Output
(c′, sk′c, πu) where sk′c = (S′, state′, r′) and

πu = NIZKPoK{(sk , ω, c, state, r, c′, S′, state′, r′) :
AccVerify(params,A, c, ω) = 1

∧ c = gr0g
sk
1 g

S
2

m∏
i=0

gsii+3 ∧ c′ = gr
′

0 g
sk
1 g

S′

2

m∏
i=0

g
s′i
i+3

∧ update_relation(state, state′) = 1}

• UpdateVerify(params, c,CO, πu)→ {0, 1}. Given a stateful credential c, a credential set CO, and proof πu, output 1 if
πu is correct, the proved state transition is a legal one, and the serial number S was not previously used. Otherwise 0.

Fig. 3: Extensions for a stateful anonymous credential system. update_relation(. . .) = 1 denotes that the update encodes some
arbitrary state transition (e.g. ∀i s′i = si + 1).

to our construction provided we can securely store a seed for
the VRF. This is easy: the user simply generates a random
seed s and includes this value in the commitment she stores
in the transaction ledger. We note that for the trivial case of
one-time show credentials, we can simply reveal the seed. For
k-show, the user provably evaluates the VRF on the seed plus
a secret counter.15

B. Credentials with Hidden Attributes

In our basic construction of §VI, users provide a full list
of attributes when requesting and showing credentials. While
this is sufficient for many applications, there exist cases where
a user might wish to conceal the attributes requested or shown,
opting instead to prove statements about them, e.g., proving
knowledge of a secret key or proving that an attribute is within
a certain range. There are two simple ways to do this. First,
we can simply use multi-message commitments where each
message is an attribute. This increases the size of our zero-
knowledge proofs (they are linear in the number of messages
in a commitment) but does not change our schemes. A more
efficient construction is to encode the attributes in one single
value and then prove statements about that committed value
rather than reveal it. For example, one could prove that a given
bit corresponding to a certain attribute was set. One could also
use the first x bits for attribute one, the next x bits for attribute
two, etc. and use range proofs [8, 12, 35, 37] to reveal only
those attributes we want to display.

C. Stateful Credentials

A stateful anonymous credential system [24] is a variant
of an anonymous credential system where credential attributes
encode some state that can be updated by issuing new
credentials. This credential issuance is typically conditioned
on the user showing a previous credential and offering proof

15Camenisch et al. [13] describe a further extension that reveals the user’s
identity in the event of a credential double-show. We omit the details here
for space reasons but observe that the same technique can be applied to our
construction.

that the new credential should be updated as a function of the
original.

Intuitively, we can already have this capability quite easily
due to the fact that our credentials are non-interactively issued.
We can make stateful credentials simply by changing the policy
by which we issue credentials: to issue a credential in a new
state s1, we require a user to demonstrate that they had a
credential in state s0 and discard it by revealing its single use
serial number.

We construct a “single show” credential c embedding
some state state in the attributes and a serial number S.
Users are free to show c as many times as they like without
revealing the serial number. However, to update the state of
the credential, they must author a transaction that shows the
original credential and reveals the serial number S and “mint” a
new candidate credential c′ containing the updated state state′

(hidden inside of a commitment) and a proof that there exists
a valid relationship between the state encoded in c and the
new state in c′ (for example, that the attributes have been
incremented).

This requires only minor extensions to our basic scheme
composing the existing secure functionality. In this case we add
an Update algorithm that operates similarly to MintCred but
includes the earlier credential and a proof of its construction. A
valid proof of the existing credential now becomes a condition
for the organization accepting the updated credential into the
ledger. We provide a description of this new algorithm in
Figure 3.

VIII. INTEGRATING WITH PROOF-OF-WORK BULLETIN
BOARDS

We provide a basic implementation of our credential scheme
as a library and construct a basic example using Namecoin as
the bulletin board. Our prototype system allows users to prove
they have a (fresh) commitment to some attributes in an issued
credential. For our purposes it is sufficient to merely reveal
the content of that commitment (the attributes) in its entirety
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during a show. However, selectively disclosable attributes are
trivially realizable, see §VII-B.

A. Integration

Namecoin integration is straightforward. Namecoin provides
a built in mechanism for storing key–value pairs which, by
convention, have a namespace as a prefix. It also provides a
basic functionality to scan the list of existing names. Thus we
can scan for credentials, validate them, and then accumulate
them. It is then simply matter of generating and verifying
proofs against that computed accumulator value.

For Alice to obtain a credential, she:

1) Pays a very small fee (currently 0.0064 USD) to purchase
some name in the system’s namespace by registering a
public key as the owner of the name. This corresponds to
a transaction looking like:
1 665a... OP_2DROP
OP_DUP OP_HASH160 6c1abe34
OP_EQUALVERIFY OP_CHECKSIG

2) Prepares a fresh credential with some attributes and any
supporting documentation necessary for her identity claim
and stores the private portion of the credential.

3) Updates, using the public key from step 1, her registered
name to contain a credential and its supporting documen-
tation.
2 642f7... 7b...
OP_2DROP OP_2DROP
OP_DUP OP_HASH160
14d... OP_EQUALVERIFY OP_CHECKSIG

Once this update is confirmed, Alice has a fully formed
credential.

To show the credential to Bob, Alice:

1) Scans through the list of added names and retrieves all
candidate credentials.

2) Checks the supporting documentation for each candidate
and puts valid ones in C.

3) Runs Show with the public parameters, the private portion
of her credentials, and C and sends the result to Bob.

4) Bob does steps 1 and 2 and computes C himself.
5) Bob runs ShowVerify on Alice’s supplied credential and

C to verify it.

Alice has now proved she has a credential to Bob.

What the supporting documentation is and how it is verified
is an application specific problem. For some applications,
merely having paid the tiny registration fee may be sufficient
and no verification is necessary. For others, some digital signa-
ture may need to be verified or some assertion about resource
management (e.g., a proof of storage/retrievability) may need
to be verified. Without modifications to Namecoin/Bitcoin, any
assertion must be verifiable by all participants.16 We consider
one such application in the next section.

16With modifications, identity assertions can be validated as part of the
consensus protocol, abrogating relying parties from validating credential issue
and allowing the use of ephemeral supporting documentation.

B. Operating Cost

Namecoin is not free to use as purchasing a name costs a
small (less than 0.10 USD as of 12/1/2013) amount of money.
This fee is necessary both to prevent mass name hoarding
and to provide an economy to pay the miners who maintain
the block chain. This cost must minimally be paid by users
when creating a credential. For certain applications (e.g., k-
anonymous credentials), relying parties must also post data on
the block chain (e.g., double spend tags and serial numbers).
This, again, costs a small fee. As such, there are monetary
costs to using such an identity scheme.

C. Latency

A third consideration for the limited show credentials is
the latency of inserting items into the block chain. Because
completely meaningful proofs of work take time, some time
must elapse in any such system. Namecoin and Bitcoin both
aim to create blocks every 10 minutes. Thus, the naive wait
time from a block is about 5 minutes. Propagation delays in the
network and transaction volume, however, skew this distribution.
While historical data for Namecoin is not available, for Bitcoin
it takes slightly less than 9 minutes for a transaction to first be
confirmed. In practice, it then takes multiple confirmations to
solidify the transaction’s place in the block chain. Variants of
Bitcoin operate with faster confirmation times (e.g., Feathercoin,
which aims to get a block every 2.5 minutes), though it is not
yet clear if the more aggressive of these are entirely stable.

Given these latency constraints, our system, at least built on
top of proof of work based bulletin boards, is not suitable for
applications that require fast credential issue or quick detection
of multi-spends across mutually distrusting parties.17 A side
effect of this is that double spend prevention mechanisms for
fast transactions need to rely on detection and punishment (e.g.,
forfeiture of an escrowed value), not prevention.

D. Performance

We now examine the performance of our anonymous
credential system. There are four underlying operations: minting
a credential, verifying that the mint is correct, showing a
credential, and verifying that show. Showing and verifying
credentials also entail computing the accumulation of all or
all but one of the current credentials. However, both the
accumulator and the witnesses can be computed incrementally
as credentials are added: for each added credential, the nodes
must update both the accumulator and the witness for each
credential they intend to show. Because this cost is both
amortized for any individual credential show or verify, it does
not come into play. Hence, we measure the accumulation cost
separately and run our other benchmarks with a precomputed
witness and accumulator. We also give measurements for our
performance with different security parameters. See Figure 4.

All experiments were conducted on a 2010 MacPro with
16GB of RAM and two 2.4GHz quad core Xeon E5620
processors running OSX 10.8.3. Experiments were measured

17Obviously, parties could cooperate and maintain a faster store of double
spend tags, alleviating this problem.
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Fig. 4: Library performance as a function of parameter size.

in seconds via wall clock run time and were repeated for 500
iterations. Because of the speed of accumulating elements, we
measure accumulator time in seconds per 100 accumulations.

The primary performance bottleneck for our library is the
complexity of the proof of knowledge generated during the
credential show. Because this double discrete logarithm proof
uses cut-and-choose techniques, we need to perform between
80 and 128 iterations depending on the security parameter. This
entails approximately 800-1000 exponentiations. Luckily, the
same cryptographic requirements that force these iterations also
mandate that such computations are independent and hence
they can easily be parallelized. To exploit this, we make use
of OpenMP to parallelize proof generation and verification. As
shown in Figure 4c, this offers significant performance benefits.

Unfortunately, OpenSSL, which we use for the computations
underpinning our system, is not fully parallelizable due to
the fact that its PRNG is synchronous. The resulting locks
around RNG usage prevent us from effectively parallelizing
portions of our code for showing a credential. It also causes
problems when minting a credential. The resource intensive
portion of credential mint is creating commitments and then
testing if they are prime. This requires random numbers both
directly for commitment generation and indirectly for primality
testing which uses randomized Miller-Rabin. We believe further
performance gains could be realized by using a parallelizable
RNG (e.g., Intel’s RDRand instruction).

IX. EXAMPLE APPLICATION: DISTRIBUTED DIRECT
ANONYMOUS ATTESTATION (DDAA)

In the original TPM 1.1b specification [1], attestations
are signed by a TPM’s Attestation Identity Key (AIK). Each
TPM device can generate many AIKs, and prior to use each
AIK public key is signed by a trusted third party called a
Privacy CA, creating an AIK certification. The purpose of this
awkward mechanism is to provide a layer of indirection between
attestations and the manufacturer-specified keys programmed
into the device, such as the permanent Endorsement Key (EK).
By introducing a third party, it becomes possible to create many

identities and thus remove the risk that a given device could
be linked to all of its endorsements.

Direct Anonymous Attestation (DAA) [11], replaced the
privacy CA with a cryptographically sound group signature
scheme. Instead of signing attestations with an AIK, a TPM
signs attestations with a private key for a group signature
scheme that preserves the signer’s anonymity. The TPM obtains
the group signing key from a DAA authority by authenticating
non-anonymously to the authority with the AIK. Because the
group signature key is used anonymously, the authority can
never link its use to the AIK key that caused its issue. Unfor-
tunately, the integrity of this process depends fundamentally
on the integrity of the software running in the DAA authority.
This makes deploying a DAA instance somewhat problematic:
each organization is responsible for deploying and securing
this DAA authority, and any compromise of this server opens
the door for credential theft or denial of service. Given the
critical role envisioned for TPM attestations, this may inhibit
the deployment of DAA systems.

We propose a new TPM design that retains the privacy
advantages of DAA without the need to run a separate DAA
server for each deployment. The advantage of our approach is
that organizations may still maintain separate trust environments
for private assertions by TPM devices but without the need
to run a vulnerable separate server. Our solution requires one
modification to the existing TPM infrastructure, namely that
the TPM be updated to include a (non-anonymous) signing key,
with a permission level similar to that of the Endorsement
Key (EK). We will refer to this key as the Endorsement
Signing Key, or ESK, and assume that each new TPM will ship
with an Endorsement Signing Key Certificate signed by the
manufacturer.18 Given this modification we show how to use
our anonymous credential scheme as a replacement for DAA.

To obtain a credential in the new scheme, the TPM runs
the MintCred routine, securely store the resulting sk and

18The TPM Endorsement Key and Endorsement Key Certificate would
be sufficient for this role. However this key is limited by the specification
to performing a decryption-only role, largely for privacy reasons. Our sole
modification is to allow signing with this key, or a second key of a similar
nature.
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transmitting the resulting credential up to the block chain
along with a signature under the TPM’s Endorsement Signing
Key (ESK).19 This signature authenticates the credential as
having been generated by a valid TPM. Once the credential
and signature are validated, they can be accumulated by verifiers.
The TPM can later attest to a particular configuration by
running a modified version of Show that ensures πS is a
signature of knowledge on the attestation values (i.e., the
program configuration registers (PCRs) and an optional nonce).
Running ShowVerify with the appropriate modifications for
checking the signature of knowledge validates the attestation.
We stress that even though the TPM’s ESK (or AIK) is on the
ledger with the issued credential, showing a credential never
identifies which issued credential was used and hence does not
identify the ESK (or AIK).

X. RELATED WORK

Anonymous credentials. Introduced by Chaum [22] and
developed in a line of subsequent works (e.g., [10, 14, 17]),
anonymous credentials allow a user to prove that she has
a credential issued by some organization, without revealing
anything about herself other than that she has the credential.
Under standard security definitions, even if the verifier and
credential issuer collude, they cannot determine when the
credential was issued, who it was issued to, or when it was
or will be used. A common construction involves issuing a
credential by obtaining a signature from an organization on
a committed value (e.g., using the signature scheme of [15])
then proving in zero-knowledge that one has a signature under
the organization’s public key on that value. The contents of the
commitment may be revealed outright or various properties can
proved on the committed values (e.g., Alice can prove she is
over 21 years old). Extensions to this work describe credentials
that can only be shown anonymously a limited number of
times [13] or delegated to others [4]. All of these schemes
require issuing organizations to maintain a secret key.

Bitcoin and append-only ledgers. Our construction relies on
the existence of a distributed append-only transaction ledger,
a technology that makes up the core component of the Bitcoin
distributed currency: the log of all currency transactions called
the block chain [39]. These ledgers are maintained by an ad
hoc group of network nodes who are free to enter and leave
the network (there is no key provisioning necessary for them
to join). A typical transaction ledger consists of a sequence of
blocks of data that are widely replicated among the participating
nodes, with each block connected to the previous block using
a hash chain. Nodes compete for the opportunity to add new
blocks of transactions to the ledger by producing a partial
hash collision over the new data and the hash of the last block
in the chain. The hash collision serves two purposes: first,
it is a computationally-difficult-to-forge authenticator of the
ledger and second, since finding a partial hash collision involves
substantial computational effort, the peer who finds it is chosen
“at random” with a probability proportional to the rate at which

19In principle this ESK signature can be replaced with an AIK signature
with no changes to the TPM mechanism, but AIKs will have to be issued by
a trusted third party.

he can compute such partial collisions. As a result, an ad hoc
group of mutually distrusting and potentially dishonest peers
can correctly manage such a ledger provided that a majority
of their computational power is held by honest parties. Recent
experience with Bitcoin and Namecoin provides evidence that
this assumption holds in practice.

Namecoin. Namecoin [40] is a decentralized identity system
that uses the same block chain technology as Bitcoin. Name-
coin’s primary purpose is to associate names with arbitrary
data. A user can claim a name provided (1) they pay the price
in NMC for it and (2) it is unclaimed. At that point, an entry
is inserted into the block chain mapping the name to a public
key and some arbitrary data. The public key allows the owner
to update the data by signing a new record. The data allows for
various uses. If it is an IP address, then one has a distributed
DNS system (such a system, .bit, is already deployed). On
the other hand, if it is a public key, the result is a basic
PKI. The first-come first-served nature of Namecoin seems
somewhat anachronistic, however it replicates in miniature the
way normal DNS names are generally assigned, where the
first person to claim the name gets it. Similarly, standard (non–
extended validation) SSL certificates for a domain are typically
issued to anyone who can demonstrate control of a domain
(usually via an email to admin@domain).

XI. CONCLUSION

In this work we constructed a distributed anonymous
credential system and several extensions. Our constructions are
secure in the random oracle model under standard cryptographic
assumptions provided there exists a trustworthy global append-
only ledger. To realize such a ledger we propose using the block
chain system already in real world use with the distributed
cryptographic currency Bitcoin. Although we are limited in the
class of identity assertions we can certify, we argue that several
basic assertions are of particular use in peer-to-peer systems,
as they can be used to mitigate Sybil attacks, ensure fair
resource usage, and protect users’ anonymity while verifying
their computer’s correctness.

Future work. We leave two open problems for future work.
First, the proofs in this work assumed the security of a
transaction ledger. We leave a precise formal model of the
ledger, which attacks are allowable, and what bounds may be
placed on their consequence as an open problem. Second, the
efficiency of our construction can be improved. Although all of
our algorithms are efficient (in that they do not scale with the
size of the ledger), the need for double-discrete logarithm proofs
leads to somewhat large proof sizes when showing a credential
(roughly 50KB for modest parameters). Our construction may
be optimized for certain applications that do not require the
full flexibility of our construction. For example, schemes not
requiring selective disclosure of credentials require about half
that proof size. At the same time, we hope that advances
in bilinear accumulators, mercurial commitments, or lattice
based techniques may provide a more efficient construction.
We are particularly hopeful that generic work in verifiable
computation [5, 44] will offer drastically smaller proof sizes
without resorting to bespoke proofs and protocols.
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APPENDIX A
PROOF SKETCH OF SECURITY FOR OUR BASIC SYSTEM

We now provide a sketch of the proof of security for our
basic distributed anonymous credentials system.

Our basic approach is to show that for every real-world
adversary A against the credential system, we can construct an
ideal-world adversary S against the ideal-world system such
that the transcript of A interacting with the real system is
computationally indistinguishable from the transcript produced
by A interacting with S . We assume a static corruption model
in which the adversary controls some set of users and leave a
proof in the adaptive corruption model for future work. For this
sketch we also assume that our zero-knowledge signatures of
knowledge include an efficient extractor and simulator and that
the params are created using a trusted setup process. Note
that in the random oracle model this assumption holds for the
Fiat-Shamir proofs we employ, provided we conduct the proofs
sequentially.

Our proof assumes the existence of a global, trusted
transaction ledger, which we use as a black box. We leave
a complete proof that considers this construction and models
it to future work.

We begin by sketching the simulator S for our system.

A. Description of the Simulator

Minting a credential. When a user controlled by the adversary
with nym NymO

U wants a credential, the user first generates
(c, πM , attrs). When the simulator receives notification of this,
it first verifies that the credential and proof are valid and
meet the organization’s policy. If so it employs the knowledge
extractor for the signature of knowledge on πM to obtain
(sk , aux).

The simulator then checks if it has a record of
(U, sk ,NymO

U ) on its list of users. If the user with key sk
and nym NymO

U exists, then S retrieves skU associated with

(U, sk ,NymO
U ) and proceeds. If it is not on the list, the

simulator checks if it has previously seen a user with key
sk . If the user with key sk is not present, then the simulator
creates a user U and runs RegNym(NymO

U , U,O) to register
NymO

U and obtain skU for further interactions with TP . S
then stores (U, sk , skU ,Nym

O
U ) in its list of users controlled

by the adversary. If a user U with key sk exists, then it runs
RegNym(NymO

U , U,O) to register NymO
U and adds NymO

U

to U ’s record.

Once the simulator has registered the nym or verified it
already exists, it runs MintCred(NymO

U , O, attrs, aux). The
simulator then transmits the credential information to the trusted
store and acknowledges the credential’s issuance. S stores
(sk ,NymO

U , attrs, aux, c, πM ) in its list of granted credentials.

When an honest user, through TP , wants to establish a
credential, the simulator creates a credential c (using the
publicly available attrs) and uses the simulator for the signature
of knowledge πM to simulate the associated proof. It then
transmits the credential information (c, πM , attrs) to the trusted
store.

Showing a credential. When a user controlled by the adversary
wants to show a credential from organization O to verifier V
with which it has nyms NymO

U and NymV
U respectively, the

user first generates πS . When the simulator receives notification
of this, it verifies the proof as in the real protocol (rejecting
if it is invalid). If the show verifies, it runs the knowledge
extractor for the proof of knowledge on πS to get sk .

The simulator then checks if it has a record of (U, sk ,
NymO

U ,Nym
V
U ) on its list of users. If the user with key sk

and nyms NymO
U and NymV

U exists, then S retrieves skU
associated with (U, sk ,NymO

U ) and proceeds. If the record
does not exist, either in part or in full, the simulator checks
if it has previously seen a user with key sk . If the user with
key sk is not present, then the simulator creates a user U and
runs RegNym(NymO

U , U,O) and RegNym(NymV
U , U, V ) to

register NymO
U and NymV

U and obtain skU for further inter-
actions with TP . S then stores (U, sk , skU ,Nym

O
U ,Nym

V
U )

in its list of users controlled by the adversary. If a user U
with key sk exists, then it runs RegNym(NymO

U , U,O) (resp.
RegNym(NymV

U , U, V )) to register NymO
U (resp. NymV

U ) and
adds NymO

U (resp. NymV
U ) to U ’s record.

Now, the simulator S runs ShowOnNym(NymO
U ,Nym

V
U ,

O, V,C) where C is obtained by the simulator through a call
to GetCredList(O).

When an honest user (through TP ) wants to show a
credential to a verifier V controlled by the adversary, the
simulator generates a random prime commitment and runs
the zero-knowledge simulator for πS to simulate a proof that
it then sends to V .

1) Proof (sketch) of a Successful Simulation: Our simulation
is computationally indistinguishable from the real protocol if
the Strong RSA and the Discrete Logarithm assumptions hold.
While we do not provide a full proof here due to space reasons,
we provide an overview of the argument for security.
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We first begin by discussing the signatures/proofs πM
and πS . Under the Discrete Logarithm assumption, πM is
a computational zero-knowledge signature of knowledge on
aux of the values sk , r, and r′ such that the nym NymO

U

and the credential c both belong to the same master secret
sk . The proof is constructed using standard techniques in
the random oracle model [48], and the resulting proofs are
(at least) computationally zero knowledge. An attacker who
forges this proof to spend a new coin would violate the
soundness guarantee of the proof system. Alternatively, an
attacker might forge this message by identifying a collision
on the commitments, which occurs with negligible probability
under the Discrete Logarithm assumption [45]. In the event that
this occurs, we can use the extractor for the zero knowledge
proof to obtain the collision with all but negligible probability.

Under the Strong RSA and Discrete Logarithm assumptions,
πS is a statistical non-interactive zero-knowledge proof of
knowledge of the values sk , ω, c, NymV

U , r, and r′ such that ω
is a witness that c is in the accumulator A and nym NymV

U and
the credential c both belong to the same master secret sk . This
proof is again constructed using standard techniques [15, 48]
similar to the proofs used by Miers et al. in [38]. In order
to forge such a proof, the adversary would need to either
find a collision on the commitments or forge an accumulator
membership proof. We previously discussed how the first case
occurs with negligible probability. The second case occurs
with negligible probability under the Strong RSA assumption
due to [15]. See the full version of the paper for a formal
treatment/reduction of these statements.

Intuitively, we can now see that the simulator will fail with
at most negligible probability because it deals solely with zero-
knowledge signatures of knowledge and zero-knowledge proofs
of knowledge, which have efficient extractors and simulators.
Our proofs πM and πS have knowledge extractors that succeed
with probability 1 − ν(λ) for some negligible function ν(·).
Since signatures and proofs are the sole point of failure for our
simulator described above, it fails with negligible probability.
Because the adversary only sees the simulated zero-knowledge
proofs and signatures, and the simulated signatures and proofs
are computationally indistinguishable from legitimate ones, the
adversary cannot distinguish a simulated transcript from the real
protocol except with negligible advantage. Hence the adversary
cannot distinguish between an interaction with the simulator
and the real protocol.

We note that the Pedersen commitments we use are non-
standard in that we output only commitments that are prime. We
stress that these commitments remain information theoretically
hiding and computationally binding under the assumption that
the Discrete Logarithm assumption holds in 〈g〉.
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