
148 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

research highlights

DOI:10.1145/3266291

Where Did I Leave My Keys?
Lessons from the Juniper Dual EC Incident
By Stephen Checkoway, Jacob Maskiewicz, Christina Garman, Joshua Fried, Shaanan Cohney,
Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla, and Hovav Shacham

Abstract
In December 2015, Juniper Networks announced multiple
security vulnerabilities stemming from unauthorized code
in ScreenOS, the operating system for their NetScreen
Virtual Private Network (VPN) routers. The more sophisti-
cated of these vulnerabilities was a passive VPN decryption
capability, enabled by a change to one of the parameters
used by the Dual Elliptic Curve (EC) pseudorandom num-
ber generator.

In this paper, we described the results of a full inde-
pendent analysis of the ScreenOS randomness and VPN
key establishment protocol subsystems, which we carried
out in response to this incident. While Dual EC is known
to be insecure against an attacker who can choose the
elliptic curve parameters, Juniper had claimed in 2013
that ScreenOS included countermeasures against this
type of attack. We find that, contrary to Juniper’s public
statements, the ScreenOS VPN implementation has been
vulnerable to passive exploitation by an attacker who
selects the Dual EC curve point since 2008. This vulner-
ability arises due to flaws in Juniper’s countermeasures
as well as a cluster of changes that were all introduced
concurrently with the inclusion of Dual EC in a single
2008 release. We demonstrate the vulnerability on a real
NetScreen device by modifying the firmware to install
our own parameters, and we show that it is possible to
passively decrypt an individual VPN session in isolation
without observing any other network traffic. This inci-
dent is an important example of how guidelines for ran-
dom number generation, engineering, and validation
can fail in practice. Additionally, it casts further doubt on
the practicality of designing a safe “exceptional access”
or “key escrow” scheme of the type contemplated by law
enforcement agencies in the United States and elsewhere.

1. INTRODUCTION
In December 2015, Juniper announced that an “internal
code review” revealed the presence of “unauthorized code
in ScreenOS that could allow a knowledgeable attacker […]
to decrypt VPN connections.” In response to this, Juniper
released patched versions of ScreenOS, the operating system
powering the affected NetScreen devices, but has declined
to disclose any further information about the intrusion and
vulnerability.

Immediately following Juniper’s advisory, security
researchers around the world—including our team—
began examining the ScreenOS firmware to find the vul-
nerabilities Juniper had patched. They found that the
change that rendered ScreenOS encryption breakable did

The original version of this paper is entitled “A Systematic
Analysis of the Juniper Dual EC Incident” and was
published in Proceedings of the 23rd ACM Conference on
Computer and Communications Security (Vienna, 2016),
468–479.

nothing but replace a few embedded constants in Juniper’s
pseudorandom number generator. The reason why this
results in an attacker being able to decrypt connections
is Juniper’s design decision to use the NSA-designed Dual
EC Pseudorandom Number Generator (PRNG).4, 12 Dual EC
has the problematic property that an attacker who knows
the discrete logarithm of one of the input parameters (Q)
with respect to a generator point, and is able to observe
a small number of consecutive bytes from the PRNG,
can then compute the internal state of the generator and
thus predict all future output. Thus, it is critical that the
discrete logarithm of Q remain unknown. The changes to
the ScreenOS code replaced Juniper’s chosen Q with one
selected by the attacker.

From one perspective, the Juniper incident is just a par-
ticularly intricate software vulnerability, which is interest-
ing on its own terms. More importantly, however, it sheds
light on the contentious topic of “exceptional access”
technologies which would allow law enforcement officials
to gain access to the plaintext for encrypted data. A key
component of any exceptional access system is restricting
access to authorized personnel, with the most commonly
proposed approach being encrypting the target keying
material under a key (or keys) known to law enforcement
which are then kept under tight control. The use of Dual
EC in ScreenOS creates what is in effect an exceptional
access system with Q as the public key and the discrete log
of Q as the private decryption key. Historically, analysis of
exceptional access systems has focused on the difficulty
of controlling the decryption keys. In the specific case of
ScreenOS, we do not know whether anyone had access to
the corresponding key, but the Juniper incident starkly
illustrates another risk: that of an attacker modifying a sys-
tem’s exceptional access capability in order to replace the
authorized public key with one under her control, thus
turning an exceptional access system designed for use
by law enforcement into one which works for the attacker.

In this paper, we attempt to tell the story of that inci-
dent, pieced together by forensic reverse engineering of
dozens of ScreenOS firmware revisions stretching back
nearly a decade, as well as experimental validation on
NetScreen hardware. We first provide background on Dual
EC itself, then examine the way that it is used in ScreenOS
and why this leads to such a severe vulnerability, then

http://dx.doi.org/10.1145/3266291

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 149

move to examine the history of the incident itself, and
finally consider what lessons we can draw from this story.

2. DUAL EC IN SCREENOS
Cryptographic systems typically include deterministic
PRNGs that expand a small amount of secret internal state
into a stream of values which are intended to be indistin-
guishable from true randomness. An attacker able to pre-
dict the output of a PRNG will often be able to break any
protocol implementation dependent on it, for instance
by being able to predict cryptographic keys (which should
remain secret) or nonces (which should often remain
unpredictable).

Dual EC is a cryptographic PRNG standardized by
National Institute of Standards and Technology (NIST)
which is based on operations on an elliptic curve. Dual
EC has three public parameters: the elliptic curve and
two points on the curve called P and Q. ScreenOS uses
the elliptic curve P-256 and sets P to be P-256’s stan-
dard generator as specified in NIST Special Publication
800-90.4 That standard also specifies the Q to use, but
ScreenOS uses Juniper’s own elliptic curve point Q
instead. The finite field over which P-256 is defined has
roughly 2256 elements. Points on P-256 consist of pairs
of 256-bit numbers (x, y) that satisfy the elliptic curve
equation. The internal state of Dual EC is a single 256-bit
number s.

Let x(×) be the function that returns the x-coordinate
of an elliptic curve point; || be concatenation; lsbn(×) be
the function that returns the least-significant n bytes of
its input in big-endian order; and msbn(×) be the func-
tion that returns the most-significant n bytes. Starting
with an initial state s0, one invocation of Dual EC imple-
mentation generates a 32 pseudorandom byte output
and a new state s2 as

s1 = x(s0 P)� r1 = x(s1Q)

s2 = x(s1 P)� r2 = x(s2Q)

output = lsb30(r1) || msb2(lsb30(r2)),

where sP and sQ denote scalar multiplication on P-256.
In 2007, Shumow and Ferguson showed16 that Dual EC

was subject to a state reconstruction attack by an adversary
who knows the value d such that P = dQ and who can observe
a single output value. The key insight is that multiplying the
point s1Q by d yields the internal state x(d × s1Q) = x(s1P) = s2.
Although s1Q is itself not known, 30 of the 32B of its
x-coordinate (namely r1) constitute the first 30B of output, and
the attacker can guess the remaining bytes; the x-coordinate of
an elliptic curve point determines its y-coordinate up to sign.

Assuming that the attacker knows the discrete log of Q,
the major difficulty is recovering a complete output value;
an attacker who only knows part of the value must exhaus-
tively search the rest. The number of candidates grows
exponentially as fewer bytes of r1 are revealed, and recovery
is intractable with fewer than about 26B. In ScreenOS, Dual
EC is always used to generate 32B of output at a time, and
therefore the attack is straightforward. When 30B of r1 are

1 char block[8], seed[8], key[24]; // X9.31 vars
2 char output[32]; // prng_generate output
3 unsigned int index, calls_since_reseed;
4
5 void prng_reseed(void) {
6 calls_since_reseed = 0;
7 if (dualec_generate(output, 32) != 32)
8 error("[...] unable to reseed\n", 11);
9 memcpy(seed, output, 8);

10 index = 8;
11 memcpy(key, &output[index], 24);
12 index = 32;
13 }
14
15 void prng_generate(void) {
16 int time[2] = { 0, get_cycles() };
17 index = 0;
18 ++calls_since_reseed;
19 if (!one_stage_rng())
20 prng_reseed();
21 for (; index <= 31; index += 8) {
22 // FIPS checks removed for clarity
23 x9_31_generate_block(time, seed, key, block);
24 // FIPS checks removed for clarity
25 memcpy(&output[index], block, 8);
26 }
27 }

available, as in Juniper’s implementation, the attacker must
consider 216 candidate points. From the attacker’s perspec-
tive, this is the optimal situation.

Importantly, as far as is publicly known, Dual EC is secure
against an attacker who knows P and Q but does not know d,
as recovering d would require the ability to compute discrete
logarithms, which would break elliptic curve cryptography
in general.

3. THE SCREENOS PRNG SUBSYSTEM
Listing 1 shows the decompiled source code for the func-
tions implementing the PRNG in ScreenOS version 6.2.0r1;
the same function is present in other releases in the 6.2 and
6.3 series. It consists of two PRNGs, Dual EC and ANS X9.31
(Appendix A.2.4; Ref.2).

Note that identifiers such as function and variable names
are not present in the binary; we assigned these names based
on our analysis of the apparent function of each symbol.
Similarly, specific control flow constructs are not preserved
by the compilation/decompilation process. For instance,
the for loop on line 21 may in fact be a while loop or some
other construct in Juniper’s source code. Decompilation does,
however, preserve the functionality of the original code. For
clarity, we have omitted Federal Information Processing
Standards (FIPS) checks that ensure that the X9.31 genera-
tor has not generated duplicate output.

A superficial reading of the prng_generate() func-
tion suggests that Dual EC is used only to generate keys
for the X9.31 PRNG, and that it is the output of X9.31 that
is returned to callers (in the output global buffer). The
Dual EC vulnerability described in Section 2 requires
raw Dual EC output, so it cannot be applied. Indeed, a
2013 knowledge base article by Juniper8 claims exactly
this. (We discuss this knowledge base article further in
Section 6.)

Listing 1: The core ScreenOS 6.2 PRNG subroutines.

research highlights

150 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

and from Dual EC; and PRNG output is placed in a caller-
supplied buffer instead of a global variable.

In addition, the ScreenOS 6.1 PRNG subsystem produces
20B at a time, not 32B as in ScreenOS 6.2 and 6.3. We discuss
the significance of this difference in the next section.

4. INTERACTION WITH IKE
ScreenOS implements the Internet Protocol Security (IPsec)
VPN protocol. To choose the keys that protect a VPN session,
the client and the ScreenOS device perform an Internet Key
Exchange (IKE)7, 11 handshake.

Listing 2: The core ScreenOS 6.1 PRNG subroutine.
In the same version 6.2 release of ScreenOS that added Dual
EC (Section 2) and modified the PRNG subsystem to expose
raw Dual EC output (Section 3), Juniper made a cluster of
IKE implementation changes that make it possible for an
attacker who knows the Dual EC secret d to decrypt VPN
connections. In the remainder of these sections, we provide
a brief description of the relevant features of IKE and then
explain the impact of these changes.

4.1. Overview of IKE
IKE and its successor IKEv2 are traditional Diffie–Hellman-
based handshake protocols in which two endpoints
(dubbed the initiator and the responder) establish a Security
Association (SA) consisting of parameters and a set of keys
used for encrypting traffic. Somewhat unusually, IKE con-
sists of two phases:

Phase 1 establishes an “IKE SA” that is tied to the end-
points but not to any particular class of non-IKE network
traffic. In this phase, the two sides exchange Diffie–Hellman
(DH) shares and nonces, which are combined to form the
derived keys. The endpoints may be authenticated in a vari-
ety of ways including a signing key and a statically config-
ured shared secret.

Phase 2 establishes SAs that protect non-IKE traffic
(typically IPsec). The IKE messages for this phase are pro-
tected with keys established in the first phase. This phase
may involve a DH exchange but may also just consist of an
exchange of nonces, in which case the child SA keys are
derived from the shared secret established in the first phase.

IKEv2 refers to these phases as “Initial Exchange” and
“CREATE_CHILD_SA,” respectively; for simplicity we will
use the IKEv1 Phase 1/Phase 2 terminology in the rest of
this article.

An attack on IKE where ScreenOS is the responder
would proceed as follows: (1) using the responder nonce
in the first phase, compute the Dual EC state; (2) predict
the responder’s DH private key and use that to compute
the DH shared secret for the IKE SA, which is used to
generate the first set of keys; (3) using these traffic keys
decrypt the second phase traffic to recover both initia-
tor and responder nonces and public keys; (4) recover
the responder’s private key, either by running Dual EC
forward (the best case scenario) or by repeating the Dual
EC attack using the new responder nonce; (5) use the
responder’s private key and the initiator’s public key to
compute the shared secret for the second phase SA and

In this reading, the prng_reseed() function is occa-
sionally invoked to reseed the X9.31 PRNG state. This func-
tion invokes the Dual EC generator, directing its output to
the 32B buffer output. From this buffer, it extracts a seed
and cipher key for the X9.31 generator. With X9.31 seeded,
the prng_generate() function generates 8B of X9.31
output at a time (line 23) into output, looping until it has
generated 32B of output (lines 21–26). Each invocation of
x9_31_generate_block updates the X9.31 seed state in
the seed buffer.

The straightforward reading given above is wrong.
First, and most importantly, index, the control variable for

the loop that invokes the X9.31 PRNG in prng_generate()
at line 21, is a global variable. The prng_reseed() function,
if called, sets it to 32, with the consequence that, whenever
the PRNG is reseeded, index is already greater than 31
at the start of the loop and therefore no calls to the X9.31
PRNG are executed.a

Second, in the default configuration, one_stage_rng()
always returns false, so prng_reseed() is always called.
In the default configuration, then, the X9.31 loop is never
invoked. (There is an undocumented ScreenOS command,
set key one-stage-rng, that makes one_stage_
rng() always return true; running this command induces a
different PRNG vulnerability, discussed in the full version
of this paper.5)

Third, the prng_reseed() happens to use the output
global buffer as a staging area for Dual EC output before it
copies parts of that output to the other global buffers that
hold the X9.31 seed and key. This is the same global buf-
fer that the prng_generate() function was supposed
to fill with X9.31 output, but fails to. When callers look for
PRNG output in output, what they find is 32B of raw Dual
EC output.

For comparison, Listing 2 shows the decompiled source
code for the PRNG function in ScreenOS 6.1, before Juniper’s
revamp. In ScreenOS 6.1, the loop counter, index, is a local
variable rather than a global; the X9.31 PRNG is reseeded
from system entropy every 10,000 calls, instead of every call

1 char block[8], seed[8], key[24]; // X9.31 vars
2 unsigned int calls_since_reseed;
3
4 void prng_generate(char *output) {
5 unsigned int index = 0;
6 // FIPS checks removed for clarity
7 if (calls_since_reseed++ > 9999)
8 prng_reseed();
9 // FIPS checks removed for clarity

10 int time[2] = { 0, get_cycles() };
11 do {
12 // FIPS checks removed for clarity
13 x9_31_generate_block(time, seed, key, block);
14 // FIPS checks removed for clarity
15 memcpy(&output[index], block, min(20-index,8));
16 index += min(20-index, 8);
17 } while (index <= 19);
18 }

a  The global variable reuse was first publicly noted by Willem Pinckaers on
Twitter. Online: https://twitter.com/_dvorak_/status/679109591708205056,
retrieved February 18, 2016.

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 151

contains a pre-generation feature that maintains a pool of
nonces and DH keys that can be used in new IKE connec-
tions, reducing handshake latency. The pooling mechanism
is quite intricate and appears to be designed to ensure that
enough keys are always available while avoiding consuming
too much run time on the device.

Independent First In, First Out (FIFO) queues are main-
tained for nonces, for each supported finite field DH group
(MODP 768, MODP 1024, MODP 1536, and MODP 2048), and
(in version 6.3) for each supported elliptic curve group
(ECP 256 and ECP 384). The sizes of these queues depend
on the number of VPN configurations that have been
enabled for any given group. For instance, if a single con-
figuration is enabled for a group then that group will have
queue size of 2. The size of the nonce queue is set to be
twice the aggregate size of all of the DH queues. At startup,
the system fills all queues to capacity. A background task
that runs once per second adds one entry to a queue that is
not full. If a nonce or a DH share is ever needed when the
corresponding queue is empty, a fresh value is generated
on the fly.

The queues are filled in priority order. Crucially, the
nonce queue is assigned the highest priority; it is fol-
lowed by the groups in descending order of cryptographic
strength (ECP 384 down to MODP 768). This means that in
many (but not all) cases, the nonce for an IKE handshake
will have been drawn from the Dual EC output stream ear-
lier than the DH share for that handshake, making single-
connection attacks feasible.

Figure 1 shows a (somewhat idealized) sequence of
generated values, with the numbers denoting the order
in which queue entries were generated, before and after
an IKE Phase 1 exchange. Figure 1a shows the situation
after startup: The first four values are used to fill the nonce
queue and the next two values are used to generate the DH
shares. Thus, when the exchange happens, it uses value 1
for the nonce and value 5 for the key, allowing the attacker
to derive the Dual EC state from value 1 and then compute
forward to find the DH share. After the Phase 1 exchange,
which consumes a DH share and a nonce, and after execu-
tion of the periodic, queue-refill task, the state is as shown
in Figure 1b, with the new values shaded.

Depending on configuration, the IKE Phase 2 exchange
would consume either a nonce and a DH share or just a
nonce. If the exchange uses both a nonce and a DH share,
the dequeued nonce will again have been generated before

thereby the traffic keys; and (6) use the traffic keys to
decrypt the VPN traffic.

However, while this is straightforward in principle, there
are a number of practical complexities and potential imple-
mentation decisions which could make this attack easier or
more difficult (or even impractical) as described below.

4.2. Nonce size
For Dual EC state reconstruction to be possible, the attacker
needs more than just to see raw Dual EC output. She needs at
least 26B of the x-coordinate of a single elliptic-curve point
to recover the Dual EC state; fewer bytes would be insuffi-
cient (Section 2).

Luckily for the attacker, the first 30B of the 32B returned
by ScreenOS’s Dual EC implementation belong to the
x-coordinate of a single point, as we saw in Section 2. Luckily
again for the attacker, ScreenOS’s PRNG subsystem also
returns 32B when called, and these are the 32B returned
by a Dual EC invocation, as we saw in Section 3. Finally,
IKE nonces emitted by ScreenOS are 32B long and pro-
duced from a single PRNG invocation. To summarize: In
ScreenOS 6.2 and 6.3, IKE nonces always consist of 30B of
one point’s x-coordinate and 2B of the next point’s x-coor-
dinate—the best-case scenario for Shumow–Ferguson
reconstruction.

It is worth expanding on this point. The IKE standards
allow any nonce length between 8 and 256B (Section 5;
Ref.7). An Internet-wide scan of IKE responders by Adrian et
al.3 found that a majority use 20B nonces. We are not aware
of any cryptographic advantage to nonces longer than 20B.
ScreenOS 6.1 sent 20B nonces and, as we noted in Section
3, its PRNG subsystem generated 20B per invocation. In
ScreenOS 6.2, Juniper introduced Dual EC, rewrote the
PRNG subsystem to produce 32B at a time, and modified
the IKE subsystem to send 32B nonces.

4.3. NONCES AND DH KEYS
An attacker who knows the d corresponding to Juniper’s
point Q and observes an IKE nonce generated by a
ScreenOS device can recompute the device’s Dual EC state
at nonce generation time. She can roll that state forward
to predict subsequent PRNG outputs, though not back to
recover earlier outputs. ScreenOS uses its PRNG to gener-
ate IKE Diffie–Hellman shares, so the attacker will be able
to predict DH private keys generated after the nonce she
saw and compute the session keys for the VPN connec-
tions established using those IKE handshakes.

This scenario is clearly applicable when the attacker has
a network tap close to the ScreenOS device, and can observe
many IKE handshakes. But what if the attacker’s network
tap is close to the VPN client instead? She might observe
only a single VPN connection. If the nonce for a connection
is generated after the DH share, the attacker will not be able
to recover that session’s keys.

A superficial reading of the ScreenOS IKE code seems to
rule out single-connection attacks: The KE payload contain-
ing the DH share is indeed encoded before the Nr payload
containing the nonce.

Conveniently for the attacker, however, ScreenOS also

Figure 1. Nonce queue behavior during an IKE handshake. Numbers
denote generation order, and values generated after the handshake
are shaded. During a DH exchange, outputs 1 and 5 are used as the
nonce and key, advancing the queue, and new outputs are generated
to fill the end of the queue.

Nonces 1 2 3 4

MODP
1024

5 6

(a) At system startup.

Nonces 2 3 4 7

MODP
1024

6 8

(b) After a DH exchange.

research highlights

152 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

We modified firmware version 6.3.0r12 to put in place our
point Q, matching Dual EC Known Answer Test (KAT) values,
and the (non-cryptographic) firmware checksum, and we
installed the modified firmware on our device. (Our device
did not have a code-signing certificate installed, so we did
not need to create a valid cryptographic signature for our
modified firmware.)

Using the new firmware, we configured the device with
three separate VPN gateways, configured for IKEv1 with a
preshared key, IKEv1 with a 1024-bit RSA signing certificate,
and IKEv2 with a preshared key, respectively. We made con-
nections to each gateway using the strongSwan VPN soft-
ware as our initiator and recorded the traffic to our device.
We successfully decrypted each connection by recovering
the Dual EC state and traffic keys using just that connec-
tion’s captured packets.

6. HISTORY OF THE JUNIPER INCIDENT
The history of the Juniper incident begins nearly
a decade ago.b In October 2008, Juniper released
ScreenOS 6.2. As described in detail above, this
release (1) replaced an entropy-gathering procedure
for (re)seeding the ANS X9.31 PRNG with Dual EC
using a custom Q point; (2) modified the X9.31 reseed
logic to reseed on every call rather than every ten
thousand calls; (3) changed the loop counter in the
prng_generate procedure as well as the procedure’s
output to be global variables, shared with the reseed pro-
cedure, thus ensuring that pseudorandom values are gen-
erated by Dual EC, and not X9.31; (4) changed the IKE
nonce length from 20B to 32B; and (5) added a nonce pre-
generation queue.

The result of the first four changes is that whoever
knew the integer d corresponding to Juniper’s Q could
passively decrypt (some) VPN traffic. Each of the first
four changes is critical to the attack described in this
article. The fifth change enables single-connection
attacks in many cases, but is not necessary for multi-
connection attacks.

This state of affairs continued for four years. At some
point prior to the release of ScreenOS 6.2.0r15 (September
2012) and ScreenOS 6.3.0r12 (August 2012), someone mod-
ified Juniper’s source code. Based on the patched firmware
revisions Juniper would later release, the modifications
were quite small: The x-coordinate of Juniper’s Dual EC’s
Q was changed as was the expected response to Dual EC’s
Known Answer Test. As a result, the set of people who could
passively decrypt ScreenOS’s VPN traffic changed from
those who know Juniper’s d (if any) to those who know the
new d corresponding to the changed Q (presumably the
attacker who made the change).

Apparently unrelated to the 2012 changes, a second
source code modification was made. A hard-coded SSH and
Telnet password was inserted into Juniper’s code at some
point before the release of ScreenOS 6.3.0r17 (April 2013).
Logging in with this password yields administrator access.

the dequeued DH share. That property will continue to hold
for subsequent IKE handshakes, provided that handshakes
do not entirely exhaust the queues. Had the refill task not
prioritized refilling the nonce queue before any DH group
queue, single-connection attacks would not have been pos-
sible. Had the nonce queue been the same length as a DH
share queue, single-connection attacks would not have been
possible in configurations where IKE Phase 2 consumed a
nonce but not a DH share.

ScreenOS 6.1 pregenerates DH shares but not nonces; the
nonce queues we have described were added in ScreenOS 6.2,
along with Dual EC. Had nonce queues not been added, no
handshakes would have been vulnerable to single-connection
decryption attacks.

In the presence of multiple nonce-only Phase-2 exchanges
within a single Phase-1 exchange, multiple DH groups
actively used in connections, queue exhaustion, or certain
race conditions, the situation is more complicated, and it is
possible for an IKE handshake phase to have its DH share
generated before its nonce. Single-connection decryption
attacks would fail for those handshakes. Refer to the full ver-
sion of this paper for details.5

4.4. Recovering traffic keys
If the attacker can predict the Diffie–Hellman private key
corresponding to the ScreenOS device’s DH share for an IKE
exchange, she can compute the DH shared secret for that
exchange. With knowledge of the DH shared secret, com-
puting the session keys used to encrypt and authenticate
the VPN session being set up is straightforward, though the
details depend on the IKE protocol version and the way in
which the endpoints authenticate each other; for details, see
the full version of this paper.5

For IKEv1 connections authenticated with digital
signatures, the attacker knows everything she needs to
compute the session keys. For IKEv1 connections authen-
ticated with public key encryption, each peer’s nonce is
encrypted under the other’s Rivest–Shamir–Adleman
(RSA) public key, stopping the attack. IKEv1 connections
authenticated with preshared keys fall somewhere in the
middle: The attacker will need to know the preshared
key in addition to the DH shared secret to compute the
session keys. If the preshared key is strong, then the con-
nection will still be secure. Fortunately for the attacker,
many real-world VPN configurations use weak preshared
keys (really passwords); in such cases having recorded an
IKE handshake and recovered the DH shared secret, the
attacker will be able to mount an offline dictionary attack
on the preshared key. By contrast, the attacker will be able
to compute session keys for IKEv2 connections in the
same way, regardless of how they are authenticated.

Having computed the session keys, the attacker can
decrypt and read the VPN traffic and, if she wishes, can tam-
per with it.

5. EXPERIMENTAL VALIDATION
To validate the attacks we describe above, we purchased a
Juniper Secure Services Gateway 550M VPN device. We gen-
erated our own point Q and corresponding Dual EC secret d.

b  The dates in this section come from file dates, ScreenOS release notes,
and Juniper’s website, none of which agree precisely on any dates.

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 153

ScreenOS uses Juniper’s own Q point since, at that time,
ScreenOS was shipping with the attacker’s Q. Second,
by the end of 2015, Juniper knew that Dual EC could be
exploited in ScreenOS. Despite this, Juniper’s initial
fix was to revert the Q point to their initial value in each
affected ScreenOS revision. Eventually, after press cover-
age of our results, Juniper committed to removing Dual EC
from their PRNG subsystem.

7. EXCEPTIONAL ACCESS AND NOBUS
Law enforcement officials have been warning since 2014 that
they are “going dark”: that ubiquitous end-to-end encryp-
tion threatens investigations by rendering intercepted com-
munications unreadable. They have called on technology
companies to rearchitect their products so intercepted com-
munications could be decrypted given a court order. Computer
scientists have resisted such “exceptional access” mandates,
arguing that whatever mechanism implements it would con-
stitute a vulnerability that might be exploited by third parties.1

Attempts to design exceptional access mechanisms
which do not introduce vulnerabilities go back at least as far
as 1993, when the NSA introduced “Clipper,” an encryption
algorithm embedded in a hardware platform with a built-in
“key escrow” capability, in which cryptographic keys were
separately encrypted under a key known to the US govern-
ment. Such a mechanism would be “NOBUS,” in the jargon
of the NSA, for “nobody but us” (p. 281; Ref.6): data would
be cryptographically secure against anyone who did not have
the keys but transparent to those who did.

While the key escrow mechanism designed for Clipper
involved encrypting the traffic keys under the escrow key, it
is also possible to build an exceptional access mechanism
around a system like Dual EC, with the escrow key being the
discrete log of Q. The common thread here is that the key is
intended to be known only to authorized personnel.

Whatever the intent of Juniper’s selection of Dual EC, its
use created what was in effect an exceptional access system:
one where the key was the d value corresponding to Juniper’s
choice of Q. We have no way of knowing whether anyone
knew that d value or not, and Juniper has not described how
they generated Q. However, around 2012, some organiza-
tion gained the ability to make changes to Juniper’s source
code repository. They used that access to change the Dual EC
point Q to one of their choosing, in essence swapping out the
escrow key. Between September 2012 and December 2015,
official releases of ScreenOS distributed by Juniper included
the intruders’ point Q instead of Juniper’s. VPN connections
to NetScreen devices running affected releases were subject
to decryption by the intruders, assuming they know the d
corresponding to their point Q.

8. LESSONS
The ScreenOS vulnerabilities we have studied provide
important broader lessons for the design of cryptographic
systems, which we summarize here.

In early September 2013, the New York Times published
an article based on documents from Snowden strongly
implying that the National Security Agency (NSA) had engi-
neered Dual EC to be susceptible to attack.15 The article does
not name Dual EC; it instead refers to a 2006 NIST standard
with a “fatal weakness, discovered by two Microsoft cryp-
tographers in 2007,” presumably referring to Dan Shumow
and Niels Ferguson’s presentation at CRYPTO 2007.16 This
reporting led NIST to withdraw its recommendation for
Dual EC.14

After NIST withdrew its recommendation, Juniper subse-
quently published a knowledge base article explaining their
use of Dual EC in ScreenOS.

ScreenOS does make use of the Dual_EC_DRBG standard,
but is designed to not use Dual_EC_DRBG as its primary
random number generator. ScreenOS uses it in a way that
should not be vulnerable to the possible issue that has been
brought to light. Instead of using the NIST recommended
curve points it uses self-generated basis points and then
takes the output as an input to FIPS/ANSI X.9.31 [sic] PRNG,
which is the random number generator used in ScreenOS
cryptographic operations.8

The first mitigation—using self-generated basis points—
only defends against the attacks described in this paper if Q
is generated so that nobody knows d; Juniper has provided
no evidence that this is the case. As we describe in Section 3,
Juniper’s claim that the output of Dual EC is only used as an
input to X9.31 is incorrect.

This was the situation on December 17, 2015 when
Juniper issued an out-of-cycle security bulletin9 for two secu-
rity issues in ScreenOS: CVE-2015-7755c (“Administrative
Access”) and CVE-2015-7756d (“VPN Decryption”).

This announcement was particularly interesting because
it was not the usual report of developer error, but rather of
malicious code which had been inserted into ScreenOS by
an unknown attacker:

During a recent internal code review, Juniper discovered
unauthorized code in ScreenOS that could allow a
knowledgeable attacker to gain administrative access
to NetScreen® devices and to decrypt VPN connections.
Once we identified these vulnerabilities, we launched an
investigation into the matter, and worked to develop and
issue patched releases for the latest versions of ScreenOS.10

The bulletin prompted a flurry of reverse-engineering
activity around the world, including by our team. The
“Administrative Access” issue was quickly identified as
the 2013 source code modification. This issue has been
extensively discussed by Moore.13 Our analysis of the “VPN
Decryption” issue, described in this article, shows that the
2012 code modification is responsible.

Our analysis implies several items of note. First, the
2012 code modification indicates that Juniper’s 2013
knowledge base article8 is incorrect when it states that

c  https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7755
d  https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7756

e  Of course, reducing nonce size cannot prevent all data exfiltration strate-
gies. However, it may increase the difficulty of hiding the necessary code,
and the complexity of executing an attack.

research highlights

154 COMMUNICATIONS OF THE ACM | NOVEMBER 2018 | VOL. 61 | NO. 11

8.1. For protocol designers
Allowing nonces to vary in length, and in particular to be
larger than necessary for uniquely identifying sessions, may
be a bad idea. The authors are unaware of any cryptographic
rationale for 256B nonces, as permitted by IPsec; it is sim-
ply an invitation for implementations to disclose sensitive
state, intentionally or not.e

Adding even low-entropy shared secrets as key derivation
inputs helps protect against entropy failures. We observe a
difference in exploitability of the ScreenOS bugs between
IKEv1 and IKEv2 that is entirely due to the different use of
the preshared key between the two protocols. It is unfortu-
nate that IKEv2 is easier to exploit.

8.2. For implementers and code reviewers
Cryptographic code must be locally auditable: It must be
written in such a way that examining a function or a mod-
ule in isolation allows the reader to understand its behavior.

ScreenOS’s implementation failed to live up to this
guideline. A loop counter in the core prng_generate
routine was defined as a global variable and changed in a
subroutine. This is a surprising-enough pattern that sev-
eral experienced researchers who knew that the routine
likely had a bug failed to spot it before Willem Pinckaers’
contribution. The prng_generate and prng_reseed
routines reuse the same 32B buffer, output, for two
entirely different purposes: Dual EC output with which
to seed X9.31, and output from the PRNG subsystem.
ScreenOS’s use of pregeneration queues makes it dif-
ficult to determine whether nonces or Diffie–Hellman
shares are generated first. Someone reading the code for
the top-level functions implementing IKE in isolation
will conclude that Diffie–Hellman shares are generated
first, whereas in practice the opposite is usually the case.

The state recovery attacks suffered by Juniper suggest
that implementations may wish to avoid revealing the raw
output of a random number generator entirely, perhaps by
hashing any PRNG output before using it as a nonce. One
could also design implementations so that separate PRNGs
are used for different protocol components, to separate
nonce security from key security.

Several of the above mistakes represent poor software
engineering practices. Cryptographic code reviews, whether
internal or external (e.g., for FIPS validation), should take
code quality into account.

8.3. For NIST
Juniper followed then-current best practices in designing
and verifying their random number generators. They used a
NIST-certified algorithm, followed the FIPS-recommended
procedure to verify the output using test vectors, and fol-
lowed a commonly recommended engineering guideline to
use a PRNG as a whitener for a potentially insecure random
number generator, removing—at least in theory—the struc-
tured output that makes Dual EC vulnerable.

In this case, all three approaches failed. In particular,
a crippling defect in the whitening countermeasure man-
aged to go undetected in FIPS certification. This suggests
potential future work for research in the verification of

cryptographic systems. One step would be to track the ori-
gin and use of any buffers—especially shared buffers—and
enforce a rule that all random number generator output
can be traced back to an appropriate cryptographic func-
tion, such as a block cipher or hash. Some form of cover-
age analysis might also have revealed that the whitening is
never performed.

To the extent that FIPS guidelines mandate the use of
global state, they run counter to our suggestion, above, that
cryptographic code be locally auditable.

Products are evaluated against FIPS standards by accred-
ited laboratories. ScreenOS was FIPS certified with the
X9.31 PRNG, yet the lab evaluating ScreenOS failed to spot
that X9.31 was never invoked, as well as failing to detect the
defect in the Dual EC implementation described in Section 3.
NIST should revisit its laboratory accreditation program
to ensure more thorough audits, especially of randomness
subsystem code.

8.4. For attackers
The choice by the attacker to target the random number
generation subsystem is instructive. Random number gen-
erators have long been discussed in theory as a target for
kleptographic substitution attacks,18 but this incident tells
us that the threat is more real than has been known in the
academic literature.

From the perspective of an attacker, by far the most
attractive feature of the ScreenOS PRNG attack is the ability
to significantly undermine the security of ScreenOS without
producing any externally detectable indication that would
mark the ScreenOS devices as vulnerable. This is in contrast
to previous well-known PRNG failures, which were exter-
nally observable, and, in the case of the Debian PRNG flaw,17
actually detected through observational testing. Indeed,
the versions of ScreenOS containing an attacker-supplied
parameter appear to have produced output that was crypto-
graphically indistinguishable from the output of previous
versions, thus preventing any testing or measurement from
discovering the issue.

8.5. For journalists
Much of the coverage of the Juniper disclosure has focused
on the unauthorized changes made in 2012 to the random-
ness subsystem and in 2013 to the login code. By contrast,
our forensic investigation of ScreenOS releases highlights
the changes made in the 6.2 series, in 2008, as the most
consequential.

These changes, which introduced Dual EC and changed
other subsystems in such a way that an attacker who knew
the discrete log of Q could exploit it, were, as far as we know,
added by Juniper engineers, not by attackers. This raises a
number of questions:

How was the new randomness subsystem for the ScreenOS
6.2 series developed? What requirements did it fulfill? How
did Juniper settle on Dual EC? What organizations did it
consult? How was Juniper’s point Q generated?

f  Online: https://oversight.house.gov/hearing/federal-cybersecurity-detection-
response-and-mitigation/.

NOVEMBER 2018 | VOL. 61 | NO. 11 | COMMUNICATIONS OF THE ACM 155

We are not able to answer these questions with access
to firmware alone. Juniper’s source code version-control
system, their bug-tracking system, their internal e-mail
archives, and the recollections of Juniper engineers may
help answer them.

Despite numerous opportunities, including public ques-
tions put to their Chief Security Officer and a congressional
hearing on this incident,f Juniper has either failed or explic-
itly refused to provide any further details.

8.6. For policymakers
Much of the debate about exceptional access has focused
on whether it is possible to construct secure exceptional
access mechanisms, where “secure” is defined as only
allowing authorized access—presumably by law enforce-
ment. It is readily apparent that one of the major difficul-
ties in building such a system is the risk of compromise
of whatever keying material is needed to decrypt the
targeted data.

The unauthorized change to ScreenOS’s Dual EC con-
stants made in 2012 illustrates a new threat: the ability
for another party to modify the target software to subvert
an exceptional access mechanism for its own purposes,
with only minimally detectable changes. Importantly,
because the output of the PRNG appears random to any
entity that does not know the discrete log of Q, such a
change is invisible both to users and to any testing which
the vendor might do. By contrast, an attacker who wants
to introduce an exceptional access mechanism into a
program which does not already has one must gener-
ally make a series of extremely invasive changes, thus
increasing the risk of detection.

In the case of ScreenOS, an attacker was able to subvert
a major product—one which is used by the federal govern-
ment—and remain undiscovered for years. This represents
a serious challenge to the proposition that it is possible to
build an exceptional access system that is available only to
the proper authorities; any new proposal for such a system
should bear the burden of proof of showing that it cannot be
subverted in the way that ScreenOS was.

Acknowledgments
This material is based in part upon work supported by
the U.S. National Science Foundation under awards
EFMA-1441209, CNS-1505799, CNS-1010928, CNS-
1408734, and CNS-1410031; The Mozilla Foundation; a
gift from Cisco; and the Office of Naval Research under
contract N00014-14-1-0333.�

Proceedings of CCS 2015. C. Kruegel
and N. Li, eds. ACM Press, New York,
NY, Oct. 2015, 5–17.

	 4.	 Barker, E., Kelsey, J. NIST Special
Publication 800-90: Recommendation
for Random Number Generation Using
Deterministic Random Bit Generators.
Technical report, National Institute
of Standards and Technology, June
2006.

	 5.	 Checkoway, S., Maskiewicz, J.,
Garman, C., Fried, J., Cohney, S.,
Green, M., Heninger, N.,
Weinmann, R.-P., Rescorla, E.,
Shacham, H. A systematic analysis
of the Juniper Dual EC incident.
In Proceedings of CCS 2016.
S. Halevi, C. Kruegel, and A. Myers,
eds. ACM Press, New York, NY, Oct.
2016, 468–479.

	 6	 Granick, J.S. American Spies: Modern
Surveillance, Why You Should Care,
and What To Do About It. Cambridge
University Press, Cambridge, 2017.

	 7.	 Harkins, D., Carrel, D. The Internet
Key Exchange (IKE). RFC 2409
(Proposed Standard), Nov. 1998.
Obsoleted by RFC 4306,
updated by RFC 4109. Online:
https://tools.ietf.org/html/rfc2409.

	 8.	 Juniper Networks. Juniper
Networks product information
about Dual_EC_DRBG. Knowledge
Base Article KB28205, Oct. 2013.
Online: https://web.archive.org/
web/20151219210530/ https://
kb.juniper.net/InfoCenter/
index?page= content&id=KB28205&p
mv=print&actp=LIST.

	 9.	 Juniper Networks. 2015-12 Out of
Cycle Security Bulletin: ScreenOS:
Multiple Security issues with
ScreenOS (CVE-2015-7755, CVE-
2015-7756), Dec. 2015.

	10.	 Juniper Networks. Important
announcement about ScreenOS®.
Online: https://forums.juniper.net/
t5/Security-Incident-Response/
Important-Announcement-
about-ScreenOS/ba-p/285554,
Dec. 2015.

	11.	 Kaufman, C. Internet Key Exchange
(IKEv2) Protocol. RFC 4306

(Proposed Standard), Dec. 2005.
Obsoleted by RFC 5996,
updated by RFC 5282. Online:
https://tools.ietf.org/html/rfc4306.

	12.	 Kelsey, J. Dual EC in X9.82 and SP
800-90A. Presentation to NIST VCAT
committee, May 2014. Slides online
http://csrc.nist.gov/groups/ST/crypto-
review/documents/dualec_in_X982_
and_sp800-90.pdf.

	13.	 Moore, H.D. CVE-2015-7755: Juniper
ScreenOS Authentication Backdoor.
https://community.rapid7. com/
community/infosec/blog/2015/12/20/
cve-2015-7755-juniper-screenos-
authentication-backdoor, Dec. 2015.

	14.	 National Institute of Standards
and Technology. NIST opens draft
Special Publication 800-90A,
recommendation for random number
generation using deterministic
random bit generators for review
and comment. http://csrc.nist.gov/
publications/nistbul/itlbul2013_09_
supplemental.pdf, Sept. 2013.

	15.	 Perlroth, N., Larson, J., Shane, S.
N.S.A. able to foil basic safeguards of
privacy on Web. The New York Times,
Sep. 5 2013. Online: http://www.
nytimes.com/2013/09/06/us/nsa-
foils-much-internet-encryption.html.

	16.	 Shumow, D., Ferguson, N. On the
possibility of a back door in the
NIST SP800-90 Dual Ec Prng.
Presented at the Crypto 2007 rump
session, Aug. 2007. Slides online:
http://rump2007.cr.yp.to/15-
shumow.pdf.

	17.	 Yilek, S., Rescorla, E., Shacham, H.,
Enright, B., Savage, S. When private
keys are public: Results from the
2008 Debian OpenSSL vulnerability.
In Proceedings of IMC 2009. A.
Feldmann and L. Mathy, eds. ACM
Press, New York, NY, Nov. 2009,
15–27.

	18.	 Young, A., Yung, M. Kleptography:
Using cryptography against
cryptography. In Proceedings of
Eurocrypt 1997. W. Fumy, ed. volume
1233 of LNCS, Springer-Verlag, May
1997, 62–74.

Copyright held by owners/authors. Publication rights licensed to ACM, $15.00.

Stephen Checkoway, University of
Illinois at Chicago, IL, USA.

Jacob Maskiewicz, Eric Rescorla,
Hovav Shacham, University of California,
San Diego, CA, USA.

Christina Garman, Matthew Green,
Johns Hopkins University, Baltimore,
MD, USA.

Joshua Fried, Shaanan Cohney,
Nadia Heninger, University
of Pennsylvania, Philadelphia, PA, USA.

Ralf-Philipp Weinmann, Comsecuris,
Duisberg, Germany.

References
	 1.	 Abelson, H., Anderson, R., Bellovin, S.M.,

Benaloh, J., Blaze, M., Diffie, W.,
Gilmore, J., Green, M., Landau, S.,
Neumann, P.G., Rivest, R.L., Schiller, J.I.,
Schneier, B., Specter, M., Weitzner, D.J.
Keys under doormats: Mandating
insecurity by requiring
government access to all data and
communications. Commun. ACM 58,
10 (Oct. 2015), 24–26.

	 2.	 Accredited Standards Committee

(ASC) X9, Financial Services. ANS
X9.31-1998: Digital signatures using
reversible algorithms for the financial
services industry (rDSA), 1998.
Withdrawn.

	 3.	 Adrian, D., Bhargavan, K., Durumeric, Z.,
Gaudry, P., Green, M., Halderman, J.A.,
Heninger, N., Springall, D., Thomé, E.,
Valenta, L., VanderSloot, B., Wustrow, E.,
Zanella-Béguelin, S., Zimmermann, P.
Imperfect forward secrecy: How
Diffie-Hellman fails in practice. In

