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Abstract
In December 2015, Juniper Networks announced multiple 
security vulnerabilities stemming from unauthorized code 
in ScreenOS, the operating system for their NetScreen 
Virtual Private Network (VPN) routers. The more sophisti-
cated of these vulnerabilities was a passive VPN decryption 
capability, enabled by a change to one of the parameters 
used by the Dual Elliptic Curve (EC) pseudorandom num-
ber generator.

In this paper, we described the results of a full inde-
pendent analysis of the ScreenOS randomness and VPN 
key establishment protocol subsystems, which we carried 
out in response to this incident. While Dual EC is known 
to be insecure against an attacker who can choose the 
elliptic curve parameters, Juniper had claimed in 2013 
that ScreenOS included countermeasures against this 
type of attack. We find that, contrary to Juniper’s public 
statements, the ScreenOS VPN implementation has been 
vulnerable to passive exploitation by an attacker who 
selects the Dual EC curve point since 2008. This vulner-
ability arises due to flaws in Juniper’s countermeasures 
as well as a cluster of changes that were all introduced 
concurrently with the inclusion of Dual EC in a single 
2008 release. We demonstrate the vulnerability on a real 
NetScreen device by modifying the firmware to install 
our own parameters, and we show that it is possible to 
passively decrypt an individual VPN session in isolation 
without observing any other network traffic. This inci-
dent is an important example of how guidelines for ran-
dom number generation, engineering, and validation 
can fail in practice. Additionally, it casts further doubt on 
the practicality of designing a safe “exceptional access” 
or “key escrow” scheme of the type contemplated by law 
enforcement agencies in the United States and elsewhere.

1. INTRODUCTION
In December 2015, Juniper announced that an “internal 
code review” revealed the presence of “unauthorized code 
in ScreenOS that could allow a knowledgeable attacker […] 
to decrypt VPN connections.” In response to this, Juniper 
released patched versions of ScreenOS, the operating system 
powering the affected NetScreen devices, but has declined 
to disclose any further information about the intrusion and 
vulnerability.

Immediately following Juniper’s advisory, security 
researchers around the world—including our team—
began examining the ScreenOS firmware to find the vul-
nerabilities Juniper had patched. They found that the 
change that rendered ScreenOS encryption breakable did 

The original version of this paper is entitled “A Systematic 
Analysis of the Juniper Dual EC Incident” and was 
published in Proceedings of the 23rd ACM Conference on 
Computer and Communications Security (Vienna, 2016), 
468–479.

nothing but replace a few embedded constants in Juniper’s 
pseudorandom number generator. The reason why this 
results in an attacker being able to decrypt connections 
is Juniper’s design decision to use the NSA-designed Dual 
EC Pseudorandom Number Generator (PRNG).4, 12 Dual EC 
has the problematic property that an attacker who knows 
the discrete logarithm of one of the input parameters (Q) 
with respect to a generator point, and is able to observe 
a small number of consecutive bytes from the PRNG, 
can then compute the internal state of the generator and 
thus predict all future output. Thus, it is critical that the 
discrete logarithm of Q remain unknown. The changes to 
the ScreenOS code replaced Juniper’s chosen Q with one 
selected by the attacker.

From one perspective, the Juniper incident is just a par-
ticularly intricate software vulnerability, which is interest-
ing on its own terms. More importantly, however, it sheds 
light on the contentious topic of “exceptional access” 
technologies which would allow law enforcement officials 
to gain access to the plaintext for encrypted data. A key 
component of any exceptional access system is restricting 
access to authorized personnel, with the most commonly 
proposed approach being encrypting the target keying 
material under a key (or keys) known to law enforcement 
which are then kept under tight control. The use of Dual 
EC in ScreenOS creates what is in effect an exceptional 
access system with Q as the public key and the discrete log 
of Q as the private decryption key. Historically, analysis of 
exceptional access systems has focused on the difficulty 
of controlling the decryption keys. In the specific case of 
ScreenOS, we do not know whether anyone had access to 
the corresponding key, but the Juniper incident starkly 
illustrates another risk: that of an attacker modifying a sys-
tem’s exceptional access capability in order to replace the 
authorized public key with one under her control, thus 
turning an exceptional access system designed for use  
by law enforcement into one which works for the attacker.

In this paper, we attempt to tell the story of that inci-
dent, pieced together by forensic reverse engineering of 
dozens of ScreenOS firmware revisions stretching back 
nearly a decade, as well as experimental validation on 
NetScreen hardware. We first provide background on Dual 
EC itself, then examine the way that it is used in ScreenOS 
and why this leads to such a severe vulnerability, then 
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move to examine the history of the incident itself, and 
finally consider what lessons we can draw from this story.

2. DUAL EC IN SCREENOS
Cryptographic systems typically include deterministic 
PRNGs that expand a small amount of secret internal state 
into a stream of values which are intended to be indistin-
guishable from true randomness. An attacker able to pre-
dict the output of a PRNG will often be able to break any 
protocol implementation dependent on it, for instance 
by being able to predict cryptographic keys (which should 
remain secret) or nonces (which should often remain 
unpredictable).

Dual EC is a cryptographic PRNG standardized by 
National Institute of Standards and Technology (NIST) 
which is based on operations on an elliptic curve. Dual 
EC has three public parameters: the elliptic curve and 
two points on the curve called P and Q. ScreenOS uses 
the elliptic curve P-256 and sets P to be P-256’s stan-
dard generator as specified in NIST Special Publication 
800-90.4 That standard also specifies the Q to use, but 
ScreenOS uses Juniper’s own elliptic curve point Q 
instead. The finite field over which P-256 is defined has  
roughly 2256 elements. Points on P-256 consist of pairs 
of 256-bit numbers (x, y) that satisfy the elliptic curve 
equation. The internal state of Dual EC is a single 256-bit 
number s.

Let x(×) be the function that returns the x-coordinate 
of an elliptic curve point; || be concatenation; lsbn(×) be 
the function that returns the least-significant n bytes of 
its input in big-endian order; and msbn(×) be the func-
tion that returns the most-significant n bytes. Starting 
with an initial state s0, one invocation of Dual EC imple-
mentation generates a 32 pseudorandom byte output 
and a new state s2 as

s1 = x(s0 P)� r1 = x(s1Q)

s2 = x(s1 P)� r2 = x(s2Q)

output = lsb30(r1) || msb2(lsb30(r2)),

where sP and sQ denote scalar multiplication on P-256.
In 2007, Shumow and Ferguson showed16 that Dual EC 

was subject to a state reconstruction attack by an adversary 
who knows the value d such that P = dQ and who can observe 
a single output value. The key insight is that multiplying the 
point s1Q by d yields the internal state x(d × s1Q) = x(s1P) = s2.  
Although s1Q is itself not known, 30 of the 32B of its  
x-coordinate (namely r1) constitute the first 30B of output, and  
the attacker can guess the remaining bytes; the x-coordinate of 
an elliptic curve point determines its y-coordinate up to sign.

Assuming that the attacker knows the discrete log of Q, 
the major difficulty is recovering a complete output value; 
an attacker who only knows part of the value must exhaus-
tively search the rest. The number of candidates grows 
exponentially as fewer bytes of r1 are revealed, and recovery 
is intractable with fewer than about 26B. In ScreenOS, Dual 
EC is always used to generate 32B of output at a time, and 
therefore the attack is straightforward. When 30B of r1 are 

1 char block[8], seed[8], key[24]; // X9.31 vars
2 char output[32]; // prng_generate output
3 unsigned int index, calls_since_reseed;
4
5 void prng_reseed(void) {
6 calls_since_reseed = 0;
7 if (dualec_generate(output, 32) != 32)
8 error("[...] unable to reseed\n", 11);
9 memcpy(seed, output, 8);

10 index = 8;
11 memcpy(key, &output[index], 24);
12 index = 32;
13 }
14
15 void prng_generate(void) {
16 int time[2] = { 0, get_cycles() };
17 index = 0;
18 ++calls_since_reseed;
19 if (!one_stage_rng())
20 prng_reseed();
21 for (; index <= 31; index += 8) {
22 // FIPS checks removed for clarity
23 x9_31_generate_block(time, seed, key, block);
24 // FIPS checks removed for clarity
25 memcpy(&output[index], block, 8);
26 }
27 }

available, as in Juniper’s implementation, the attacker must 
consider 216 candidate points. From the attacker’s perspec-
tive, this is the optimal situation.

Importantly, as far as is publicly known, Dual EC is secure 
against an attacker who knows P and Q but does not know d, 
as recovering d would require the ability to compute discrete 
logarithms, which would break elliptic curve cryptography 
in general.

3. THE SCREENOS PRNG SUBSYSTEM
Listing 1 shows the decompiled source code for the func-
tions implementing the PRNG in ScreenOS version 6.2.0r1; 
the same function is present in other releases in the 6.2 and 
6.3 series. It consists of two PRNGs, Dual EC and ANS X9.31 
(Appendix A.2.4; Ref.2).

Note that identifiers such as function and variable names 
are not present in the binary; we assigned these names based 
on our analysis of the apparent function of each symbol. 
Similarly, specific control flow constructs are not preserved 
by the compilation/decompilation process. For instance, 
the for loop on line 21 may in fact be a while loop or some 
other construct in Juniper’s source code. Decompilation does, 
however, preserve the functionality of the original code. For 
clarity, we have omitted Federal Information Processing 
Standards (FIPS) checks that ensure that the X9.31 genera-
tor has not generated duplicate output.

A superficial reading of the prng_generate() func-
tion suggests that Dual EC is used only to generate keys 
for the X9.31 PRNG, and that it is the output of X9.31 that 
is returned to callers (in the output global buffer). The 
Dual EC vulnerability described in Section 2 requires 
raw Dual EC output, so it cannot be applied. Indeed, a 
2013 knowledge base article by Juniper8 claims exactly 
this. (We discuss this knowledge base article further in 
Section 6.)

Listing 1: The core ScreenOS 6.2 PRNG subroutines.
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and from Dual EC; and PRNG output is placed in a caller-
supplied buffer instead of a global variable.

In addition, the ScreenOS 6.1 PRNG subsystem produces 
20B at a time, not 32B as in ScreenOS 6.2 and 6.3. We discuss 
the significance of this difference in the next section.

4. INTERACTION WITH IKE
ScreenOS implements the Internet Protocol Security (IPsec) 
VPN protocol. To choose the keys that protect a VPN session, 
the client and the ScreenOS device perform an Internet Key 
Exchange (IKE)7, 11 handshake.

Listing 2: The core ScreenOS 6.1 PRNG subroutine.
In the same version 6.2 release of ScreenOS that added Dual 
EC (Section 2) and modified the PRNG subsystem to expose 
raw Dual EC output (Section 3), Juniper made a cluster of 
IKE implementation changes that make it possible for an 
attacker who knows the Dual EC secret d to decrypt VPN 
connections. In the remainder of these sections, we provide 
a brief description of the relevant features of IKE and then 
explain the impact of these changes.

4.1. Overview of IKE
IKE and its successor IKEv2 are traditional Diffie–Hellman-
based handshake protocols in which two endpoints 
(dubbed the initiator and the responder) establish a Security 
Association (SA) consisting of parameters and a set of keys 
used for encrypting traffic. Somewhat unusually, IKE con-
sists of two phases:

Phase 1 establishes an “IKE SA” that is tied to the end-
points but not to any particular class of non-IKE network 
traffic. In this phase, the two sides exchange Diffie–Hellman 
(DH) shares and nonces, which are combined to form the 
derived keys. The endpoints may be authenticated in a vari-
ety of ways including a signing key and a statically config-
ured shared secret.

Phase 2 establishes SAs that protect non-IKE traffic 
(typically IPsec). The IKE messages for this phase are pro-
tected with keys established in the first phase. This phase 
may involve a DH exchange but may also just consist of an 
exchange of nonces, in which case the child SA keys are 
derived from the shared secret established in the first phase.

IKEv2 refers to these phases as “Initial Exchange” and 
“CREATE_CHILD_SA,” respectively; for simplicity we will 
use the IKEv1 Phase 1/Phase 2 terminology in the rest of 
this article.

An attack on IKE where ScreenOS is the responder 
would proceed as follows: (1) using the responder nonce 
in the first phase, compute the Dual EC state; (2) predict 
the responder’s DH private key and use that to compute 
the DH shared secret for the IKE SA, which is used to 
generate the first set of keys; (3) using these traffic keys 
decrypt the second phase traffic to recover both initia-
tor and responder nonces and public keys; (4) recover 
the responder’s private key, either by running Dual EC 
forward (the best case scenario) or by repeating the Dual 
EC attack using the new responder nonce; (5) use the 
responder’s private key and the initiator’s public key to 
compute the shared secret for the second phase SA and 

In this reading, the prng_reseed() function is occa-
sionally invoked to reseed the X9.31 PRNG state. This func-
tion invokes the Dual EC generator, directing its output to 
the 32B buffer output. From this buffer, it extracts a seed 
and cipher key for the X9.31 generator. With X9.31 seeded, 
the prng_generate() function generates 8B of X9.31 
output at a time (line 23) into output, looping until it has 
generated 32B of output (lines 21–26). Each invocation of 
x9_31_generate_block updates the X9.31 seed state in 
the seed buffer.

The straightforward reading given above is wrong.
First, and most importantly, index, the control variable for 

the loop that invokes the X9.31 PRNG in prng_generate() 
at line 21, is a global variable. The prng_reseed() function, 
if called, sets it to 32, with the consequence that, whenever 
the PRNG is reseeded, index is already greater than 31  
at the start of the loop and therefore no calls to the X9.31 
PRNG are executed.a

Second, in the default configuration, one_stage_rng()  
always returns false, so prng_reseed() is always called. 
In the default configuration, then, the X9.31 loop is never 
invoked. (There is an undocumented ScreenOS command, 
set key one-stage-rng, that makes one_stage_
rng() always return true; running this command induces a 
different PRNG vulnerability, discussed in the full version 
of this paper.5)

Third, the prng_reseed() happens to use the output 
global buffer as a staging area for Dual EC output before it 
copies parts of that output to the other global buffers that 
hold the X9.31 seed and key. This is the same global buf-
fer that the prng_generate() function was supposed 
to fill with X9.31 output, but fails to. When callers look for 
PRNG output in output, what they find is 32B of raw Dual 
EC output.

For comparison, Listing 2 shows the decompiled source 
code for the PRNG function in ScreenOS 6.1, before Juniper’s 
revamp. In ScreenOS 6.1, the loop counter, index, is a local 
variable rather than a global; the X9.31 PRNG is reseeded 
from system entropy every 10,000 calls, instead of every call 

1 char block[8], seed[8], key[24]; // X9.31 vars
2 unsigned int calls_since_reseed;
3
4 void prng_generate(char *output) {
5 unsigned int index = 0;
6 // FIPS checks removed for clarity
7 if (calls_since_reseed++ > 9999)
8 prng_reseed();
9 // FIPS checks removed for clarity

10 int time[2] = { 0, get_cycles() };
11 do {
12 // FIPS checks removed for clarity
13 x9_31_generate_block(time, seed, key, block);
14 // FIPS checks removed for clarity
15 memcpy(&output[index], block, min(20-index,8));
16 index += min(20-index, 8);
17 } while (index <= 19);
18 }

a  The global variable reuse was first publicly noted by Willem Pinckaers on 
Twitter. Online: https://twitter.com/_dvorak_/status/679109591708205056, 
retrieved February 18, 2016.
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contains a pre-generation feature that maintains a pool of 
nonces and DH keys that can be used in new IKE connec-
tions, reducing handshake latency. The pooling mechanism 
is quite intricate and appears to be designed to ensure that 
enough keys are always available while avoiding consuming 
too much run time on the device.

Independent First In, First Out (FIFO) queues are main-
tained for nonces, for each supported finite field DH group 
(MODP 768, MODP 1024, MODP 1536, and MODP 2048), and 
(in version 6.3) for each supported elliptic curve group 
(ECP 256 and ECP 384). The sizes of these queues depend 
on the number of VPN configurations that have been 
enabled for any given group. For instance, if a single con-
figuration is enabled for a group then that group will have 
queue size of 2. The size of the nonce queue is set to be 
twice the aggregate size of all of the DH queues. At startup, 
the system fills all queues to capacity. A background task 
that runs once per second adds one entry to a queue that is 
not full. If a nonce or a DH share is ever needed when the 
corresponding queue is empty, a fresh value is generated 
on the fly.

The queues are filled in priority order. Crucially, the 
nonce queue is assigned the highest priority; it is fol-
lowed by the groups in descending order of cryptographic 
strength (ECP 384 down to MODP 768). This means that in 
many (but not all) cases, the nonce for an IKE handshake 
will have been drawn from the Dual EC output stream ear-
lier than the DH share for that handshake, making single-
connection attacks feasible.

Figure 1 shows a (somewhat idealized) sequence of 
generated values, with the numbers denoting the order 
in which queue entries were generated, before and after 
an IKE Phase 1 exchange. Figure 1a shows the situation 
after startup: The first four values are used to fill the nonce 
queue and the next two values are used to generate the DH 
shares. Thus, when the exchange happens, it uses value 1 
for the nonce and value 5 for the key, allowing the attacker 
to derive the Dual EC state from value 1 and then compute 
forward to find the DH share. After the Phase 1 exchange, 
which consumes a DH share and a nonce, and after execu-
tion of the periodic, queue-refill task, the state is as shown 
in Figure 1b, with the new values shaded.

Depending on configuration, the IKE Phase 2 exchange 
would consume either a nonce and a DH share or just a 
nonce. If the exchange uses both a nonce and a DH share, 
the dequeued nonce will again have been generated before 

thereby the traffic keys; and (6) use the traffic keys to 
decrypt the VPN traffic.

However, while this is straightforward in principle, there 
are a number of practical complexities and potential imple-
mentation decisions which could make this attack easier or 
more difficult (or even impractical) as described below.

4.2. Nonce size
For Dual EC state reconstruction to be possible, the attacker 
needs more than just to see raw Dual EC output. She needs at 
least 26B of the x-coordinate of a single elliptic-curve point 
to recover the Dual EC state; fewer bytes would be insuffi-
cient (Section 2).

Luckily for the attacker, the first 30B of the 32B returned 
by ScreenOS’s Dual EC implementation belong to the  
x-coordinate of a single point, as we saw in Section 2. Luckily 
again for the attacker, ScreenOS’s PRNG subsystem also 
returns 32B when called, and these are the 32B returned 
by a Dual EC invocation, as we saw in Section 3. Finally, 
IKE nonces emitted by ScreenOS are 32B long and pro-
duced from a single PRNG invocation. To summarize: In 
ScreenOS 6.2 and 6.3, IKE nonces always consist of 30B of 
one point’s x-coordinate and 2B of the next point’s x-coor-
dinate—the best-case scenario for Shumow–Ferguson 
reconstruction.

It is worth expanding on this point. The IKE standards 
allow any nonce length between 8 and 256B (Section 5; 
Ref.7). An Internet-wide scan of IKE responders by Adrian et 
al.3 found that a majority use 20B nonces. We are not aware 
of any cryptographic advantage to nonces longer than 20B. 
ScreenOS 6.1 sent 20B nonces and, as we noted in Section 
3, its PRNG subsystem generated 20B per invocation. In 
ScreenOS 6.2, Juniper introduced Dual EC, rewrote the 
PRNG subsystem to produce 32B at a time, and modified 
the IKE subsystem to send 32B nonces.

4.3. NONCES AND DH KEYS
An attacker who knows the d corresponding to Juniper’s 
point Q and observes an IKE nonce generated by a 
ScreenOS device can recompute the device’s Dual EC state 
at nonce generation time. She can roll that state forward 
to predict subsequent PRNG outputs, though not back to 
recover earlier outputs. ScreenOS uses its PRNG to gener-
ate IKE Diffie–Hellman shares, so the attacker will be able 
to predict DH private keys generated after the nonce she 
saw and compute the session keys for the VPN connec-
tions established using those IKE handshakes.

This scenario is clearly applicable when the attacker has 
a network tap close to the ScreenOS device, and can observe 
many IKE handshakes. But what if the attacker’s network 
tap is close to the VPN client instead? She might observe 
only a single VPN connection. If the nonce for a connection 
is generated after the DH share, the attacker will not be able 
to recover that session’s keys.

A superficial reading of the ScreenOS IKE code seems to 
rule out single-connection attacks: The KE payload contain-
ing the DH share is indeed encoded before the Nr payload 
containing the nonce.

Conveniently for the attacker, however, ScreenOS also 

Figure 1. Nonce queue behavior during an IKE handshake. Numbers 
denote generation order, and values generated after the handshake 
are shaded. During a DH exchange, outputs 1 and 5 are used as the 
nonce and key, advancing the queue, and new outputs are generated 
to fill the end of the queue.

Nonces 1 2 3 4

MODP
1024

5 6

(a) At system startup.

Nonces 2 3 4 7

MODP
1024

6 8

(b) After a DH exchange.
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We modified firmware version 6.3.0r12 to put in place our 
point Q, matching Dual EC Known Answer Test (KAT) values, 
and the (non-cryptographic) firmware checksum, and we 
installed the modified firmware on our device. (Our device 
did not have a code-signing certificate installed, so we did 
not need to create a valid cryptographic signature for our 
modified firmware.)

Using the new firmware, we configured the device with 
three separate VPN gateways, configured for IKEv1 with a 
preshared key, IKEv1 with a 1024-bit RSA signing certificate, 
and IKEv2 with a preshared key, respectively. We made con-
nections to each gateway using the strongSwan VPN soft-
ware as our initiator and recorded the traffic to our device. 
We successfully decrypted each connection by recovering 
the Dual EC state and traffic keys using just that connec-
tion’s captured packets.

6. HISTORY OF THE JUNIPER INCIDENT
The history of the Juniper incident begins nearly 
a decade ago.b In October 2008, Juniper released 
ScreenOS 6.2. As described in detail above, this 
release (1) replaced an entropy-gathering procedure 
for (re)seeding the ANS X9.31 PRNG with Dual EC 
using a custom Q point; (2) modified the X9.31 reseed 
logic to reseed on every call rather than every ten 
thousand calls; (3) changed the loop counter in the  
prng_generate procedure as well as the procedure’s 
output to be global variables, shared with the reseed pro-
cedure, thus ensuring that pseudorandom values are gen-
erated by Dual EC, and not X9.31; (4) changed the IKE 
nonce length from 20B to 32B; and (5) added a nonce pre-
generation queue.

The result of the first four changes is that whoever 
knew the integer d corresponding to Juniper’s Q could 
passively decrypt (some) VPN traffic. Each of the first 
four changes is critical to the attack described in this 
article. The fifth change enables single-connection 
attacks in many cases, but is not necessary for multi-
connection attacks.

This state of affairs continued for four years. At some 
point prior to the release of ScreenOS 6.2.0r15 (September 
2012) and ScreenOS 6.3.0r12 (August 2012), someone mod-
ified Juniper’s source code. Based on the patched firmware 
revisions Juniper would later release, the modifications 
were quite small: The x-coordinate of Juniper’s Dual EC’s 
Q was changed as was the expected response to Dual EC’s 
Known Answer Test. As a result, the set of people who could 
passively decrypt ScreenOS’s VPN traffic changed from 
those who know Juniper’s d (if any) to those who know the 
new d corresponding to the changed Q (presumably the 
attacker who made the change).

Apparently unrelated to the 2012 changes, a second 
source code modification was made. A hard-coded SSH and 
Telnet password was inserted into Juniper’s code at some 
point before the release of ScreenOS 6.3.0r17 (April 2013). 
Logging in with this password yields administrator access.

the dequeued DH share. That property will continue to hold 
for subsequent IKE handshakes, provided that handshakes 
do not entirely exhaust the queues. Had the refill task not 
prioritized refilling the nonce queue before any DH group 
queue, single-connection attacks would not have been pos-
sible. Had the nonce queue been the same length as a DH 
share queue, single-connection attacks would not have been 
possible in configurations where IKE Phase 2 consumed a 
nonce but not a DH share.

ScreenOS 6.1 pregenerates DH shares but not nonces; the 
nonce queues we have described were added in ScreenOS 6.2, 
along with Dual EC. Had nonce queues not been added, no 
handshakes would have been vulnerable to single-connection 
decryption attacks.

In the presence of multiple nonce-only Phase-2 exchanges 
within a single Phase-1 exchange, multiple DH groups 
actively used in connections, queue exhaustion, or certain 
race conditions, the situation is more complicated, and it is 
possible for an IKE handshake phase to have its DH share 
generated before its nonce. Single-connection decryption 
attacks would fail for those handshakes. Refer to the full ver-
sion of this paper for details.5

4.4. Recovering traffic keys
If the attacker can predict the Diffie–Hellman private key 
corresponding to the ScreenOS device’s DH share for an IKE 
exchange, she can compute the DH shared secret for that 
exchange. With knowledge of the DH shared secret, com-
puting the session keys used to encrypt and authenticate 
the VPN session being set up is straightforward, though the 
details depend on the IKE protocol version and the way in 
which the endpoints authenticate each other; for details, see 
the full version of this paper.5

For IKEv1 connections authenticated with digital 
signatures, the attacker knows everything she needs to 
compute the session keys. For IKEv1 connections authen-
ticated with public key encryption, each peer’s nonce is 
encrypted under the other’s Rivest–Shamir–Adleman 
(RSA) public key, stopping the attack. IKEv1 connections 
authenticated with preshared keys fall somewhere in the 
middle: The attacker will need to know the preshared 
key in addition to the DH shared secret to compute the 
session keys. If the preshared key is strong, then the con-
nection will still be secure. Fortunately for the attacker, 
many real-world VPN configurations use weak preshared 
keys (really passwords); in such cases having recorded an 
IKE handshake and recovered the DH shared secret, the 
attacker will be able to mount an offline dictionary attack 
on the preshared key. By contrast, the attacker will be able 
to compute session keys for IKEv2 connections in the 
same way, regardless of how they are authenticated.

Having computed the session keys, the attacker can 
decrypt and read the VPN traffic and, if she wishes, can tam-
per with it.

5. EXPERIMENTAL VALIDATION
To validate the attacks we describe above, we purchased a 
Juniper Secure Services Gateway 550M VPN device. We gen-
erated our own point Q and corresponding Dual EC secret d. 

b  The dates in this section come from file dates, ScreenOS release notes, 
and Juniper’s website, none of which agree precisely on any dates.
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ScreenOS uses Juniper’s own Q point since, at that time, 
ScreenOS was shipping with the attacker’s Q. Second, 
by the end of 2015, Juniper knew that Dual EC could be 
exploited in ScreenOS. Despite this, Juniper’s initial 
fix was to revert the Q point to their initial value in each 
affected ScreenOS revision. Eventually, after press cover-
age of our results, Juniper committed to removing Dual EC 
from their PRNG subsystem.

7. EXCEPTIONAL ACCESS AND NOBUS
Law enforcement officials have been warning since 2014 that 
they are “going dark”: that ubiquitous end-to-end encryp-
tion threatens investigations by rendering intercepted com-
munications unreadable. They have called on technology 
companies to rearchitect their products so intercepted com-
munications could be decrypted given a court order. Computer 
scientists have resisted such “exceptional access” mandates, 
arguing that whatever mechanism implements it would con-
stitute a vulnerability that might be exploited by third parties.1

Attempts to design exceptional access mechanisms 
which do not introduce vulnerabilities go back at least as far 
as 1993, when the NSA introduced “Clipper,” an encryption 
algorithm embedded in a hardware platform with a built-in 
“key escrow” capability, in which cryptographic keys were 
separately encrypted under a key known to the US govern-
ment. Such a mechanism would be “NOBUS,” in the jargon 
of the NSA, for “nobody but us” (p. 281; Ref.6): data would 
be cryptographically secure against anyone who did not have 
the keys but transparent to those who did.

While the key escrow mechanism designed for Clipper 
involved encrypting the traffic keys under the escrow key, it 
is also possible to build an exceptional access mechanism 
around a system like Dual EC, with the escrow key being the 
discrete log of Q. The common thread here is that the key is 
intended to be known only to authorized personnel.

Whatever the intent of Juniper’s selection of Dual EC, its 
use created what was in effect an exceptional access system: 
one where the key was the d value corresponding to Juniper’s 
choice of Q. We have no way of knowing whether anyone 
knew that d value or not, and Juniper has not described how 
they generated Q. However, around 2012, some organiza-
tion gained the ability to make changes to Juniper’s source 
code repository. They used that access to change the Dual EC 
point Q to one of their choosing, in essence swapping out the 
escrow key. Between September 2012 and December 2015, 
official releases of ScreenOS distributed by Juniper included 
the intruders’ point Q instead of Juniper’s. VPN connections 
to NetScreen devices running affected releases were subject 
to decryption by the intruders, assuming they know the d 
corresponding to their point Q.

8. LESSONS
The ScreenOS vulnerabilities we have studied provide 
important broader lessons for the design of cryptographic 
systems, which we summarize here.

In early September 2013, the New York Times published 
an article based on documents from Snowden strongly 
implying that the National Security Agency (NSA) had engi-
neered Dual EC to be susceptible to attack.15 The article does 
not name Dual EC; it instead refers to a 2006 NIST standard 
with a “fatal weakness, discovered by two Microsoft cryp-
tographers in 2007,” presumably referring to Dan Shumow 
and Niels Ferguson’s presentation at CRYPTO 2007.16 This 
reporting led NIST to withdraw its recommendation for 
Dual EC.14

After NIST withdrew its recommendation, Juniper subse-
quently published a knowledge base article explaining their 
use of Dual EC in ScreenOS.

ScreenOS does make use of the Dual_EC_DRBG standard, 
but is designed to not use Dual_EC_DRBG as its primary 
random number generator. ScreenOS uses it in a way that 
should not be vulnerable to the possible issue that has been 
brought to light. Instead of using the NIST recommended 
curve points it uses self-generated basis points and then 
takes the output as an input to FIPS/ANSI X.9.31 [sic] PRNG, 
which is the random number generator used in ScreenOS 
cryptographic operations.8

The first mitigation—using self-generated basis points—
only defends against the attacks described in this paper if Q 
is generated so that nobody knows d; Juniper has provided 
no evidence that this is the case. As we describe in Section 3, 
Juniper’s claim that the output of Dual EC is only used as an 
input to X9.31 is incorrect.

This was the situation on December 17, 2015 when 
Juniper issued an out-of-cycle security bulletin9 for two secu-
rity issues in ScreenOS: CVE-2015-7755c (“Administrative 
Access”) and CVE-2015-7756d (“VPN Decryption”).

This announcement was particularly interesting because 
it was not the usual report of developer error, but rather of 
malicious code which had been inserted into ScreenOS by 
an unknown attacker:

During a recent internal code review, Juniper discovered 
unauthorized code in ScreenOS that could allow a 
knowledgeable attacker to gain administrative access 
to NetScreen® devices and to decrypt VPN connections. 
Once we identified these vulnerabilities, we launched an 
investigation into the matter, and worked to develop and 
issue patched releases for the latest versions of ScreenOS.10

The bulletin prompted a flurry of reverse-engineering 
activity around the world, including by our team. The 
“Administrative Access” issue was quickly identified as 
the 2013 source code modification. This issue has been 
extensively discussed by Moore.13 Our analysis of the “VPN 
Decryption” issue, described in this article, shows that the 
2012 code modification is responsible.

Our analysis implies several items of note. First, the 
2012 code modification indicates that Juniper’s 2013 
knowledge base article8 is incorrect when it states that 

c  https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7755
d  https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2015-7756

e  Of course, reducing nonce size cannot prevent all data exfiltration strate-
gies. However, it may increase the difficulty of hiding the necessary code, 
and the complexity of executing an attack.
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8.1. For protocol designers
Allowing nonces to vary in length, and in particular to be 
larger than necessary for uniquely identifying sessions, may 
be a bad idea. The authors are unaware of any cryptographic 
rationale for 256B nonces, as permitted by IPsec; it is sim-
ply an invitation for implementations to disclose sensitive 
state, intentionally or not.e

Adding even low-entropy shared secrets as key derivation 
inputs helps protect against entropy failures. We observe a 
difference in exploitability of the ScreenOS bugs between 
IKEv1 and IKEv2 that is entirely due to the different use of 
the preshared key between the two protocols. It is unfortu-
nate that IKEv2 is easier to exploit.

8.2. For implementers and code reviewers
Cryptographic code must be locally auditable: It must be 
written in such a way that examining a function or a mod-
ule in isolation allows the reader to understand its behavior.

ScreenOS’s implementation failed to live up to this 
guideline. A loop counter in the core prng_generate 
routine was defined as a global variable and changed in a 
subroutine. This is a surprising-enough pattern that sev-
eral experienced researchers who knew that the routine 
likely had a bug failed to spot it before Willem Pinckaers’ 
contribution. The prng_generate and prng_reseed 
routines reuse the same 32B buffer, output, for two 
entirely different purposes: Dual EC output with which 
to seed X9.31, and output from the PRNG subsystem. 
ScreenOS’s use of pregeneration queues makes it dif-
ficult to determine whether nonces or Diffie–Hellman 
shares are generated first. Someone reading the code for 
the top-level functions implementing IKE in isolation 
will conclude that Diffie–Hellman shares are generated 
first, whereas in practice the opposite is usually the case.

The state recovery attacks suffered by Juniper suggest 
that implementations may wish to avoid revealing the raw 
output of a random number generator entirely, perhaps by 
hashing any PRNG output before using it as a nonce. One 
could also design implementations so that separate PRNGs 
are used for different protocol components, to separate 
nonce security from key security.

Several of the above mistakes represent poor software 
engineering practices. Cryptographic code reviews, whether 
internal or external (e.g., for FIPS validation), should take 
code quality into account.

8.3. For NIST
Juniper followed then-current best practices in designing 
and verifying their random number generators. They used a 
NIST-certified algorithm, followed the FIPS-recommended 
procedure to verify the output using test vectors, and fol-
lowed a commonly recommended engineering guideline to 
use a PRNG as a whitener for a potentially insecure random 
number generator, removing—at least in theory—the struc-
tured output that makes Dual EC vulnerable.

In this case, all three approaches failed. In particular, 
a crippling defect in the whitening countermeasure man-
aged to go undetected in FIPS certification. This suggests 
potential future work for research in the verification of 

cryptographic systems. One step would be to track the ori-
gin and use of any buffers—especially shared buffers—and 
enforce a rule that all random number generator output 
can be traced back to an appropriate cryptographic func-
tion, such as a block cipher or hash. Some form of cover-
age analysis might also have revealed that the whitening is 
never performed.

To the extent that FIPS guidelines mandate the use of 
global state, they run counter to our suggestion, above, that 
cryptographic code be locally auditable.

Products are evaluated against FIPS standards by accred-
ited laboratories. ScreenOS was FIPS certified with the 
X9.31 PRNG, yet the lab evaluating ScreenOS failed to spot 
that X9.31 was never invoked, as well as failing to detect the 
defect in the Dual EC implementation described in Section 3. 
NIST should revisit its laboratory accreditation program 
to ensure more thorough audits, especially of randomness 
subsystem code.

8.4. For attackers
The choice by the attacker to target the random number 
generation subsystem is instructive. Random number gen-
erators have long been discussed in theory as a target for 
kleptographic substitution attacks,18 but this incident tells 
us that the threat is more real than has been known in the 
academic literature.

From the perspective of an attacker, by far the most 
attractive feature of the ScreenOS PRNG attack is the ability 
to significantly undermine the security of ScreenOS without 
producing any externally detectable indication that would 
mark the ScreenOS devices as vulnerable. This is in contrast 
to previous well-known PRNG failures, which were exter-
nally observable, and, in the case of the Debian PRNG flaw,17 
actually detected through observational testing. Indeed, 
the versions of ScreenOS containing an attacker-supplied 
parameter appear to have produced output that was crypto-
graphically indistinguishable from the output of previous 
versions, thus preventing any testing or measurement from 
discovering the issue.

8.5. For journalists
Much of the coverage of the Juniper disclosure has focused 
on the unauthorized changes made in 2012 to the random-
ness subsystem and in 2013 to the login code. By contrast, 
our forensic investigation of ScreenOS releases highlights 
the changes made in the 6.2 series, in 2008, as the most 
consequential.

These changes, which introduced Dual EC and changed 
other subsystems in such a way that an attacker who knew 
the discrete log of Q could exploit it, were, as far as we know, 
added by Juniper engineers, not by attackers. This raises a 
number of questions:

How was the new randomness subsystem for the ScreenOS 
6.2 series developed? What requirements did it fulfill? How 
did Juniper settle on Dual EC? What organizations did it 
consult? How was Juniper’s point Q generated?

f  Online: https://oversight.house.gov/hearing/federal-cybersecurity-detection- 
response-and-mitigation/.
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We are not able to answer these questions with access 
to firmware alone. Juniper’s source code version-control 
system, their bug-tracking system, their internal e-mail 
archives, and the recollections of Juniper engineers may 
help answer them.

Despite numerous opportunities, including public ques-
tions put to their Chief Security Officer and a congressional 
hearing on this incident,f Juniper has either failed or explic-
itly refused to provide any further details.

8.6. For policymakers
Much of the debate about exceptional access has focused 
on whether it is possible to construct secure exceptional 
access mechanisms, where “secure” is defined as only 
allowing authorized access—presumably by law enforce-
ment. It is readily apparent that one of the major difficul-
ties in building such a system is the risk of compromise  
of whatever keying material is needed to decrypt the 
targeted data.

The unauthorized change to ScreenOS’s Dual EC con-
stants made in 2012 illustrates a new threat: the ability 
for another party to modify the target software to subvert 
an exceptional access mechanism for its own purposes, 
with only minimally detectable changes. Importantly, 
because the output of the PRNG appears random to any 
entity that does not know the discrete log of Q, such a 
change is invisible both to users and to any testing which 
the vendor might do. By contrast, an attacker who wants 
to introduce an exceptional access mechanism into a 
program which does not already has one must gener-
ally make a series of extremely invasive changes, thus 
increasing the risk of detection.

In the case of ScreenOS, an attacker was able to subvert 
a major product—one which is used by the federal govern-
ment—and remain undiscovered for years. This represents 
a serious challenge to the proposition that it is possible to 
build an exceptional access system that is available only to 
the proper authorities; any new proposal for such a system 
should bear the burden of proof of showing that it cannot be 
subverted in the way that ScreenOS was.
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