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Abstract

Cryptographic techniques have the potential to enable dis-
trusting parties to collaborate in fundamentally new ways,
but their practical implementation poses numerous chal-
lenges. An important class of such cryptographic techniques
is known as Secure Multi-Party Computation (MPC). Devel-
oping Secure MPC applications in realistic scenarios requires
extensive knowledge spanning multiple areas of cryptogra-
phy and systems. And while the steps to arrive at a solution
for a particular application are often straightforward, it re-
mains difficult to make the implementation efficient, and
tedious to apply those same steps to a slightly different ap-
plication from scratch. Hence, it is an important problem
to design platforms for implementing Secure MPC applica-
tions with minimum effort and using techniques accessible
to non-experts in cryptography.
In this paper, we present the HACCLE (High Assurance

Compositional Cryptography: Languages and Environments)
toolchain, specifically targeted toMPC applications. HACCLE
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contains an embedded domain-specific language Harpoon,
for software developers without cryptographic expertise to
write MPC-based programs, and uses Lightweight Modular

Staging (LMS) for code generation.
Harpoon programs are compiled into acyclic circuits repre-

sented in HACCLE’s Intermediate Representation (HIR) that
serves as an abstraction over different cryptographic pro-
tocols such as secret sharing, homomorphic encryption, or
garbled circuits. Implementations of different cryptographic
protocols serve as different backends of our toolchain. The
extensible design of HIR allows cryptographic experts to
plug in new primitives and protocols to realize computa-
tion. And the use of standard metaprogramming techniques
lowers the development effort significantly.
We have implemented Harpoon and HACCLE, and used

them to program interesting applications (e.g., secure auc-
tion) and key computation components of Secure MPC ap-
plications (e.g., matrix-vector multiplication and merge sort).
We show that the performance is improved by using our
optimization strategies and heuristics.
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pilers; Domain specific languages.
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1 Introduction

Secure Multi-Party Computation (MPC) enables a group of
distrusting parties to jointly perform computation without
revealing any participant’s private data that they do not
wish to share with others. It has broad practical applications,
e.g., Yao’s millionaires problem [50], secure auctions [5, 24],
voting, privacy-preserving network security monitoring [8],
privacy-preserving genomics [26, 49], private stable match-
ing [18], ad conversion [28], spam filtering on encrypted
email [22], and privacy-preserving machine learning [16]. Se-
cure MPC applications are generally realized as circuits com-
municating information ś both private and public ś among
parties.

Although MPC techniques and protocols have seen much
success in the cryptography community, it is still challenging
to build practical MPC applications. Executing cryptographic
protocols is notoriously slow, due to the encryption and com-
munication overhead. The largest benchmark reported in
Fairplay [33] ś a secure two-party computation system śwas
finding the median of two sorted input arrays containing ten
16-bit numbers from each party. Running the benchmark re-
quired execution of 4383 gates, and took over 7 seconds on a
local area network. While improving computing capabilities
and network bandwidth, implementation techniques can con-
tribute to 3-4 orders of magnitude improvements [20]. These
techniques include optimizations that reduce the number
of gates and the depth of a circuit and reduce the computa-
tional costs of executing a cryptographic protocol. However,
such optimizations do not exist in general-purpose compiler
frameworks.
While several MPC frameworks have been proposed [4,

9, 15, 17, 25, 29, 31, 32, 35, 43, 47, 48, 51, 51, 52], they either
provide low-level cryptographic primitives or high-level ab-
stractions like traditional programming languages, but not
both. The low-level frameworks provide high degrees of
customized protocol execution, but the users are generally
expected to be experts in either one or both of cryptography
and optimizing circuits. These MPC frameworks provide lit-
tle or no type safety to prevent semantic errors, and it is
difficult to write applications in a way that is portable across
different protocols. The high-level frameworks provide tradi-
tional programming abstractions that hide the data-oblivious
nature of secure computation from programmers. But these
frameworks are tied to only one or a few protocols and their
compilation procedures ś from high-level abstractions to
low-level primitives ś are not easy to extend to perform
application-specific optimizations [51].

Contributions The main intellectual contribution of this
paper is a toolchain for developing Secure MPC applications
called HACCLE (High Assurance Compositional Cryptog-
raphy: Languages and Environments). Our framework con-
tains an embedded domain-specific language (eDSL)Harpoon
for designing MPC-based applications, and uses standard
metaprogramming techniques to lower the development ef-
fort. Allowing seamless construction of MPC-based applica-
tions by software developers without expertise in advanced
cryptography is the main purpose of providing such a high-
level programming language. A Harpoon program is com-
piled to an acyclic combinational circuit, which is described
in a HACCLE Intermediate Representation (HIR). HIR ex-
poses the essential data-oblivious nature of MPC, and allows
cryptography experts to experiment with new primitives
and protocols. Our framework also provides a specialized
backend for estimating the resource usage (e.g., compute
time and memory space) prior to execution.

This paper makes the following specific contributions:

• HACCLE Toolchain: A compilation framework to build
and execute MPC applications written in Harpoon ś an
embedded domain-specific language (eDSL) in Scala based
on the LMS metaprogramming and compiler platform.

• HACCLE Intermediate Representation (HIR): An ex-
tensible circuit-like intermediate representation tailored
to abstract cryptographic primitives used in MPC.

• Optimization Strategies: Methods for optimizing the
MPC application by specialization as it flows through each
stage of our HACCLE toolchain.

The rest of the paper is organized as follows. Sec. 2 pro-
vides background on cryptographic protocols involved in
Secure MPC and motivates the need for developing MPC-
based applications. We describe the key impediments for
developing practical MPC applications with the example of
secure auctions. Sec. 3 illustrates components of our com-
piler and HIR. Sec. 4 describes the HACCLE toolchain and
associated workflow. Sec. 5 describes the optimizations im-
plemented in our compiler toolchain. Sec. 6 discusses our
toolchain on three case studies in detail. Sec. 7 summarizes
related work and Sec. 8 concludes the paper. The HACCLE
implementation is available online at:
https://github.com/YuyanBao/HACCLE.

2 Motivating Example and Background

As an example of Secure MPC, consider online auctions. On-
line auctions have great practical importance and different
models are widely used, e.g., by eBay, Google AdWords, and
Facebook. In general, a secure online auction works as fol-
lows. Buyers place their sealed bids on items, and for each
item, the highest bidder is chosen to buy it. In this setup,
parties are not permitted to know others’ bids. Hence, con-
ducting successful secret auctions in the absence of a trusted
authority requires cryptographic techniques to preserve the
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secrecy of bids while performing necessary computation,
such as finding the highest bidder, in an assuredly trustwor-
thy way. One of the significant use cases of secure auctions
is procurement via a competitive bidding process, where
no participant trusts each other, including the auctioneer.
While a trusted third party handling the auction may be
acceptable when the items under auction have low value,
this is generally a less desirable option in high-value and
corruption-prone environments, such as procurement for
public construction contracts.

There are many different types of auction policies studied
by economists and game theorists. An auction where the
highest bidder is chosen to buy the item by paying the high-
est bid is known as a first-price auction. A second-price or
Vickrey auction [46] is an alternative auction policy where
the highest bidder is chosen to buy the item at the second
highest price. Second-price auctions provide buyers with
the incentive to bid their true valuation and do not allow
for price discovery (i.e., no ramping up of prices). Hence,
second-price auctions are especially suitable for high-value
low-trust environments, such as public procurement. Second-
price auctions also apply to settings where multiple items are
auctioned and/or bids may have additional structure, such
as if/then conditions to evaluate specific contract terms that
need to be taken into account for comparison. Such settings
are described as generalized second-price auctions. Given
that secrecy of the bids is preserved, the computation re-
quired when a single item is auctioned is simpler than when
multiple items are auctioned. Hence it is desirable both from
programmability and efficiency viewpoints that the online
auction application is written once for the general case and
gets automatically and correctly specialized for the desired
number of items, number of bidders, comparison logic, etc.
Most implementation techniques for Secure MPC appli-

cations (e.g., first- and second-price auctions) are based on
circuits. Equivalent functionality can be expressed as a Scala
program: e.g., the following expresses an AND gate template,
with bit-width determined by the input array:

val input = Array(0, 1, 1, 0)

var res = input(0)

for (i <- (1 until input.length))

res = res & input(i)

res

Just like in DSLs for hardware design [2, 27], using metapro-
gramming techniques to stage bitwise operations rather than
execute them directly is the key to our approach. Implement-
ing secure circuits then amounts to specializing the encoding
and operators for the respective cryptographic backends.
We use Lightweight Modular Staging (LMS) [38] to turn

the encoding and operators into staged expressions, so that
programs like the previous AND template become circuit
generators. In LMS, type constructor Rep[T] is used to de-
note a staged expression, which will cause an expression
of type T to become part of the generated program. The

following code shows the high-level design of HACCLE in-
termediate representation (HIR) using LMS. The case classes
Bit and Num define the primitive constructs of encoding
boolean circuits and arithmetic circuits respectively, where
the types Rep[SBit] and Rep[SNum] denote the staged rep-
resentations of secure bits and numbers (see Sec. 3.3).

// Boolean circuit interface

abstract class SBit

case class Bit(val value: Rep[SBit], ... ) {

def &(that: Bit) = { ... }

def |(that: Bit) = { ... }

}

// Arithmetic circuit interface

abstract class SNum

case class Num(val value: Rep[SNum], ...) {

def +(that: Num) = { ... }

def -(that: Num) = { ... }

def <(that: Num) = { ... }

}

It is of course possible to implement Num on top of binary
circuits and Bit arrays using standard half adders and full
adders (see Sec. 3.3), but some secure cryptographic protocols
directly support arithmetic circuits.
Now to express a secure first-price auction, we can use

operations on an array of pairs of Nums that denote encrypted
bidders’ identities and their bids:

// assume input: Array[(Num, Num)]

var res = input(0)

for (i <- (1 until input.length))

res = if (res._2 < input(i)._2) input(i) else res

res

Observe that the linear sequence of operations in the above
code results in a suboptimal circuit. Rewriting the code in a
functional style, as, input.reduce(_ max _), allows us to
abstract over the reduction pattern and substitute the linear
sequence with a tree reduction patten, which yields a circuit
of logarithmic depth, allowing efficient parallel computation.
Using known techniques for extracting functional dependen-
cies from imperative loops [19, 37], this transformation is
automated and applied to for loops. Now, all we need are
generic functions: max, sndmax (shown below) and reduce

(Fig. 1). The latter divides the computation into subproblems
of size 𝑛/2 and call the subproblems recursively.

// compare (bid id, bid value)

def max(a: (Num, Num), b: (Num, Num)): (Num, Num) =

if (a._2 < b._2) b else a

// compare (bid id, bid value, price = 2nd highest bid)

def sndmax(a: (Num, Num, Num), b: (Num, Num, Num)) =

val prz = ... // 2nd highest of a._2,a._3,b._2,b._3

if (a._2 < b._2) (b._1,b._2,prz) else (a._1,a._2,prz)

Type classes, e.g., Ordering[T] or Encoding[T], can be used
to further abstract over comparison or access logic.
With the given comparator functions, we can transform

the previous imperative code to a functional style, which
generates optimal circuits:
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def reduce[T](input: Array[T])(f: (T, T) => T): T = {

def rec(elems: Array[T]): T =

if (elems.length == 1) elems(0)

else {

val b1 = elems.slice(0, elems.length/2)

val b2 = elems.slice(elems.length/2, elems.length)

f(rec(b1), rec(b2))

}

rec(input)

}

Figure 1. Generic function reduce yielding a circuit of logarithmic depth.

// compute first-price auction

val max = reduce(input)(max)

// compute second-price auction

def initPrice(x) = (x._1, x._2, x._2)

def dropSecretBidValue(x) = (x._1, x._3)

val r = reduce(input.map(initPrice)))(sndmax)

val snd_max = dropSecretBidValue(r)

For second-price auctions, we transform each element in
the array to a 3-tuple of bidder’s identity, highest bid, and
initial price, and reduce with sndmax. Sec. 6.1 shows a full
implementation in our HACCLE toolchain.

We continue our discussion of Secure MPC background by
looking at different protocols for secure computation, system
models, trust models, and the offline/online paradigm.

Secret sharing. Secret sharing [40] is a cryptographic
technique that distributes secret data amongst a group of
parties, and allows the secret to be reconstructed only when
a sufficient portion of shares are combined. A (𝑡, 𝑛)-secret
sharing scheme allows the secret 𝑠 to be split into 𝑛 shares.
Any 𝑡 − 1 of the shares reveal no information about 𝑠 , while
any 𝑡 shares can complete reconstruction of the secret 𝑠 .
The SPDZ [15] and HoneyBadgerMPC [32] frameworks

serve as our secret sharing backends and provide Python-
style programming environments for writing custom MPC
programs. These frameworks let developers express MPC
programs (e.g., second-price auction) as arithmetic expres-
sions. Constructing the most efficient MPC programs is the
major challenge for developers. First, developers must know
how to build an efficient circuit, e.g., realizing a balanced tree
reduction to reduce the depth of a circuit and to parallelize
the computation, instead of performing a linear reduction
over a list of elements. Second, developers must have a good
understanding of the cost of every primitive operation (e.g.,
usage of logically similar but different comparison operators
may yield different costs). These challenges are significantly
different from writing an efficient program in the traditional
setting and can be successfully overcome by a compiler.

Homomorphic Encryption. Cloud computing may vio-
late privacy. In this scenario, one party wants to perform
computation by outsourcing to another (possibly untrusted)
party, e.g., training machine learning models of private data
on a public cloud server. This can be achieved by homomor-
phic encryption, another important cryptographic primitive.

Homomorphic encryption enables operations on encrypted
data. The PALISADE [44], TFHE [13], and HElib [39] libraries
serve as our FHE backends. They all implement asymmet-
ric protocols that use a pair of public and private keys for
encryption and decryption. The TFHE library implements a
very fast gate-by-gate bootstrappingmechanism [11, 12], and
allows to evaluate a boolean circuit composed of binary gates
over encrypted data. The HElib library implements many
optimizations to make homomorphic evaluation run faster.
The PALISADE library supports the BGV [7], BFV [6, 21],
and CKKS [10] schemes. In cryptography, ciphertext and
plaintext mean private and public information, respectively.
In this paper, we may use these terms interchangeably.

Garbled Circuits. Yao’s Garbled circuits [50] is a two-
party secure computation scheme for boolean circuits against
semi-honest adversaries. Obliv-C [51] is the library that we
use to support Yao’s Garbled Circuits protocols.

System and Communication Models. There are two
popular system models for multi-party computation. The
MPC-as-a-service setting allows some parties to play the
role of servers and to provide MPC services to clients with
private input. The other setting is where the parties run-
ning the MPC protocols are the participants who provide the
input. The HACCLE toolchain does not enforce a specific
setting; instead, users choose the suitable setting for their
applications and keep that setting in mind when developing
programs. Similarly, the HACCLE toolchain does not enforce
any communication model. The parties/machines could be
fully connected, could form a star network structure, or could
be any specified structure. As long as the network structure
is supported by one of HACCLE’s backends, HACCLE is able
to compile the program.

Trust/Adversary Models. Developing MPC applications
requires understanding the security assumptions of an MPC
library, such as the trust/adversary models. There are two
major adversary models: semi-honest and malicious. A semi-

honest adversary follows the protocol, but tries to learn
from received messages. A malicious adversary has the same
power as a semi-honest one in analyzing the protocol exe-
cution. In addition, it may also control, manipulate, or ar-
bitrarily inject messages to the network. In HACCLE, pro-
grammers only need to provide a model of choice and the
toolchain will pick proper sub-protocols to build up the MPC
programs satisfying the adversary model described.

Offline Phase. The offline/online paradigm is applied by
manyMPC protocols and frameworks. The online phase uses
a buffer of preprocessed input-independent values created
during the offline phase. Thus, the MPC framework can run
the offline phase to prepare them beforehand. The online
phase is where clients/users provide their inputs and get ex-
pected output; it can gain a significant speed-upwith the help
of the offline phase. A number of preprocessed values are
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Figure 2. Compilation in HACCLE.

required for multiplications and comparisons. The volume
of preprocessing data depends on the online phase, and it is
hard for programmers without security expertise to work out
those requirements. In HACCLE, programmers need not care
about the secret parameters. They describe only the compu-
tation and the private information. The HACCLE toolchain
can synthesize suitable settings for the offline phase.

3 Compiler

The HACCLE toolchain uses LMS [38] to support our towers
of abstractions. Staging is a technique for building extensible,
flexible DSLs by providing code generators that successively
lower higher-level abstractions to lower-level abstractions,
and, ultimately, to executable code. Importantly, staging al-
lows optimization to be performed at every level of the low-
ering process. Hence, some optimizations can be performed
at high levels of abstraction (e.g., optimization on plaintext
computation (see Sec. 5)), while other optimizations can be
performed at lower levels of abstraction. As a result, abstrac-
tion penalties are minimized. Another benefit of staging is
that because the translation is written in terms of generators,
it is simple to add new abstractions at any given level.

3.1 Staged Compilation

Multi-Stage Programming [42] (or staging) is the program-
ming language technique that executes programs in multiple
stages. A staged computation does not immediately compute
a result, but returns a program fragment that represents the
computation and that can be explicitly executed to form the
next computational stage. The key benefit of staging is that
the present-stage code can be written in a high-level style,
yet generates future-stage code that is very low-level and
efficient. Fig. 2 illustrates an end-to-end compilation path
in HACCLE. The compiler takes a Scala program with Har-
poon annotations (see Sec. 3.2), and constructs a computation
graph that expresses an abstract circuit. Given a backend
specification, the compiler will generate a target program
for it. Currently, our compiler is not able to automatically
choose an appropriate backend and initialize all the parame-
ters for it. Thus, a backend specification is needed. It is a file
that contains a set of parameters for translating an abstract
circuit to a concrete backend program.

Generative Programming and Lightweight Modular

Staging (LMS). As mentioned in Sec. 2, the HACCLE com-
piler uses LMS for code generation due to its metaprogram-
ming capabilities, and the type constructor Rep[T] is used to
denote a staged expression. For example, the type Rep[SNum]
denotes an encrypted integer. Given two Rep[SNum] values

a and b, evaluating the expression 𝑎 + 𝑏 will generate code
for a given backend. For the Helib backend, the generated
code will be Ctxt r = a; r += b;, where Ctxt is the type
of a ciphertext in the Helib library. For the TFHE backend,
the generated code will be:
LweSample* x5 =

new_gate_bootstrapping_ciphertext_array(64, x2->params);

fhe_add(x5, a, b, 64, bk);

where LweSample is the type of a ciphertext in the TFHE
library. As a TFHE program does not provide arithmetic
expressions and operations, the compiler encodes an integer
as a bit-array of size 64. The function fhe_add is part of our
HACCLE library of the TFHE library.

3.2 Harpoon

HAccle Rich Representation for Program OperatiON (Har-
poon) language is an expressive subset of Scala for writing
MPC programs. It is an imperative and monomorphic lan-
guage, featuring standard control flow operations: loops,
function calls, conditionals, and recursions. The language is
designed to be expressive enough that programmers could
easily write Harpoon code directly, while being constrained
enough to ensure that Harpoon programs can be imple-
mented via translation to secure low-level computation. In
practice, Harpoon serves as the top-level IR for the HACCLE
pipeline, and is the language for end-user programs.
The Harpoon language is not only able to access Scala

libraries, but also provides a set of cryptographic data struc-
tures, e.g., HArray[T] is an encrypted array that allows one
to index on ciphertexts. It also provides a set of security an-
notations that are read via reflection and are used to direct
code generation. They are agnostic to the target backend, and
are used by subsequent stages of the HACCLE pipeline. For
example, the annotation sec is used to mark the provider
(also the owner) of private data. Recursive functions and
loops may be annotated with an upper bound on the number
of recursive calls and iterations. This expression can refer-
ence the parameters of the function, allowing this bound to
vary according to the context where a function is called, e.g.,
consider the signature of merge function:

@bound(a.length + b.length)

def merge(a: HArray[Int], b: HArray[Int]): Harray[Int]

The upper bound of the number of recursive calls is the sum
of the length of the two input arrays. Note that the semantics
of function calls in Harpoon is not impacted by the bound;
rather it is used by subsequent stages of the pipeline to bound
the invocation of a recursive function call (see Sec. 3.4).
The annotated program is also equipped with a type sys-

tem, and ensures that information about private data cannot
be leaked. This provides the first-layer guarantees that the
programs can be successfully compiled by the later stages of
the pipeline. Consider the statement println(a), where 𝑎
is annotated as private data. The compiler will report a type
error, as encrypted data is not understandable or meaningful
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Figure 3. Example of multi-level HIRs.

to users. But the assignment @sec(alice) val r = a is
permitted, as the annotation expresses that the variable r
stores encrypted data. While the type system at this stage
does not make use of fine-grained ownership information,
this information will be passed down through the pipeline.
See [3] for the details of Harpoon language.

3.3 Intermediate Representation

HACCLE intermediate representation (HIR) serves as an
interface between high-level programming languages and
cryptographic backends. HIR is a domain-specific intermedi-
ate language, and gains benefits from LMS to support towers
of abstractions. It encompasses all the primitive operations
which we have supported so far, e.g., encryption, decryption,
sharing, and combining.

Multi-level IR. Different backends may support different
sets of operations in HIRÐno backend is łcomplete” in that
there is a direct implementation of each HIR operation in that
backend. For example, the TFHE backend supports logical op-
erations but not arithmetic ones. In contrast, other backends
may support arithmetic operations but not boolean ones.
The compiler’s job is to rewrite HIR circuits to be compatible
with backends.

As shown in Fig. 3, HIR is a multi-level IR. The compiler
can thus use rewrites to target the subset of operations that a
given backend supports. For example, arithmetic operations
(adds, multiplies) can be rewritten into bit-level implemen-
tations (as, e.g., ripple-carry adders, or bit-level implemen-
tations), or boolean operations can be represented as arith-
metic operations that happen to operate over Z2. We have
developed a set of these rewrite rules for various backends
(and, indeed, rely on exactly this type of rewrite to support
floating point operations).
A key task for integrating a new backend is identifying

what set of HIR operations that module supports, hence
directing the compiler to perform appropriate rewrites. No-
tably, if the compiler cannot rewrite an HIR circuit to target
the set of operations a backend supports, it will manifest as
a type error, providing feedback to the user.
In the scenario of using a FHE scheme, an integer is en-

coded as the Num data structure shown below, where the
fields provider and value are abstraction of the party who
provides the value and the encrypted value respectively.
case class Num(

val provider: Set[Rep[SOwner]], // who provides it

val value : Rep[SNum] // encrypted value

)

In this case, a variable declaration statement in Harpoon, i.e.,
@sec(alic) val x = 5;, is transformed to val o = new

Owner(alice); val x = Num(o, 5); in HIR.
In the scenario of using a secret sharing scheme, an in-

teger is encoded as the ShareNum data structure in HIR
shown below. It expresses a general secret sharing proto-
col. The provider is the one who contributes the value that
is shared among a set of players with threshold. The set
of observers are those who are allowed to access the value
once it gets combined.

case class ShareNum(

val provider : Set[Rep[SOwner]], // who provides it

val players : Set[Rep[SOwner]], // players

val observers : Set[Rep[SOwner]], // who observes it

val threshold : Int, // threshold

val value : Rep[SShareNum] // shares

)

In addition, HIR provides libraries for implementing secure
computation. Those libraries are not supported by general-
purpose compilers, but are essential to build interesting
multi-party applications with security guarantees. For exam-
ple, the following shows the operations of an array support-
ing indexing on a ciphertext, where arr is an HIR array.

• arr(i): array index, where 𝑖 is a plaintext or a ciphertext.
• arr.update(i, v): update the 𝑖th element with the value 𝑣 ,
where 𝑖 is either a plaintext or a ciphertext.

• arr.slice(i, j): array slicing from the 𝑖th element until
the 𝑗the element, where 𝑖 and 𝑗 are plaintext.

• arr.length: the length of the array

The way these array operations with secure indices are
currently implemented is through, essentially, a naive Obliv-
ious RAM (ORAM): to index into an array with a ciphertext
index, the compiler generates a circuit that wires every ar-
ray element, and a secure selector (multiplexer) to output
the desired array element. This is equivalent to a set of if-
then-elses to choose the desired array element, except with
a logarithmic depth instead of a linear depth. Writing to an
array element with a ciphertext index is the equivalent of an
array copy, where each element of the new array performs
a check for whether the old element of the array should be
copied, or the łupdate” value should be copied.

As implementation details of cryptographic backends are
abstracted away from HIR, our framework can be easily
extended to support more advanced cryptographic backends,
for example, a backendwith ORAM. Here, we would leverage
HIR’s ability to provide backend-specific rewrite rules, and
would directly rewrite array operations to ORAM operations.

Type System. HIR also abstracts away the implementa-
tion details of cryptographic primitives and protocols. For
example, an addition operation does not specify how a se-
cure addition is achieved, as different protocols perform in
different ways. But the type rules provide an approximation
of data access policy that specifies how data is provided,
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accessed, and shared. For example, an addition operation
on two shared numbers is only allowed on the same set of
players with the same threshold, which are known at com-
pile time. And the result is provided by either one of its
operand’s providers with the same set of players with the
same threshold, and is allowed to be accessed by either one
of the operands’ observers.

def +(x: ShareNum, y: ShareNum) = {

assert(x.players.equals(y.players))

assert(x.threshold == y.threshold)

ShareNum(x.provider | y.provider, players,

x.observers | y.observers, threshold, value.+(y.value))

}

Given a cryptographic backend, HIR code is further trans-
formed to a program with the corresponding cryptographic
semantics. And the HIR type system is refined to provide
more precise information on data access policy. For exam-
ple, the type rule of the addition operation is refined to the
following when using the additive secret sharing scheme.

def +(x: ShareNum, y: ShareNum) = {

assert(x.players.equals(y.players))

assert(x.players.size == x.threshold)

assert(x.threshold == y.threshold)

ShareNum(x.provider | y.provider, players,

x.observers & y.observers, threshold, value.+(y.value))

}

The type rule checks it is a 𝑛-out-of-𝑛 secret sharing scheme,
i.e., x.players.size == x.threshold. The refined type
rule provides a stronger security guarantee, i.e., the trans-
formed program is compatible with the semantics of the
backend. For example, an FHE target program is not trans-
formed to a program that may invoke secret sharing primi-
tives. See [3] for the details of HIR.

3.4 Obliviousness

In addition to bridging the semantic gap between a high and
a low-level language, our compiler also bridges the semantic
gap of obliviousness. A program without privacy concern
diverts its control flow according to the input: statements
are executed conditionally, loop for a variable number of
iterations, etc. To protect privacy, boolean and arithmetic
circuits have to be oblivious in the sense that they perform
the same sequence of operations regardless of the input. The
following transformations may seem quite inefficient at first
sight, but they are absolutely necessary in order to maintain
obliviousness.

Encrypted Array Indexing. Indexing an array with a ci-
phertext is encoded as a multiplexer circuit that takes every
element of the array as an input and outputs the element
in the position. This multiplexer circuit consists of integer
comparators and selectors.

Conditional Execution. After a typed Harpoon program
is transformed toHIR code, there are two types of if-constructs

allowed. One is the standard if-statement, where its condi-
tion depends on plaintext comparisons, and the two branches
consist of a sequence of statements that may have side effects.
The other has the form z = if (b) x else y, where the
value of b is the result of private comparisons. Obliviousness
is effectively guaranteed by executing both the consequent
and alternative branches. If the backend is a boolean circuit,
this if-construct is further transformed to a selector. If the
backend is an arithmetic circuit, the program is transformed
to z = b * x + (1 - b) * y. In the following Harpoon
code snippet, the variable arr stores a sequence of shared
numbers, and the comparison result of max < arr(i) is a
shared secret value. Thus, the program

if (max < arr(i)) { max = arr(i) }

is transformed to

val b = max < arr(i)

max = b * arr(i) + (1 - b) * max

Note that such a program transformation is non-trivial for a
program allowing mutable states. Currently, an if-statement
will be transformed if the side effects of its two branches can
be syntactically detected.

Loops and Recursion. All function calls are treated as
macros and are simply inlined. All loops are unfolded as
the number of iterations is a compile-time constant. Fig. 4
demonstrates our treatment of recursive calls, where the
obliviousness is achieved by using the extra plaintext pa-
rameter d on the right side of the figure. In the transformed
program, the value d is initialized by the Harpoon annotation
and decreases with each iteration. This makes sure that the
recursive call only iterates d times. Note that the function
func is a polymorphic overloading function in HIR.

3.5 Code Generation

Cryptographic Backends. In the context of building cir-
cuits, LMS is used to specialized a circuit with respect to a
target backend. The outcome of such a programmatic special-
ization is a compiled target of the circuit. The code generator
transforms an abstract circuit to a concrete one for a given
backend. For example, the following adder expressed in HIR
is specialized to a boolean or arithmetic circuit based on the
backend.

val o1 = Owner();

output((Num(o1, 10).+(Num(o1, 5))).eval(o1))

The essence of multi-stage programming is to generate effi-
cient programs using high-level constructs without run-time
penalty [41]. The example in Fig. 5 a shows a code snippet
that generates a for loop. Note that the if condition is com-
posed of a plaintext boolean type, so this code is executed at
code generation time as shown Fig. 5 b.

Resource Estimation. This is one of the special notewor-
thy backends: instead of performing a computation, it gen-
erates a graphical representation of the HIR circuit, which is
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Scala Program

val a = 5

val b = 15

def gcd(x: Int, y: Int)

: Int = {

if (x == 0) y

else gcd(y % x, x)

}

println(gcd(a, b))

Harpoon Program

@sec(alice) val a = 5

@sec(alice) val b = 15

@bound(5)

def gcd(x: Int @sec, y: Int @sec)

: Int @sec = {

if (x == 0) y

else gcd(y % x, x)

}

@reveal(alice) val r = gcd(a, b)

println(r)

HIR Program

val o = Owner(alice)

val a = Num(o, 5) val b = Num(o, 15)

val gcd = func((d: Rep[Int], x: Rep[SNum],

y: Rep[SNum]) => {

if (d == 0) y

else if (x == 0) gcd(d-1, x, y)

else gcd(d - 1, y % x, x)

})

val r = Num(o, gcd(5, a.value, b.value)).eval(o)

println(r)

Figure 4. Compute the Greatest Common Divisor (GCD) of two numbers. The left one shows the Scala textbook implementation. The middle one shows the

Harpoon program. The annotations express that a user, alice, computes the GCD of her private data a and b through a different party, which performs

computation on the data in an encrypted form, and provides the encrypted results to alice. The right one shows the corresponding HIR program. The

translated gcd function has one extra parameter d initialized by the bound Harpoon annotation, and decreases with each iteration.

(a) HIR code example:
val sum = func((x: Rep[SNumArray], len: Rep[Int]) => {

var n = 0 val b = true

var res = Num(o1, 0).value

while (n < len) {

if (b) { res = res + x(n) }

n += 1

}

res

})

(b) Generated C code of TFHE backend:
const LweSample* x3(const LweSample* x4, int x5){

int x6 = 0;

const LweSample* x7 = num_init(0, 64 ,x2);

while (x6 < x5) {

x7 = add(x7, array_index(x4, x6, 64, x0), 64, x0);

x6 = x6 + 1;

}

return x7;

}

Figure 5. (a) HIR code example (b) Generated C code of TFHE backend.

fed to a generic łEvaluator”. This is a resource estimation pro-

gram that traverses the graph and performs analysis at each
node. The estimator is parameterized on a given resource
model, which specifies costs of each node, edge type, and
the depth of each edge in the graph.

At the most basic level, the resource estimation framework
expects an enumeration of the abstract gates for a particular
cost model, a description of how each HIR node type affects
these gates, and depths. The total cost is tallied in terms of
abstract gates. For example, a cost model for a secret shar-
ing backend may have round complexity and communication

complexity as its abstract gates, whereas a circuit backend
may have AND, OR, and NOT as its abstract gates. The eval-
uator traverses the HIR graph and accumulates the abstract
gate costs produced by each node, and tracks the maximum
total depth encountered for critical path estimation. In the
case of a secret sharing scheme, traversing the graph will
potentially increment round and communication complexity
as new computation nodes are encountered, whereas a cir-
cuit backend will increment gate costs. These gate costs are
then instantiated with specific costs (in terms of lower-level
operations) based on the resource estimates determined by
cryptographic experts.

This framework can also be easily extended to evaluate
costs that do not follow this simple model. A data structure at
each HIR node and a function that performs accumulation of
cost based on the type of the node are sufficient to estimate
the cost. Cost models can also be parameterized on values
which are configurable but known at compile time (e.g., in-
teger bitwidth). The prime modulus can be determined by
the security specifications, and specific edge costs. The abil-
ity to estimate the cost of a program becomes useful when
selecting a target from multiple backends. A program may
be better suited for execution on a particular backend than
another. If the available backends’ cost models are compa-
rable, then we can generate resource estimations to choose
the best one for execution.

4 HACCLE Workflow

This section describes the compilation flow of our HACCLE
framework as shown in Fig. 6. In the very first stage of the
flow, an input program is staged to a complete Harpoon
program that consists of an entry point for the inputs pro-
vided by the parties, computation and necessary revealing

Scala Program with

Harpoon embedded

Harpoon program

HIR 

(protocol-independent)

HIR (…)

Backend Resource 

Estimates

…

Resource 

Estimation 

Graph

Obliv-C

code

SPDZ 

code

HIR 

(garbled circuits)

HIR 

(secret sharing)

Compiler stage

Input 

params

1

2

3

4

Figure 6. HACCLE Compilation Framework.
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of results. The Harpoon program is compiled to HIR code,
which is one big acyclic circuit, and is further lowered to the
protocol specific HIR program. Finally, the code for a spe-
cific backend is generated from the low-level HIR program.
Resource estimation models the resource usage of the com-
putation in a specific protocol, and guides the compiler to
generate optimal code. The following subsections illustrate
the stages of our toolchain from writing an MPC application
as a program to executing it using different protocols, and
how the type system provides various security guarantees
at different stages.

4.1 Specifying the Program

A programmer starts by providing a Scala program that em-
beds a secure computation, which is written in Harpoon (see
Sec. 3.2). The Scala program runs at client locations, and
is responsible for processing input, setting up communica-
tion channels, etc. The Harpoon program actually performs
the secure computation that is written parametrically: ef-
fectively, a Harpoon program is a function that accepts the
number of parties and their inputs as parameters.

4.2 Generating a Circuit

Stage 1 The first stage of compilation transforms a Scala +
Harpoon program to a pure Harpoon program, i.e., executing
a Scala program stages away the non-Harpoon fragment of
the code: local input files are read into memory and connec-
tions are set up to the relevant servers.
After the stage 1 compilation, a Harpoon program rep-

resents just the secure computation that must be performed.
This program will eventually be transformed to a circuit that
performs the desired secure processing. However, the secure
computation is not ready for execution yet. Any publicly
known information about the inputs (e.g., the bitwidths, or
the maximum input size) has not yet been incorporated into
the circuit, and the input values are not yet known. At this
stage, the Harpoon type system provides the key security
guarantee that private data will not leak via public channels.
An important note is that each Harpoon program repre-

sents a single secure computation that compiles to a single
circuit. Hence, the Harpoon program must compile down
to a circuit whose size is determined only by the publicly
available information about the inputs. In many applications,
there are multiple secure computation that must occur (e.g.,
in database applications, there may be multiple queries; each
query represents a different secure computation). Here, we
leverage the blurred distinction between compile time and
runtime. Generating a Harpoon program happens at what
programmers traditionally consider run time: the Scala pro-
gram is actually running to produce the Harpoon program.
Hence, the Scala program can include a loop over the set of
queries, and for each query, a new Harpoon program is gen-
erated, compiled and executed. The abstraction in Scala has

no runtime overhead for the generated code since it is exe-
cuted at the Scala runtime, offering the so-called łabstraction
without regret” (see Sec. 3.1).

Stage 2 The next step is to generate an abstract circuit: a
Harpoon program is compiled down toHIR code (see Sec. 3.3),
which is, essentially, a bounded-size and single-assignment
representation of the program. Here, the bound annotation
in the Harpoon program is used to unroll loops and inline
recursive functions, leading to a functional and loop-free
representation of the program. The HIR program at this
stage is still independent of a particular protocol. Hence, it is
essentially a direct translation of the Harpoon program into
HIR code without considering the abilities of any particular
backend. The key typing guarantee that HIR code provides
at this level is that the appropriate HIR operation will be
used based on whether inputs to an operation are private or
public.

Stage 3 The next compilation stage specializes an HIR
circuit to a specific protocol. The choice of protocol is de-
termined by the security specification file. Here, we do not
change the language representation of the programÐthe re-
sulting program is still in HIR. Instead, this stage rewrites
HIR code to limit the use of HIR operations to those sup-
ported by a particular backend. For example, a backend that
only supports boolean operations requires translating all
operations on integers and floating point to bit-level oper-
ations. Similarly, a backend that only supports operations
on integers requires translating floating point operations to
decomposed operations on the component parts (mantissa
and exponent). Here, HIR switches to the use of backend-
specific type systems that enforce the following property:
a type-checked backend-specific HIR circuit enforces the
requirements of that backend for security (e.g., the set of
sharers matches up when performing operations in a secret-
sharing backend).

Stage 4 The final step of generating a circuit is specific
to a backend implementation. Here, an HIR circuit is trans-
lated to be compatible with a particular backend. This is
the key module interface provided by our system. It may
require translating the circuit to a set of API calls (e.g., our
TFHE backend), or to a different programming language
(e.g., translating to Obliv-C for the garbled-circuit backend,
or Scale-Mamba for the secret-sharing backend). The back-
end is configured based on the information in the security
specification file. At this point, the circuit is in an executable
form, and can perform the desired secure computation, using
the actual inputs from the various parties.

5 Optimization

Our compiler contains a set of optimizing transformations,
e.g., peephole optimizations, common subexpression elimina-
tion, constant folding, and dead code elimination. In addition
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Harpoon Program:

@sec(alice) val a = 2

scala.math.pow(2, 8)

HIR Program:

val o1 = Owner()

UNum(o1, 2).pow(8)

Generated TFHE program:

const LweSample* x3 = unum_init(2, 64, x2);

LweSample* x4 = unum_mul(x3, x3, 64, x0);

LweSample* x5 = unum_mul(x4, x4, 64, x0);

return unum_mul(x5, x5, 64, x0);

Figure 7. Computing pow (2, 8) , where 2 is private, and x0 and x2 are the

cloud key and private key used for encryption.

to those optimizations that a general purpose compiler has,
we identified several optimizations specific to Secure MPC
circuits. Given an in-memory representation of a boolean or
an arithmetic circuit, these optimizations reduce the depth
of circuits and the number of costly gates.

5.1 Scalar Multiplication

The multiplicative depth of circuits is the main practical
limitation in performing computation over encrypted data.
We identify that multiplication can be eliminated when one
of the operands of a multiplication is 0 or 1 in plaintext. In
addition, consider the case of calculating pow(𝑥, 𝑛), where 𝑥
is an encrypted number. The compiler can divide the com-
putation into subproblems of size 𝑛/2 and call the subprob-
lems recursively. Fig. 7 shows the program of computing
pow(2, 8), where 2 is private. The Harpoon program is trans-
formed to HIR code, and is further generated to the TFHE
program, where the function unum_mul multiplies two 64-
bit encrypted numbers. The generated program only needs
𝑂 (log𝑛) multiplies. This optimization is simple, but has a
dramatic impact on performance.
The effectiveness of the optimization is clearly demon-

strated in Fig. 8, which shows the graphs of the generated
circuits. The left (before optimization) is a depth-7 circuit
with 7 multiply gates. The right (after optimization) is a
depth-3 circuit with three multiply gates.
The generated graphs show an abstract model of execu-

tion cost where each operation is treated as atomic. However,
the resource estimation framework can be specialized to par-
ticular backends by providing the corresponding models
of execution cost (in terms of communication complexity,
number of logic gates, etc.). These backend-specific resource
estimates can be used to compare different optimization
strategies and intelligently select the appropriate one based
on the execution semantics of the targeted backend. In ad-
dition, as mentioned in Sec. 3.5, these specialized estimates
even let us pick the most optimal backend to target.

5.2 Private Comparison

The private comparison is a major bottleneck in MPC pro-
tocols due to their inherent non-arithmetic structure [14].
Private comparison operators include <, ≤, >, ≥, == and

x0: Number(64, 2) (13)

x1: Multiply(x0, x0) (16)

x2: Multiply(x1, x0) (16)

x3: Multiply(x2, x0) (16)

x4: Multiply(x3, x0) (16)

x5: Multiply(x4, x0) (16)

x6: Multiply(x5, x0) (16)

x7: Multiply(x6, x0) (16)

x0: Number(64, 2) (13)

x1: Multiply(x0, x0) (16)

x2: Multiply(x1, x1) (16)

x3: Multiply(x2, x2) (16)

Figure 8. Graphs of computing pow (2, 8) : before (left) and after applying

optimizations (right).

≠. One operator may be encoded by two or more other op-
erators. However, the two expressions may have different
costs. We identify some implementation heuristics that help
us generate efficient programs.

For example, the HoneyBadgerMPC library provides two
comparison protocols: LessThan and Equality. They are used
to express 𝑎 < 𝑏 and 𝑎 == 𝑏 on shared values, and return
a secret shared value. Building an MPC compiler requires
us to implement other operators in terms of these two. For
example, a naive and intuitive implementation is to encode
𝑎 ≥ 𝑏 as (𝑏 < 𝑎) + (𝑎 == 𝑏). An alternative way is to
encode it as 1 − (𝑏 < 𝑎). Our abstract resource estimator
generates one LEQ, one ADD and one EQUAL gate for the
first encoding, and one SUB and one LEQ gate for the second
encoding. In the HoneyBadgerMPC resource model, the costs
of addition and subtraction are trivial since they require no
communication, and the multiplication takes one round and
one multicast to finish. The round complexity of comparison
is seven times more than the cost of multiplication [36], the
communication cost is even more expensive. Also, the cost of
equality check is higher than the less than operation. Thus,
we believe that the second encoding is better due to the
reduced number of comparison. This demonstrates how we
experiment optimizations guided by our resource estimators.
To verify the above observation, we perform a set of pri-

vate comparison in a HoneyBadgerMPC program (on the
same machine used in Sec. 6). Our tests execute 100 times

Table 1. Execution time of evaluating 𝑎 ≥ 𝑏 for 100 times, where 𝑎 and 𝑏

are randomly generated number ranging from 1 to 100.

Encoding 𝑎 ≥ 𝑏 Execution Time

(𝑏 < 𝑎) + (𝑎 == 𝑏) 0.23s

1 − (𝑏 < 𝑎) 0.10s
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of the greater or equal comparison on two randomly gener-
ated numbers. Table 1 compares the running time of the two
encodings.

6 Evaluation

This section presents three case studies to assess our frame-
work focusing on Harpoon and HIR, optimizing scalar mul-
tiplication, and support for indexing arrays with secrets,
respectively. For simplicity, the test program uses plaintext
values instead of obtaining them at runtime. We conducted
our experiments on a machine with 8 Intel Core i7 processors
and 16 GB RAM that runs Ubuntu 18.04 LTS.

6.1 Case Study 1: Secure Auctions

Recall the discussion of the practical importance of secure
auctions in Sec. 2. This experiment implements a second-
price auction that is designed to give bidders confidence to
bid their best price without overpaying. The bidder who
submits the highest bid is awarded the item and pays the
amount of the second-highest bid.

Fig. 9 shows the code snippets in Harpoon, where the ele-
ments in arrays bidders and bid denote bidder’s identities
and their bids. The implementation uses four variables (fst,
snd, ifst and isnd) to store the values of the first and sec-
ond highest bids and the identities of holders respectively.
As shown in Fig. 9, writing the Harpoon implementation
does not require developers to have cryptographic concerns
or circuit building mindset. They can program functionally
or imperatively, thanks to the expressiveness of Scala.

As mentioned in Sec. 2, our compiler could transform the
imperative Harpoon program to a functional style one as
(bids zip bidders).map(..).reduce(..), which yields
a circuit of logarithmic depth that allows efficient parallel
computation.
We have generated SPDZ and HoneyBadgerMPC pro-

grams to realize secure auctions. For testing and develop-
ment, the HoneyBadgerMPC program runs in a simulated
network, and contains lines of code dealing with network
connections and synchronizations. The Harpoon and HIR
developers need not to have those concerns.

6.2 Case Study 2: Matrix-Vector Product

Secure matrix-vector multiplication is a core kernel in many
real-world applications. For example, in the area of privacy-
preserving machine learning, matrix-vector multiplication is
one of the common building blocks of neural networks [47].
During the training and inference procedures, it is often the
case that multiple parties combine their data where secure
matrix-vector multiplication can be used to preserve privacy.
The case study performs a set of secure matrix-vector

multiplication, where one party (the client) has an input
matrix, and the other party (the server) has a vector. Fig. 10
shows the test program that randomly generates a 10 ∗ 𝑁

@sec var bidders = Array(0, 1 ..., n - 1)

@sec var bids = Array(b1, b2, ..., bn)

var ifst = bidders(0) var isnd = bidders(1)

var fst = bids(0) var snd = bids(1)

if (bids(0) < bids(1)) {

ifst = bidders(1) fst = bids(1)

} else {

isnd = bidders(1) snd = bids(1)

}

for (i <- 2 until bids.length) {

if (fst < bids(i)) {

isnd = ifst snd = fst

ifst = bidders(i) fst = bids(i)

} else if (snd < bids(i)) {

isnd = bidders(i) snd = bids(i)

}

}

(ifst, snd)

Figure 9. Harpoon code snippet performing a second-price auction, where

b1, b2, ..., bn are parameters passed to the method.

val rand = new scala.util.Random

val start = 1000

@sec(alice) val m = Array.fill(10)(

start + rand.nextInt(start + 1))

val v = Array(1, 399, 1, 413, 1, 587, 1, 354, 1, 444)

m * v

Figure 10. Test program of Matrix-Vector Multiplication.

matrix (where 100 ≤ 𝑁 ≤ 500), and multiplies with a fixed
vector [1, 399, 1, 413, 1, 587, 1, 354, 1, 444]. The test shows the
effectiveness of our optimization discussed in Sec. 5.1.

Table 2 compares the running time of the generated HElib
programs with and without optimizations. As 𝑁 increases
from 100 to 500, the speedups become more observable. We
have provided median of absolute runtime before and after
the optimization with 95% confidence.

6.3 Case Study 3: Merge Sort

MergeSort is a key computation component of various Se-
cure MPC applications. For example, when multiple parties
exchange messages anonymously, both the content and the
metadata (e.g., the length of the message) need to be pro-
tected. Secure sort is one of the core kernels used for such
anonymous communications [1].
This case-study implements MergeSort in HIR, as it ex-

poses the language features needed in writing secure com-
putation. The implementation involves array indexing and
conditional executions. Notably, an array lookup on a private
index is not supported by most programming languages [23].

Table 2. Execution time (in seconds) of the HElib programs

that perform multiplication of a matrix of 10 ∗ 𝑁 and a vector

[1, 399, 1, 413, 1, 587, 1, 354, 1, 444] before and after the optimization.

N 100 200 300 400 500

Before (median) 7.57 21.31 55.81 135 292

Error (confidence 95%) 0.51 0.44 0.72 1.45 2.05

After (median) 6.32 15.18 34.89 80 162

Error (confidence 95%) 0.05 0.34 0.23 0.34 0.49
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1 val o1 = Owner() val s = 0

2 var arr = NumArray(o1, 3, 1, 5, 2) // input

3 val e = arr.length

4 def merge(o: Owner, arr1: NumArray, arr2: NumArray) = {

5 var res = NewNumArray(o, arr1.length + arr2.length)

6 var i = Num(o, 0) var j = Num(o, 0) var k = 0

7 while (k < res.length) {

8 val b1 = i < Num(o, arr1.length)

9 val b2 = j < Num(o, arr2.length)

10 val p = if (b1.not) arr2(j) else if (b2.not) arr1(i)

11 else if (arr1(i) <= arr2(j)) arr1(i) else arr2(j)

12 res = res.update(k, p)

13 // updating arr1 index

14 i = if (b1.not) i else if (b2.not) i + Num(o, 1) else

15 if (p == arr1(i)) i + Num(o, 1) else i

16 // updating arr2 index

17 j = if (b1.not) j + Num(o, 1) else if (b2.not) j

18 else if (p == arr2(j)) j + Num(o, 1) else j

19 k = k + 1

20 }

21 res

22 }

23 val r = recFuel(10);

24 val mergesort = r.rec[NumArray, Owner, Int, Int] {

25 f => (a, o, i, j) => {

26 val mid = (j - i) / 2

27 if (mid == 0 || i >= j){ a }

28 else {

29 val left = a.slice(i, mid) val right = a.slice(mid, j)

30 merge(o, f(left, o, 0, left.length),

31 f(right, o, 0, right.length))}

32 }

33 }

34 val res = mergesort(arr, o1, s, e)

35 output(res.eval(o1))

Figure 11.MergeSort implemented in HIR.

MergeSort recursively divides an input array into two
halves and then merges the two sorted halves. Our imple-
mentation is shown in Fig. 11. In the function mergesort, the
variable r (line 23) stores a recursion object initialized with
the bound 10. The expression r.rec (line 24) is the construct
for defining a bounded recursive function call. This allows
one to explicitly specify the bound of the defining recur-
sive function. The NumArray is the type for arrays that allow
private indexing. The two parameters i and j are plaintext,
which is important for unrolling the recursive function at
compile time. The function slice(i, j) returns a subarray
from the ith element until the jth element, where i and j

are plaintext integers. The if-statement (lines 27 to 31) is the
standard one as its condition depends on a plain text value.
The function merge is used for merging two halves. All the
if-constructs appearing in this function are oblivious as their
conditions depend on ciphertext values. The loop (line 7) is
bounded as the length of an array is known at compile time.

7 Related Work

There have been many MPC frameworks proposed in re-
cent years and several of them are already integrated into
HACCLE. We list the prominent MPC frameworks as follows.

SCALE-MAMBA [29] is an existing MPC framework that
is closest to HACCLE. We utilize it as one of our crypto-
graphic backends to implement secret sharing and FHE based
protocols. It is a combination of a compiler and a run-time

environment where optimizations can be performed at a
lower level. Compared with SCALE-MAMBA, HACCLE pro-
vides staging driven by type systems, estimates resource
consumption, and focuses on optimization at a higher level.
HoneybadgerMPC [32] is another backend of HACCLE

that supports secret-sharing based protocols. The unique-
ness of HoneybadgerMPC is the combination of a robust
online phase and an optimal non-robust offline phase. It pro-
vides fairness guarantees even in the asynchronous network
setting and also preserves efficiency to make MPC programs
practical to run.
As privacy preserving machine learning becomes more

and more popular, many frameworks have been developed
specifically for this use case, such as ABY [17], ABY3 [34],
CHET [16], EzPC [9], CrypTFlow [30] and SecureNN [47].
These frameworks are highly optimized for machine learning
and are designed for two-party or three-party settings. We
choose not to include them due to our desire to support
an arbitrary number of parties. There are also many other
MPC frameworks such as Viff [45], Jiff [43], MPyC [4] and
PICCO [52]. Theoretically, any framework can be embedded
as a backend in HACCLE even though not all of them are
integrated at the moment.

8 Conclusion

Secure MPC-based applications play a crucial role in solving
many important practical problems such as in high-value pro-
curement. But developing performant MPC-based applica-
tions from scratch is a notoriously difficult task as it requires
expertise ranging from cryptography to circuit optimization.
Therefore software developers need a compiler toolchain for
developing MPC-based applications. As a solution to this
problem, we have introduced the HACCLE toolchain, a multi-
stage compiler for optimized circuit generation. We believe
that the HACCLE toolchain offers a compelling approach to
the design and implementation of Secure MPC applications,
using metaprogramming techniques.

Acknowledgments

We thank the anonymous reviewers for their helpful sug-
gestions and comments. This research is based upon work
supported by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), contract #2019-19020700004. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies, either expressed or implied, of ODNI,
IARPA, or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for govern-
mental purposes notwithstanding any copyright annotation
therein.

141



HACCLE: Metaprogramming for Secure Multi-Party Computation GPCE ’21, October 17ś18, 2021, Chicago, IL, USA

References
[1] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas

Zacharias. 2017. MCMix: AnonymousMessaging via SecureMultiparty

Computation. In USENIX Security Symposium. USENIX Association,

1217ś1234. http://eprint.iacr.org/2017/778

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew

Waterman, Rimas Avižienis, John Wawrzynek, and Krste Asanović.

2012. Chisel: Constructing Hardware in a Scala Embedded Language.

In Proceedings of the 49th Annual Design Automation Conference (San

Francisco, California) (DAC ’12). Association for Computing Machin-

ery, New York, NY, USA, 1216ś1225. https://doi.org/10.1145/2228360.

2228584

[3] Yuyan Bao, Kirshanthan Sundararajah, Raghav Malik, Qianchuan Ye,

Christopher Wagner, Nouraldin Jaber, Fei Wang, Mohammad Hassan

Ameri, Donghang Lu, Alexander Seto, Benjamin Delaware, Roopsha

Samanta, Aniket Kate, Christina Garman, Jeremiah Blocki, Pierre-

David Letourneau, Benoît Meister, Jonathan Springer, Tiark Rompf,

and Milind Kulkarni. 2020. HACCLE: Metaprogramming for Secure

Multi-Party Computation - Extended Version. CoRR abs/2009.01489

(2020). https://arxiv.org/abs/2009.01489

[4] Barry Schoenmakers. 2020. MPyC: Secure multiparty computation in

Python. https://github.com/lschoe/mpyc

[5] Peter Bogetoft, Ivan Damgård, Thomas P. Jakobsen, Kurt Nielsen,

Jakob Pagter, and Tomas Toft. 2006. A Practical Implementation of Se-

cure Auctions Based on Multiparty Integer Computation. In Financial

Cryptography (Lecture Notes in Computer Science, Vol. 4107). Springer,

142ś147. https://doi.org/10.1007/11889663_10

[6] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Mod-

ulus Switching from Classical GapSVP. In CRYPTO (Lecture Notes in

Computer Science, Vol. 7417). Springer, 868ś886. https://doi.org/10.

1007/978-3-642-32009-5_50

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2011. Fully

Homomorphic Encryption without Bootstrapping. Electron. Collo-

quium Comput. Complex. (2011), 111. https://eccc.weizmann.ac.il/

report/2011/111

[8] Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas A. Dim-

itropoulos. 2010. SEPIA: Privacy-Preserving Aggregation of Multi-

Domain Network Events and Statistics. In USENIX Security Symposium.

USENIX Association, 223ś240. http://www.usenix.org/events/sec10/

tech/full_papers/Burkhart.pdf

[9] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and

Shardul Tripathi. 2019. EzPC: Programmable and Efficient Secure Two-

Party Computation for Machine Learning. In EuroS&P. IEEE, 496ś511.

https://doi.org/10.1109/EuroSP.2019.00043

[10] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017.

Homomorphic Encryption for Arithmetic of Approximate Numbers. In

ASIACRYPT (1) (Lecture Notes in Computer Science, Vol. 10624). Springer,

409ś437. https://doi.org/10.1007/978-3-319-70694-8_15

[11] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. 2016. Faster Fully Homomorphic Encryption: Bootstrapping

in Less Than 0.1 Seconds. In ASIACRYPT (1) (Lecture Notes in Computer

Science, Vol. 10031). 3ś33. https://doi.org/10.1007/978-3-662-53887-6_1

[12] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. 2017. Faster Packed Homomorphic Operations and Ef-

ficient Circuit Bootstrapping for TFHE. In ASIACRYPT (1) (Lecture

Notes in Computer Science, Vol. 10624). Springer, 377ś408. https:

//doi.org/10.1007/978-3-319-70694-8_14

[13] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. August 2016. TFHE: Fast Fully Homomorphic Encryption

Library. https://tfhe.github.io/tfhe/

[14] Geoffroy Couteau. 2016. Efficient Secure Comparison Protocols. IACR

Cryptol. ePrint Arch. (2016), 544. http://eprint.iacr.org/2016/544

[15] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Pe-

ter Scholl, and Nigel P. Smart. 2013. Practical Covertly Secure
MPC for Dishonest Majority - Or: Breaking the SPDZ Limits. In ES-

ORICS (Lecture Notes in Computer Science, Vol. 8134). Springer, 1ś18.

https://doi.org/10.1007/978-3-642-40203-6_1

[16] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin E.

Lauter, Saeed Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019.

CHET: an optimizing compiler for fully-homomorphic neural-network

inferencing. In PLDI. ACM, 142ś156. https://doi.org/10.1145/3314221.

3314628

[17] Daniel Demmler, Thomas Schneider, and Michael Zohner.

2015. ABY - A framework for efficient mixed-protocol se-

cure two-party computation.. In NDSS. The Internet Society.

https://www.ndss-symposium.org/ndss2015/aby---framework-

efficient-mixed-protocol-secure-two-party-computation

[18] Jack Doerner, David Evans, and Abhi Shelat. 2016. Secure Stable

Matching at Scale. In CCS. ACM, 1602ś1613. https://doi.org/10.1145/

2976749.2978373

[19] Grégory M. Essertel, Guannan Wei, and Tiark Rompf. 2019. Precise

reasoning with structured time, structured heaps, and collective op-

erations. Proc. ACM Program. Lang. 3, OOPSLA (2019), 157:1ś157:30.

https://doi.org/10.1145/3360583

[20] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Prag-

matic Introduction to Secure Multi-Party Computation. Found. Trends

Priv. Secur. 2, 2-3 (2018), 70ś246. https://doi.org/10.1561/3300000019

[21] Nicolas Gama, Malika Izabachène, Phong Q. Nguyen, and Xiang Xie.

2016. Structural Lattice Reduction: GeneralizedWorst-Case to Average-

Case Reductions and Homomorphic Cryptosystems. In EUROCRYPT

(2) (Lecture Notes in Computer Science, Vol. 9666). Springer, 528ś558.

https://doi.org/10.1007/978-3-662-49896-5_19

[22] Trinabh Gupta, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish.

2017. Pretzel: Email encryption and provider-supplied functions are

compatible. In SIGCOMM. ACM, 169ś182. https://doi.org/10.1145/

3098822.3098835

[23] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve

Zdancewic. 2019. Sok: General purpose compilers for secure multi-

party computation. In 2019 IEEE Symposium on Security and Privacy

(SP). IEEE, 1220ś1237. https://doi.org/10.1109/SP.2019.00028

[24] Markus Hinkelmann, Andreas Jakoby, Nina Moebius, Tiark Rompf,

and Peer Stechert. 2011. A cryptographically t-private auction system.

Concurr. Comput. Pract. Exp. 23, 12 (2011), 1399ś1413.

[25] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith.

2012. Secure two-party computations in ANSI C. In Proceedings of

the 2012 ACM conference on Computer and communications security.

772ś783. https://doi.org/10.1145/2382196.2382278

[26] Karthik A Jagadeesh, David J Wu, Johannes A Birgmeier, Dan Boneh,

and Gill Bejerano. 2017. Deriving genomic diagnoses without revealing

patient genomes. Science (2017).

[27] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang,

Stefan Hadjis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram,

Christos Kozyrakis, and Kunle Olukotun. 2018. Spatial: A Language

and Compiler for Application Accelerators. SIGPLAN Not. 53, 4 (June

2018), 296ś311. https://doi.org/10.1145/3296979.3192379

[28] Benjamin Kreuter. 2017. Secure MPC at Google. Real World Crypto.

[29] KU Leuven. 2019. SCALE-MAMBA Software. https://homes.esat.

kuleuven.be/~nsmart/SCALE/.

[30] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta,

Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow: Secure Ten-

sorFlow Inference. In IEEE Symposium on Security and Privacy. IEEE,

336ś353. https://doi.org/10.1109/SP40000.2020.00092

[31] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine

Shi. 2015. Oblivm: A programming framework for secure computation.

In 2015 IEEE Symposium on Security and Privacy. IEEE, 359ś376. https:

//doi.org/10.1109/SP.2015.29

142

http://eprint.iacr.org/2017/778
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://arxiv.org/abs/2009.01489
https://github.com/lschoe/mpyc
https://doi.org/10.1007/11889663_10
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://eccc.weizmann.ac.il/report/2011/111
https://eccc.weizmann.ac.il/report/2011/111
http://www.usenix.org/events/sec10/tech/full_papers/Burkhart.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Burkhart.pdf
https://doi.org/10.1109/EuroSP.2019.00043
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1007/978-3-319-70694-8_14
https://doi.org/10.1007/978-3-319-70694-8_14
https://tfhe.github.io/tfhe/
http://eprint.iacr.org/2016/544
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1145/3314221.3314628
https://doi.org/10.1145/3314221.3314628
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://www.ndss-symposium.org/ndss2015/aby---framework-efficient-mixed-protocol-secure-two-party-computation
https://doi.org/10.1145/2976749.2978373
https://doi.org/10.1145/2976749.2978373
https://doi.org/10.1145/3360583
https://doi.org/10.1561/3300000019
https://doi.org/10.1007/978-3-662-49896-5_19
https://doi.org/10.1145/3098822.3098835
https://doi.org/10.1145/3098822.3098835
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1145/2382196.2382278
https://doi.org/10.1145/3296979.3192379
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://doi.org/10.1109/SP40000.2020.00092
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.29


GPCE ’21, October 17ś18, 2021, Chicago, IL, USA Bao and Sundararajah, et al.

[32] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind,

Aniket Kate, and Andrew Miller. 2019. HoneyBadgerMPC and Asyn-

chroMix: Practical Asynchronous MPC and its Application to Anony-

mous Communication. In Proceedings of the 2019 ACM SIGSAC Con-

ference on Computer and Communications Security. 887ś903. https:

//doi.org/10.1145/3319535.3354238

[33] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. 2004.

Fairplay - Secure Two-Party Computation System. In USENIX Security

Symposium. USENIX, 287ś302. http://www.usenix.org/publications/

library/proceedings/sec04/tech/malkhi.html

[34] Payman Mohassel and Peter Rindal. 2018. ABY3: A Mixed Protocol

Framework for Machine Learning. In CCS. ACM, 35ś52. https://doi.

org/10.1145/3243734.3243760

[35] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. 2014. Wys-

teria: A Programming Language for Generic, Mixed-Mode Multiparty

Computations. In IEEE Symposium on Security and Privacy. IEEE Com-

puter Society, 655ś670. https://doi.org/10.1109/SP.2014.48

[36] Tord Ingolf Reistad and Tomas Toft. 2007. Secret sharing comparison by

transformation and rotation. In International Conference on Information

Theoretic Security. Springer, 169ś180. https://doi.org/10.1007/978-3-

642-10230-1_14

[37] Tiark Rompf and Kevin J Brown. 2017. Functional parallels of se-

quential imperatives (short paper). In Proceedings of the 2017 ACM

SIGPLAN Workshop on Partial Evaluation and Program Manipulation.

83ś88. https://doi.org/10.1145/3018882.3018891

[38] Tiark Rompf and Martin Odersky. 2010. Lightweight modular staging:

a pragmatic approach to runtime code generation and compiled DSLs.

In GPCE. ACM, 127ś136. https://doi.org/10.1145/1868294.1868314

[39] Victor Shoup Shai Halevi. April 2013. HElib: Design and Implemen-

tation of a Homomorophic-Encryption Library. https://github.com/

shaih/HElib

[40] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979),

612ś613. https://doi.org/10.1145/359168.359176

[41] Walid Taha. 2003. A Gentle Introduction to Multi-stage Programming.

In Domain-Specific Program Generation (Lecture Notes in Computer

Science, Vol. 3016). Springer, 30ś50. https://doi.org/10.1007/978-3-540-

25935-0_3

[42] Walid Taha and Tim Sheard. 2000. MetaML and multi-stage program-

ming with explicit annotations. Theor. Comput. Sci. 248, 1-2 (2000),

211ś242. https://doi.org/10.1016/S0304-3975(00)00053-0

[43] Multiparty.org Development Team. 2020. JavaScript implementation

of federated functionalities. https://github.com/multiparty/jiff

[44] The PALISADE team. 2021. PALISADE, homomorphic encryption softare

library. https://palisade-crypto.org/

[45] The VIFF team. 2021. VIFF, the virtual ideal functionality framework.

http://viff.dk/

[46] William Vickrey. 1961. Counterspeculation, Auctions, and Ccom-

petitive Sealed Tenders. The Journal of Finance 16, 1 (1961), 8ś37.

https://doi.org/10.1111/j.1540-6261.1961.tb02789.x

[47] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN:

3-Party Secure Computation for Neural Network Training. Proc. Priv.

Enhancing Technol. 2019, 3 (2019), 26ś49. https://doi.org/10.2478/

popets-2019-0035

[48] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. 2016. EMP-toolkit:

Efficient MultiParty computation toolkit. https://github.com/emp-

toolkit.

[49] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng

Wang, and Diyue Bu. 2015. Efficient Genome-Wide, Privacy-Preserving

Similar Patient Query based on Private Edit Distance. In CCS. ACM,

492ś503. https://doi.org/10.1145/2810103.2813725

[50] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Ex-

tended Abstract). In FOCS. IEEE Computer Society, 160ś164. https:

//doi.org/10.1109/SFCS.1982.38
[51] Samee Zahur and David Evans. 2015. Obliv-C: A Language for Exten-

sible Data-Oblivious Computation. IACR Cryptol. ePrint Arch. (2015),

1153. http://eprint.iacr.org/2015/1153

[52] Yihua Zhang, Aaron Steele, and Marina Blanton. 2013. PICCO: a

general-purpose compiler for private distributed computation. In Pro-

ceedings of the 2013 ACM SIGSAC conference on Computer & communi-

cations security. 813ś826. https://doi.org/10.1145/2508859.2516752

143

https://doi.org/10.1145/3319535.3354238
https://doi.org/10.1145/3319535.3354238
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/malkhi.html
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1007/978-3-642-10230-1_14
https://doi.org/10.1007/978-3-642-10230-1_14
https://doi.org/10.1145/3018882.3018891
https://doi.org/10.1145/1868294.1868314
https://github.com/shaih/HElib
https://github.com/shaih/HElib
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1016/S0304-3975(00)00053-0
https://github.com/multiparty/jiff
https://palisade-crypto.org/
http://viff.dk/
https://doi.org/10.1111/j.1540-6261.1961.tb02789.x
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2019-0035
https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://doi.org/10.1145/2810103.2813725
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38
http://eprint.iacr.org/2015/1153
https://doi.org/10.1145/2508859.2516752

	Abstract
	1 Introduction
	2 Motivating Example and Background
	3 Compiler
	3.1 Staged Compilation
	3.2 Harpoon
	3.3 Intermediate Representation
	3.4 Obliviousness
	3.5 Code Generation

	4 HACCLE Workflow
	4.1 Specifying the Program
	4.2 Generating a Circuit

	5 Optimization
	5.1 Scalar Multiplication
	5.2 Private Comparison

	6 Evaluation
	6.1 Case Study 1: Secure Auctions
	6.2 Case Study 2: Matrix-Vector Product
	6.3 Case Study 3: Merge Sort

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

