
Noname manuscript No.
(will be inserted by the editor)

Charm: A Framework for Rapidly Prototyping Cryptosystems

Joseph A. Akinyele · Christina Garman · Ian Miers ·
Matthew W. Pagano · Michael Rushanan · Matthew Green ·
Aviel D. Rubin

Received: date / Accepted: date

Abstract We describe Charm, an extensible framework

for rapidly prototyping cryptographic systems. Charm

provides a number of features that explicitly support

the development of new protocols, including: support for

modular composition of cryptographic building blocks,

infrastructure for developing interactive protocols, and

an extensive library of re-usable code. Our framework

also provides a series of specialized tools that enable

different cryptosystems to interoperate.

We implemented over forty cryptographic schemes

using Charm, including some new ones that to our knowl-

edge have never been built in practice. This paper de-

scribes our modular architecture, which includes a built-

in benchmarking module to compare the performance

of Charm primitives to existing C implementations. We

show that in many cases our techniques result in an
order of magnitude decrease in code size, while inducing

an acceptable performance impact.

Lastly, the Charm framework is freely available to

the research community and to date, we have developed

a large, active user base.

Keywords: applied cryptography, protocols, software,

privacy

1 Introduction

Recent developments in cryptography have the poten-

tial to greatly impact real world systems. Advances in

Joseph A. Akinyele, Christina Garman, Ian Miers,
Matthew W. Pagano, Michael Rushanan, Matthew Green,
Aviel D. Rubin
Department of Computer Science, Johns Hopkins University,
3400 N. Charles St.,
Baltimore, MD 21218
E-mail: {akinyelj,clg017,imiers,mpagano,micharu1,
mgreen,rubin}@cs.jhu.edu

lattices and pairings have driven new paradigms for se-

curely processing and protecting sensitive information

such as identity-based encryption [17,19, 27, 57, 76] and

attribute-based encryption [14,58,69,77], and privacy-

preserving schemes such as ring signatures [22,36], group

signatures [18, 25] and anonymous credentials [29, 30].

Without these kind of advances, a number of results in

top security conferences would not be possible [15,64,79].

Unfortunately, many potentially useful and novel

schemes exist only in research papers and have not actu-

ally been implemented. A few of these schemes find their

way into isolated C libraries that are maintained purely

by their creator, executed only as proof of concept and

are operated solely in their own limited domain. While

elliptic curves and lattices enabled some of these ad-

vances, they also substantially increased the complexity:
writing software for cryptosystems no longer involves

only number theory and modular arithmetic. This is

doubly problematic because the size of typical C im-

plementations makes bugs likely and audits hard. The

barrier to usage, consequently, remains very high.

There have been a handful of elegant implementa-

tions of a small number of new primitives [13, 61, 73] as

well as some tools for protocol development [5,49,55,56,

62, 63]. These systems serve their special purposes well,

but are not interoperable, and so developers wishing

to build a system using multiple primitives must write

non-cohesive glue code to piece their implementations

together.

In practice, libraries such as Sage [71], the Stanford

Pairing-Based Crypto (PBC) [61] and MIRACL [70]

fulfill an important role of providing implementations of

advanced mathematics for algebra, number theory, and

elliptic curves just to name a few. While these libraries

provide a solid foundation for developing advanced cryp-

tography, they were not designed with usability or inter-

2 Joseph A. Akinyele et al.

operability in mind in terms of composing, structuring,

and reusing cryptographic primitives. Although this

may seem like an engineering detail, serious theoreti-

cal issues can arise from the improper combination of

cryptographic primitives. Therefore, great care must be

taken to accommodate the theoretical foundations of

underlying primitives when designing a system that pro-

vides robust, composable, and modular cryptography.

Our Contribution. We present Charm1 [4], a new, ex-

tensible and unified framework for rapidly prototyp-

ing experimental cryptographic schemes and leveraging

them in system applications. Charm is built around

the concepts of extensibility, composability, and mod-

ularity. The framework is implemented in Python, a

well-supported high-level language, designed to reduce

development time and code complexity while promoting

component re-use. Computationally-intensive mathe-

matical operations are implemented as native modules,

enabling performant schemes and protocols while pre-

serving the advantages of high-level languages for scheme

implementations. Although Charm is written in a dy-

namically typed interpreted language, the concepts and
abstractions developed in this paper can be realized in

variety of programming languages.

The design goals of Charm are:

Enabling Efficient, Extensible Numeric Compu-

tation. New primitives are invented and existing

implementations of primitives are optimized on a

regular basis. For example, the PBC library [61], one

of the original libraries providing pairings, has been

supplanted in terms of performance by alternative

libraries such as MIRACL [70] and RELIC [6]. Simi-

larly, lattice-based cryptographic operations are an

increasingly desirable feature in scheme development.

In practice, the math libraries supporting any given

cryptographic operation are subject to change. The

challenge is how to enable these changes without

disrupting the higher-level scheme.

Supporting Succinct Cryptographic Protocols.

Although cryptographic protocols only capture the

mathematical formulas on paper, in practice network

protocols must embed the necessary logic required

for message serialization, data transmission, state

transitions, error handling, and the execution of sub-

protocols. Protocols involving zero-knowledge proof

statements are particularly problematic: concrete im-

plementations require explicit information not usu-

ally present in an algorithmic sketch. The challenge

is to provide an interface for wire protocols roughly

equivalent to the way the protocols are specified in

research papers.

1 Project webpage: http://charm-crypto.com.

Supporting Scheme Composition. Composing cryp-

tographic algorithms allows for the rapid creation

of new schemes, protocols and facilitates code reuse.

Not only does this make implementers more efficient,

it improves the security of the system by ensuring

there is one canonical version of a given scheme or

technique. However, composability creates its own

set of hurdles: schemes may use different plaintext

and ciphertext spaces, security assumptions and secu-

rity models. The challenge is abstracting away these

differences while preserving the schemes’ underlying
security and functionality.

Providing Measurement Capability. Benchmark-

ing and profiling are particularly important, both

from a theoretical perspective and an implementa-

tion standpoint for complex schemes (e.g., homomor-

phic encryption). Simple benchmarking allows quick

prototyping and comparison of novel variations of

näıve implementations of schemes. Profiling enables

in-depth optimization of full-fledged schemes with

fine-grained performance data. The difficulty is pro-

viding both seamless benchmarking and in-depth

profiling while maintaining component modularity.

Allowing Application Embedding. Rapid proto-

typing and ease of use require that the framework be

written in a user-friendly, high-level language. If de-

velopers outside of the cryptographic community are

to build applications with advanced cryptographic

constructs, the choice of language is critical. The

dilemma is how to provide a level of abstraction (or

embedding API) to outside systems without unduly

limiting the expressiveness of the framework.

Allowing Cryptographic Algorithm Agility. As
noted by Acar et al [2], cryptographic algorithms

have a limited shelf life. For example, once exhaus-

tive search rendered DES keys insecure, DES was

replaced by AES. Similarly, MD5 and SHA1 were

discovered to contain vulnerabilities [74,75]. A sys-
tem must be designed such that algorithms can be

replaced when necessary [3]. Cipher algorithm re-

placement must be done without compromising secu-

rity, without breaking functionality, and if possible,

without requiring keys to change.

2 Background

We briefly provide an overview of the concepts discussed

in this work. Identity-based encryption (IBE) [17, 19],

first introduced notionally by Adi Shamir in 1984, is a

form of public-key encryption where the public-key is

a string. Attribute-based encryption (ABE) [14,58,77]

(introduced by Sahai and Waters [69]) is a generalization

Charm: A Framework for Rapidly Prototyping Cryptosystems 3

of IBE where the public-key is a set of attributes. Users

can only decrypt if the attributes associated with their

private key matches certain attributes specified in the

ciphertext. Practical implementations of these recent

forms of encryption typically involve the use of bilinear

maps (also called pairings). A pairing is an efficient

mapping e : G×G→ GT over two multiplicative cyclic

groups G and GT of prime order p. Moreover, a pairing

has two properties: bilinearity and non-degenerate maps.

Bilinearity is that given a generator g ∈ G and a, b ∈ Zp

it holds that e(ga, gb) = e(g, g)ab. Non-degenerate maps
ensures that e(g, g) 6= 1. Lastly, cryptographic primitives

that utilize lattices are an exciting area of research that

hold promise for post-quantum cryptography. We briefly

mention lattices in this paper, but defer to Regev’s

work [67] for an in-depth introduction.

We also discuss techniques for performing transfor-

mations over cryptographic primitives to achieve desired

security properties. For example, Naor [40] proposed a

technique for converting an IBE scheme into a public-key

signature scheme. Canetti et al [34] proposed a tech-

nique for transforming any IBE scheme into one that
is secure against adaptive chosen-ciphertext attacks. In

general, we refer to these types of techniques as adapters

in this work.

Finally, we refer to Zero-knowledge Proofs of Knowl-

edge [47], which allow one party to prove knowledge of

a secret to another party without revealing the secret.

3 Approach

Charm realizes the aforementioned goals at the archi-

tectural level through various components and levels of

modularization as depicted in Figure 1.

We now describe the building blocks of the Charm
framework. The lower-level components, at the bottom

of Figure 1, are optimized for efficiency, while the ones

at the top focus on ease of use and interoperability. One

of the primary drivers of our approach is our objective to

simplify the code written by cryptographers who utilize

the framework. Our modular component architecture

reflects this.

Scheme Annotation and Adapters. In practice, imple-

mentations of different cryptosystems may be incom-

patible even if their APIs are the same. For example,

two systems might have different input and output re-

quirements. Consider that many public key encryption

schemes require plaintexts to be pre-encoded as ele-

ments of a cyclic group G, or as strings of some fixed

size. These requirements frequently depend on how the

scheme is configured, e.g., depending on parameters

used. Different developers are unlikely to make all of the

same choices in their implementations, so even if they

build their code with a standard API template, their

systems are unlikely to interoperate cleanly.

More subtle incompatibilities may arise when schemes

of a given class provide differing security guarantees:
for example, public-key encryption schemes can provide

either IND-CPA or IND-CCA2 security. These properties

become more relevant whenever the scheme is used as a

building block for a more complex protocol.

Meta-Information. To address these issues, Charm must

provide some mechanism to identify the pertinent infor-

mation inherent in each scheme, including (but not lim-

ited to) input/output space, security definition, complex-

ity assumptions, computational model, and performance

characteristics. We defer the discussion of whether this

should be done automatically or by the programmer to

Section 4.

Capability Matching. Once this meta-information is col-

lected, Charm uses it to facilitate compatibility among

schemes. First, it provides tools to programmatically

interrogate a scheme to determine whether the scheme

satisfies certain criteria. This makes it easy to substitute

schemes into a protocol at runtime, since the protocol

can simply specify its requirements (e.g., EU-CMA signa-

ture scheme) and Charm will ensure that they are met.

To make this workable, Charm includes a dictionary of

security definitions and complexity assumptions, as well

as the implications between them. Thus, a protocol that

requires only an EU-CMA signature scheme will be satis-

fied if instantiated with an SU-CMA signature, but not

vice versa. However, the implication can be bypassed

in some cases, for example, if EU-CMA is required and

SU-CMA is not suitable for a given composition where

re-randomizable signatures are required.

Structured Interfaces. To facilitate scheme composition

and reuse, Charm provides a set of APIs for common

cryptographic primitives such as digital signatures, bit

commitment, encryption, and related functions. Schemes

with identical APIs are identified and are interchange-

able in our framework. For example, DSA can be used

instead of RSA-PSS within a larger protocol with a

simple, almost trivial change to the code.

Scheme interfaces are implemented using standard

object-oriented programming techniques. The current

Charm interface hierarchy appears in Figure 2. This list

is sufficient for the schemes we have currently imple-

mented (see Figure 1), but we expect it to expand with

the addition of new cryptosystems.

Adapters. Since we now have enough information to

safely and securely compose schemes, Charm includes

adapters for this purpose and for handling mismatches

between schemes. Adapters are code wrappers imple-

4 Joseph A. Akinyele et al.

Adapters

Schemes Toolbox

Groups
(Integer, Pairing, Elliptic Curve)

C Math Libraries (OpenSSL, GMP, PBC, RELIC, MIRACL, etc.)

Protocol Engine & Compiler

Benchmark Module

PairingMath IntegerMath ECMath Cryptobase PROTOCOLS Infrastructure to support the
development of interactive protocols via a
dedicated protocol engine. A proof compiler
provides support for protocols that use ZK
proofs.

Python/C Base Modules

TOOLBOX Extensible library of common
routines, including secret sharing, X.509
certificate handling, parameter generation,
policy parsing, and hash functions.

ADAPTERS Thin wrappers that alter the
input/output or security properties of a
scheme. This promotes code re-use by
removing incompatibilities between
implementations.

SCHEMES A library of implemented
cryptosystems, accessed via standard
scheme APIs.

Protocols

Fig. 1 Overview of the Charm architecture.

PKEnc PKSig IBEnc IBSig

Protocol Commitment Hash ABEnc

SigmaProtocol

Scheme

ChHash

Fig. 2 Listing of scheme types defined in Charm. Subtypes
are indicated with dotted lines.

mented as thin classes. For example, they permit de-

velopers to bridge the gap between primitives with

disparate message/output spaces or security require-

ments. In our experience so far, the most common use

of adapters is to convert an input type so that a scheme

can be used for a specific application. For example, we

use adapters to encode messages or in the case of hybrid

encryption, to expand the message space of a public key

encryption scheme.

Adapters can perform even more sophisticated func-

tions, such as modifying a scheme’s security properties.

In Figure 3 we illustrate an adapter using a hash func-

tion to perform a conversion from a selectively-secure

IBE scheme into one that is adaptively secure (note here

that the hash function is modeled as a random oracle).

Selective-ID IBE
(DBDH, SM)

Fully-secure IBE
(DBDH, ROM)

Boneh-Boyen
IBE

ID-hash
Adapter

Hash function

IBE-to-Sig
Adapter

EU-CMA Signature
 (DBDH, ROM)

Fig. 3 Example of an adapter chain converting the
Boneh-Boyen selective-ID secure IBE [17] into a
signature scheme using Naor’s technique [40]. The
scheme carries meta-information including the com-
plexity assumptions and computational model used
in its security proof.

Adapters can also combine schemes to produce en-

tirely different cryptosystems. This means that there

are implicit schemes in Charm that do not physically

appear in the scheme library, demonstrating Charm’s

success at the goal of composability. Figure 4 provides

another example of such a conversion.

Selective-ID IBE
(DBDH, SM)

CCA-secure PKE
(DBDH+{sig}, SM)

Boneh-Boyen
IBE

IBE-to-PKE
Adapter

SU-CMA
OT Signature

Hybrid Enc
Adapter

CCA-secure PKE, large messages
 (DBDH+{sig}+sPRP, SM)

Block Cipher (sPRP)

Fig. 4 Adapter chain converting the Boneh-Boyen
selective-ID secure IBE [17] into a CCA-secure
public-key hybrid encryption scheme via the CHK
transform [34]. {sig} stands for the complexity as-
sumptions added by the signature scheme.

Extensible Numeric Computation. The mathematics un-

derlying modern cryptography has changed considerably,
driven by advances in lattices and pairings, and is sure
to continue in this trend. It is fundamentally important

that any system that wishes to maintain relevancy be

able to incorporate these advances. By necessity, these

libraries are implemented in C and require a certain

specialty and expertise to implement correctly (e.g., el-

liptic curves). Charm provides domain separation by

incorporating four base modules that implement the

core cryptographic routines. This shelters developers

from having to deal with very domain-specific concepts

like elliptic curves. For performance reasons these base
modules are written in C/C++ and include integermath,

ecmath (elliptic curve subgroups), and pairingmath.2 The

cryptobase module provides efficient implementations of

basic cryptographic primitives such as hash functions

and block ciphers. These modules include code from

standard C libraries including libgmp, OpenSSL, libpbc,

and PyCrypto [46,60,61,73]. To maximize code readabil-

ity, the module interfaces employ language features such

2 A dedicated module to support lattice-based cryptography
is in preparation for a future release.

Charm: A Framework for Rapidly Prototyping Cryptosystems 5

as operator overloading. Finally, Charm provides high-

level Python interfaces for constructs such as algebraic

groups and fields.

The base modules implement only those lower-level

routines where implementation in C is crucial for per-

formance. Charm also provides an extensive toolbox

of useful Python routines including secret sharing, en-

cryption padding, group parameter generation, message

encoding, and ciphertext parsing. We are continuously

adding routines to the toolbox, and future releases will

include contributions from external developers.

Protocol Engine. Interactive protocols often seem simple

on paper but in reality require a variety of different con-

siderations. Zero-knowledge proofs are especially tricky

as they often utilize information that is not specified

in the documentation. General protocol implementa-

tions must include network communications, data seri-

alization, error handling, and state machine transition.

Charm simplifies development by providing all of these

features as part of a reusable protocol engine. An imple-

mentation in our framework consists of a list of parties,
a description of states and transitions, and the core logic

for each state. Serialization, transmission and error han-

dling are handled at the lower levels and are available

freely to the developer.

Our protocol engine provides native support for the

execution of sub-protocols and supports recursion. We

have found subprotocols to be particularly useful in

constructions that use interactive proofs of knowledge.

Given a protocol implementation, an application ex-

ecutes it by selecting a party type and optional initial

state, and by providing a collection of socket connections
to the remote parties. Sockets in Python are an abstract

interface and can be extended to support various com-

munication mechanisms.

ZKP Compiler. Zero-knowledge proofs of knowledge

allow a Prover to demonstrate knowledge of a secret

without revealing it to a Verifier. Such proofs are com-

mon in privacy-preserving protocols such as the idemix

anonymous credential system and Direct Anonymous

Attestation [24,33]. These proofs may be interactive or

non-interactive (via the Fiat-Shamir heuristic, or using

new bilinear-map based techniques [43,48]). Regardless

of the underlying mechanism, it has become common in

the literature to describe such proofs using the notation

of Camenisch and Stadler [32]. For instance,

ZKPoK{(x, y) : h = gx ∧ j = gy}

denotes a proof of knowledge of two integers x, y that

satisfy both h = gx and j = gy. All values not enclosed

in parentheses are assumed to be known to the verifier.

Converting these statements into working protocols

is challenging, even for expert developers. To assist

implementation, Charm borrows from the techniques of

ZKPDL and CACE [5,63], providing native support for

honest verifier Schnorr-type proofs via an automated

protocol compiler.

Benchmarking System. Performance is often critical

when designing and implementing real-world cryptosys-

tems. Therefore developers are frequently interested

in the efficiency of their schemes, both from a timing

and computational perspective. They also might won-

der how changes they make can affect these important

aspects and how their schemes compare to others. In

order to help developers measure the performance of a
prototype implementation, Charm incorporates a native

benchmark module to collect information on a scheme’s

performance. This module collects and aggregates statis-

tics on a set of operations defined by the user. All of

the operations in the core modules are instrumented
separately, allowing for detailed profiling including total

operation counts, average operation time for various crit-

ical operations, and network bandwidth (for interactive

protocols). Users can define their own measurements

within a given implementation (e.g., a scheme or sub-

routine). When these measurements involve timing, the

benchmarking module automatically performs and col-

lects timing information. Many of our experiments in

Section 6 were performed using the benchmarking sys-

tem. The benchmarking system is easy to switch on or

off and has minimal impact on the system when it is not

in use. An example of using the benchmarking system

is provided in Section 4.

4 Implementation

In this section, we describe our implementation and pro-

vide further details on components of our architecture.

In Section 4.1 below, we reference an example compar-
ing a protocol description from the literature to one

implemented in our system. The code fragment shown

in Figure 5 is a good overall example of using Charm

and is worth studying at this point to understand our

approach.

Language Features. Python provides many useful fea-

tures that simplify development for programmers using

Charm. Benefits include support for object-oriented pro-

gramming, dynamic typing, overloading of mathematical

operators, automatic memory allocation and garbage

collection.

The language also provides useful built-in data struc-

tures such as tuples and dictionaries (essentially, key-

value stores) useful for common tasks such as storing

6 Joseph A. Akinyele et al.

 def encrypt(self, pk, M):
 r = group.random(ZR)
 u1 = (pk['g1'] ** r)
 u2 = (pk['g2'] ** r)
 e = group.encode(M) * (pk['h'] ** r)
 alpha = group.hash((u1, u2, e))
 v = (pk['c'] ** r) * (pk['d'] ** (r * alpha))

 return { 'u1' : u1, 'u2' : u2, 'e' : e, 'v' : v }

 def decrypt(self, pk, sk, c):
 alpha = group.hash((c['u1'], c['u2'], c['e']))
 v_prime = (c['u1'] ** (sk['x1'] + (sk['y1'] * alpha))) *
 (c['u2'] ** (sk['x2'] + (sk['y2'] * alpha)))
 if (c['v'] != v_prime):
 return False
 return group.decode(c['e'] / (c['u1'] ** sk['z']))

CS98 Encryption

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 � G are chosen, and random elements

x1, x2, y1, y2, z � Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m � G, the encryption algorithm runs as
follows. First, it chooses r � Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, � = H(u1, u2, e), v = crdr�.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes � = H(u1, u2, e), and tests if

ux1+y1�
1 ux2+y2�

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

CS98 Decryption

Fig. 5 Encryption and Decryption in the Cramer-Shoup scheme [38]. The top box shows the description of the algorithm in
the published paper while the bottom box reflects the Charm code. Charm is designed to enable cryptographers to implement
their schemes using mathematical notation that mirrors the paper description.

ciphertexts and public keys. These values can be au-

tomatically serialized and deserialized, eliminating the

need for custom parsing code. To read legacy files with a
specific binary format we use the python struct module,

which performs packing and unpacking of binary data.

Our decision to use Python is supported by the fact that
much of the effort in a typical C implementation relates

to laboriously defining and serializing data structures.

Python also supports dynamic generation of code.

This feature is particularly useful in constructing a Zero-

Knowledge proof compiler (see Section 4.3). The features
discussed here are not unique to Python and can be

found in other high-level languages.3 However Python

has a large and devoted user base and provides a good

balance between usability, stability, and performance.4

Low-level Python/C Modules. As discussed in Section 3,

for performance reasons, our implementation of Charm

supports a variety of C math libraries including GMP [46],

OpenSSL [73], RELIC [6], MIRACL [70] and the PBC

library [61]. We provide Python/C extensions for these

libraries.

Our base modules expose arithmetic operations using

standard mathematical operators such as ∗, + and ∗∗
(exponentiation).5 Besides group operations, our base

modules also perform essential functions such as element
serialization and encoding.

3 Nor are we the first to import cryptographic operations
into Python. See for example [37,71].
4 It is also well supported. Our experiments show that

there have been significant performance improvements be-
tween Python 2.x and 3.x. Charm supports both versions for
backwards compatibility with legacy applications.
5 For consistency, group operations are always specified in

multiplicative notation, thus ∗ is used for EC point addition
and ∗∗ for point multiplication. This makes it easy to switch
between group settings.

In addition to the base modules, we provide a cryp-
tobase module that includes fast routines for bitstring

manipulation, evaluation of block ciphers, MACs, and
hash functions. Supported ciphers include AES, DES,

and 3DES. Moreover, this module implements several

standard modes of operation such as CBC and CTR
(drawn from PyCrypto [60] and libTomCrypt [39]) that

facilitate encryption of arbitrary amounts of data.

Benchmark Module. As described in Section 3, we pro-

vide a benchmark module for measuring computation

time and counting operations, such as exponentiations

and multiplications, in a given snippet of code at run-

time. Our benchmark module provides a consistent in-
terface that developers can use to perform these mea-

surements. Each base module inherits the benchmark in-

terface and is incorporated into a cryptographic scheme

as follows:

bID = InitBenchmark()

select benchmark options

StartBenchmark(bID,

[RealTime, Exp, Mul, Add, Sub])

... code ...

EndBenchmark(bID)

obtain results

msmtDict = GetGeneralBenchmarks(bID)

print(msmtDict[Exp])

reset benchmarks

ClearBenchmark(bID)

As stated earlier, benchmarking can be easily removed

or disabled after measurements are complete and intro-

duces negligible overhead.

Algebraic Groups and Fields. While our base modules

provide low-level numerical functions, there are still dif-

ferences in how each module handles serializing elements,

encoding messages, and generating group parameters.

Charm: A Framework for Rapidly Prototyping Cryptosystems 7

For instance, for the ecmath module we employ sub-

groups of elliptic curves over a finite field, whereas the

integermath module implements integer groups, rings,

and fields. To reconcile these differences, we provide

a thin Python interface to encapsulate differences in

group/field parameter generation, serialization, message

encoding, and hashing. This interface allows us to stan-

dardize calls to the underlying base modules from a

developer’s perspective.

With this approach, cryptographers are able to ad-

just the algebraic setting (standard EC, integer or pair-

ing groups) on the fly without having to re-implement

the scheme. For instance, our implementations of DSA,

El Gamal and Cramer-Shoup [38,42,65] can be instan-

tiated in any group with an appropriate structure.

4.1 Schemes

To demonstrate the potential of our framework, we

implemented a number of standard and experimental

cryptosystems. We provide a collection of implemented

schemes that includes a variety of encryption schemes,

signatures, commitments, and interactive protocols.6

Most of the implementations consist of fewer than 100

lines of code (see Table 1 for a listing).

We provide several examples to illustrate code in

Charm. Figure 5 shows the encryption and decryption

algorithms for the Cramer-Shoup [38] scheme, and the
corresponding Charm code. We provide the remaining

algorithms, along with some additional examples, in Ap-

pendix A. We note that our framework was designed to

minimize the differences between published algorithms

and code (as shown in Figure 5), in the hope of lowering
the barriers to implementation.

4.2 Protocol Engine

Every protocol implementation in Charm is a subclass

of the Protocol base class. This interface provides all

of the core protocol functionality, including functions

to support protocol implementations, a database for

maintaining state, serialization, network I/O, and a

state machine for driving the protocol progression.

Creating a new interactive protocol is straightfor-

ward. The implementation must provide a description

of the parties, protocol states and transitions (including

error transitions for caught exceptions), as well as the

core functionality for each state. State functions accept

and return Python dictionaries containing the passed

6 For more scheme implementations, see http://jhuisi.

github.com/charm/schemes.html.

parameters. Socket I/O and data serialization is han-

dled transparently before and after each state function

runs. Developers have the option to implement their

own serialization functionality for protocols with a cus-

tom message format. Public parameters may either be

passed into the protocol or defined in the init function.

Finally, we provide templates for some common proto-

col types (such as Σ-protocols). Figure 6 contains an

example of a machine-generated Protocol subclass.

Executing protocols and subprotocols. Executing a proto-

col consists of two calls to the Protocol interface. First,

the application calls Setup() to configure the protocol

with an identifier of one of the parties in the protocol,

optional initial state, public parameters, a list of remote

parties, and a collection of open sockets. It then calls

Execute() to initiate communication.

We also provide support for the execution of sub-

protocols. Launching a subprotocol is simpler than an

initial execution, since the protocol engine already has

information on the remote parties. The caller simply

identifies for the server the role played by each of the

parties in the subprotocol (e.g., the Server party may

be remapped to be the Prover for the subprotocol), and

instructs the protocol engine to run the subprotocol via

the Execute() method.

Our engine currently supports only synchronous op-

eration. Asynchronous protocol runs must be handled
by the application itself using Python’s threading capa-

bilities. Callback functions may be supplied by passing

function references as part of the public parameters. We

plan to provide more complete support for asynchronous

execution in future releases.

4.3 ZKP Compiler

Many advanced cryptographic protocols (e.g., [18, 28,

31]) employ zero-knowledge or witness-indistinguishable
proofs as part of their protocol structure. The notation

of Camenisch and Stadler [32] has become the de facto

standard in the cryptography literature. This notation,

while elegant, stands in for a complex interactive or

non-interactive subprotocol that must be derived before

the base protocol can be implemented.

To handle such complex protocols, Charm includes

an automated compiler for common ZK proof statements.

Such compilers have been implemented in the past by

Meiklejohn et al. (ZKPDL) [63] and Bangerter et al.

(CACE) [9]. Our compiler interprets Camenisch-Stadler

style proof descriptions at runtime and derives an exe-

cutable honest-verifier protocol. At present our compiler

handles a limited set of discrete-log statements, and is

8 Joseph A. Akinyele et al.

Scheme Type Setting Comp. Model Lines

Encryption
RSA-OAEP [10] Public-Key Encryption Integer ROM 22
CS98 [38] Public-Key Encryption EC/Integer Standard 40
ElGamal [16] Public-Key Encryption EC/Integer Standard 34
Paillier99 [72] Public-Key Encryption Integer Standard 31
BF01 [19] Identity-Based Encryption Pairing ROM 51
BB04 [17] Identity-Based Encryption Pairing Standard 45
Waters05 [76] Identity-Based Encryption Pairing Standard 49
CKRS09 [27] Identity-Based Encryption Pairing Standard 55
LSW08 [57] Identity-Based Encryption Pairing ROM* 69
SW05 [69] Fuzzy Identity-Based Encryption Pairing Standard 68
BSW07 [14] Attribute-Based Encryption Pairing ROM∗ 62
Waters08 [77] Attribute-Based Encryption Pairing ROM∗ 61
LW10 [58] MA Attribute-Based Encryption Pairing ROM∗ 67
FE12 [78] DFA-based Functional Encryption Pairing Standard 71
HVE08 [53] Hidden Vector Encryption Pairing Standard 104

Digital Signatures
Schnorr [23] Signature Integer ROM 33
RSA-PSS [11] Signature Integer ROM 32
EC-DSA & DSA [65] Signature EC/Integer n/a 32
HW09 [51] Signature Integer Standard 113
CHP [26] Signature Pairing Standard 30
CL03 [29] Signature Integer Standard 58
CL04 [30] Signature Pairing ROM 25
HW [51] Signature Pairing Standard 48
Hess [50] Identity-Based Signature Pairing ROM 31
CHCH [35] Identity-Based Signature Pairing ROM 31
Waters05 [76] Identity-Based Signature Pairing Standard 43
Boyen [22] Ring Signature Pairing CRS 65
CYH [36] Ring Signature Pairing ROM 58
BLS03 [21] Short signature Pairing ROM 23
BBS04 [18] Group signature Pairing ROM 60

Adapters
CHK04 [34], BCHK05 [20] IBE-to-PKE - - 23, 63
IBE-to-Signature [19] Signature - - 24
Hybrid ABE Hybrid ABE - - 27
Hybrid DABE Hybrid DABE - - 28
Hybrid KPABE Hybrid KPABE - - 26
Hybrid IBE [34] Hybrid IBE - - 27
IBE Identity Hash IBE - - 35
Hybrid PKE Hybrid PKE - - 30

Miscellaneous
GS07 [48] Commitment Pairing CRS 28
Pedersen [66] Commitment EC/Integer Standard 16
AdM05 [7] Chameleon Hash Integer ROM 24
RSA HW09 [51] Chameleon Hash Integer Standard 29
VRF [52] Verifiable Random Functions Pairing Standard 47

Protocols
Schnorr91 [23] Zero-Knowledge proof EC/Integer Standard 53
CNS07 [31] Oblivious Transfer Pairing Standard 147

Table 1 A listing of the cryptographic schemes we implemented. “Code Lines” indicates the number of lines of Python code
used to implement the scheme (excluding comments and whitespace), and does not include the framework itself. ROM indicates
that a scheme is secure in the Random Oracle Model. CRS indicates that a scheme is secure in the Common Reference String
Model. A “-” indicates a generic transform (adapter). ∗ indicates a choice made for efficiency reasons.

not currently as rich as ZKPDL or CACE. However, it

offers some advantages over those systems.

First, as Python is an interpreted language, we do

not require a custom interpreter for the compiled proofs,

as ZKPDL does. Instead, we exploit Python’s ability to

dynamically generate and execute code at runtime. We

employ this feature to convert Camenisch-Stadler proof

statements into Charm code, which we feed directly to

Charm: A Framework for Rapidly Prototyping Cryptosystems 9

the interpreter and protocol engine.7 Second, since our

compiler has access to the public and secret8 variables

at compile time, Charm can use introspection to deter-

mine the variable types, settings and parameter sizes.

This information forms the bulk of what is provided in

a ZKPDL or CACE Protocol Specification Language

(PSL) program. Thus, from a developer’s perspective,

executing a ZK proof is nearly as simple as writing a

Camenisch-Stadler statement.

Our compiler, implemented in Python itself, outputs

Python code. The interface to the compiler closely re-

sembles a Camenisch-Stadler proof statement. The caller
provides two Python dictionaries containing the public

and secret parameters, as well as a string describing

the proof goal. In some cases, such as when configuring

the Verifier portion of an interactive proof, the secret

values are not available. We currently deal with this by

providing “dummy” variables of the appropriate type.

Our runtime compiler can examine the variables and

automatically generate appropriate code on the fly. The

compiler produces one of two possible outputs: a rou-

tine for computing a non-interactive protocol via the

Fiat-Shamir heuristic, or a subclass of Protocol describ-

ing the Prover and Verifier interactions, in the case of

interactive protocols.

In the interactive case, we provide support routines

to generate the class definition, compile the generated
code into Python bytecode, initialize communication

with sockets provided by the caller, and execute the

proof of knowledge. The code below illustrates a typical

interactive proof execution from the Prover:

prover

public = {’h’:g ** x, ’g’:g, ’j’:g ** y}

secret = {’x’:x, ’y’:y}

result = executeIntZKProof(public, secret,

"(h = g^x) and (j = g^y)", party_info)

Figure 6 shows a generated Protocol subclass for the

proof goal h = gx.

The runtime technique is useful for developers who

require compact, readable code. However, we note that

since our protocol produces Python code, it can also

be used to compile static protocol code which may be

added to a project.

At present our compiler is intended as a proof of

concept because it lacks support for many types of

statements (e.g. Boolean-OR) and proof settings. Our

compiler is less sophisticated than CACE and ZKPDL.

7 In practice, we first compile to bytecode, then execute.
This reduces overhead for proofs that will be conducted mul-
tiple times.
8 Clearly the verifier does not have access to the secret

variables. We address this later in this section.

For example, in addition to supporting more complex

conjunctions and statement types, CACE includes for-

mal verification of proofs. We believe that our approach

is complementary to these projects, and we hope to

establish collaborations to extend Charm’s capabilities

in future versions.

4.4 Meta-information and Adapters

Charm provides the ability to label schemes so that they

carry meta-information about their input/output space

and security definitions. Wherever possible this infor-

mation is derived automatically, e.g., from the scheme

type or function definitions. Optionally, developers can

provide other details such as the complexity assump-

tion and computational models used in the scheme’s

security proof via a standard annotation interface. This

information allows developers to compare and check

compatibility between schemes.

All schemes descend from the Scheme class, which

provides tools to record and evaluate meta-information.

Developers use the setProperty() method to specify

important properties. For example, the init function

of an Identity-Based Encryption scheme might include

a call of this form:

Set the scheme’s security definition,

ID space, and message space.

setProperty(self, secdef=IND_ID_CPA,

id=str, messageSpace=str)

Schemes with more restrictive parameters, e.g., group

elements and/or strings of limited length, can specify

these requirements as well.9 Once each scheme is labeled

with the appropriate metadata, we can programmati-

cally extract this information at run-time to verify a

given set of criteria.

Adapter example. To illustrate how this functionality

works in practice, we consider the process of construct-

ing adapters between different schemes. In Section 3 we

proposed an adapter chain to convert the Boneh-Boyen

IND-sID-CPA-secure signature scheme [17] into an EU-
CMA signature (see Figure 3). This transformation re-

quires two adapters: one to convert the selectively-secure

IBE scheme into an adaptively-secure IBE scheme (in
the random oracle model), and another to transform

the resulting IBE into a signature using the technique

of Naor [40].

The Hash Identity adapter has an explicit and im-

plicit function. Explicitly, it applies a hash function to

the Boneh-Boyen IBE, which accepts identities in the

9 In some cases, evaluation of a scheme depends on the
scheme’s public key.

10 Joseph A. Akinyele et al.

class ZKProof(Protocol):
 def __init__(self, groupObj, common_input=None):
 Protocol.__init__(self)
 # ... init of party, states and transitions ...
 # ... setup group object ...
 # ... init of base class db ...

 def prover_state1(self):
 pk = Protocol.get(self, ['h','j','g'], dict)
 (x,) = Protocol.get(self, ['x'])
 k0 = self.group.random(ZR)
 val_k0 = pk['g'] ** k0
 Protocol.store(self, ('k0',k0),('x',x))
 Protocol.setState(self, 3)
 return {'val_k0':val_k0, 'pk':pk }

 def verifier_state2(self, input):
 c = self.group.random(ZR)
 Protocol.store(self, ('c',c),
 ('pk',input['pk']),
 ('val_k0', input['val_k0']))
 Protocol.setState(self, 4)
 return {'c':c} ...

 ...
 def prover_state3(self, input):
 c = input['c']
 val = Protocol.get(self, ['x','k0',], dict)
 z0 = val['x'] * c + val['k0']
 Protocol.setState(self, 5)
 return {'z0':z0,}

 def verifier_state4(self, input):
 z0 = input['z0'];
 val = Protocol.get(self, ['pk','val_k0','c'], dict)
 if (val['pk']['g'] ** z0) ==
 ((val['pk']['h'] ** val['c']) * val['val_k0']):
 result = 'OK'
 else:
 result = 'FAIL'
 Protocol.setState(self, 6)
 Protocol.setErrorCode(self, result)
 return result

Fig. 6 A partial listing of the generated protocol produced by our Zero-Knowledge compiler for the honest-verifier proof
ZKPoK{(x) : h = gx}.

group Zr,10 thus altering the identity-space to {0, 1}∗.

Implicitly, it converts the security definition of the result-

ing IBE scheme from IND-sID-CPA to the stronger IND-
ID-CPA definition and updates the meta-information to

note that the security analysis is in the random oracle

model.11 The adapter itself is implemented as a sub-

class of IBEnc (see Figure 9a in Appendix A). It accepts

the Boneh-Boyen IBE (also an IBEnc class) as input

to its constructor. At construction time, the adapter

must verify the properties of the given scheme using

the checkProperty() call. It then advertises its own

identity space and security information. This code is

contained within the adapter’s init routine and appears

as follows:

...

if IBEnc.checkProperty(self, scheme,

[(‘scheme’,‘IBEnc’),(‘secDef’,IND_sID_CPA),

(‘id’,ZR)]):

self.ibe = scheme

IBEnc.updateProperty(self, scheme,

secDef=IND_ID_CPA, id=str,

secModel=ROM)

...

The IBE-to-Sig adapter converts any adaptively-

secure IBE scheme into an EU-CMA signature.12 This

adapter is implemented as a subclass of PKSig. It ac-

cepts an object derived from IBEnc and verifies that it

10 The value r is typically a large prime.
11 On a call to encrypt or keygen the adapter simply hashes
an arbitrary string into an element of Zr, then passes the
result to the underlying IBE scheme. This technique and its
security implications are described in [17].
12 Naor [40] observed that adaptively-secure IBE can be con-
verted into a signature scheme by using the IBE key extraction
algorithm for signing.

advertises at least IND-ID-CPA security (IND-sID-CPA
is not sufficient, hence our use of the previous adapter)

and possesses an appropriate message space. With this

check satisfied, this adapter inherits the security model

of the underlying IBE, adopts the IBE’s identity space

as the message space for the signature, and advertises

the EU-CMA security definition.

In future versions of the library, we hope to signif-

icantly extend the usefulness of this meta-data, and

to include detailed information on performance (gath-

ered through automatic testing). We also intend to pro-
vide tools for automatically constructing useful adapter

chains based on specific requirements.

4.5 Type checking and conversion

Python programs are dynamically typed. In general, we

believe that this is a benefit for a rapid prototyping

system: dynamic typing makes it possible to assemble
and modify complex data structures (e.g., ciphertexts)

“on the fly” without the need for detailed structure defi-

nitions.

Of course, the lack of static typing has disadvan-

tages. For example, type errors may not be detected

until runtime. Furthermore, it can limit the utility of

adapters that depend on having a priori knowledge

about a scheme’s input or output characteristics.

To address these issues, Charm provides optional

support for static typing using the Python annotation

interface. When it is provided, Charm uses this type

information to validate the inputs provided to a cryp-

tographic algorithm and, in cases where the inputs are

of the wrong type, to automatically convert them. For

the latter purpose, Charm provides a standard library

Charm: A Framework for Rapidly Prototyping Cryptosystems 11

designed to encode values to and from a variety of stan-

dard types, including bit strings and various types of

group elements. An example of the Charm typing syntax

is provided below:

pk_t = {’g1’:G, ’g2’:G, ’c’:G, ’d’:G, ’h’:G}

c_t = {’u1’:G, ’u2’:G, ’e’:G, ’v’:G}

@Input(pk_t, str)

@Output(c_t)

def encrypt(self, pk, M):

...

We believe that support for explicit typing also provides

a foundation for adding formal verification techniques

to Charm, though we leave such verification to future

work.

4.6 Using Charm in C applications

To enable the use of Charm schemes in existing C ap-

plications, we provide an embed API for integrating

Charm schemes without burdening developers. Our ap-

proach achieves two important goals. First, the embed

API is easy-to-use, intuitive, and straightforward for

developers to use a scheme based on its scheme type

API (e.g., keygen, encrypt/decrypt). Second, the API

allows C applications to interchange primitives of the

same type with minimal modifications.

To embed a scheme, the application first calls the

InitializeCharm() function to setup the Charm environ-

ment. Once Charm is setup, the application creates

a group object for instantiating a scheme. This is ac-

complished by calling the group initialization function

for a given setting such as InitPairingGroup(), InitInte-
gerGroup(), etc. Next, the application calls InitScheme()
and includes the scheme file name, class name, and the

group object handle returned from the previous call. To

call any function within the scheme, the application uses
the CallMethod() and supplies the arguments for the

target function. Finally, we provide serialization meth-

ods (objectToBytes() and bytesToObject()) for converting

Charm objects to/from base-64 encoded binary strings.

We believe our simple embed API enables Charm to

be seamlessly integrated into a variety of applications

that require advanced cryptographic constructs. For a

detailed example, see Figure 8 in Appendix A.

5 Goals and Challenges

The goal of the Charm framework is to provide a us-

able, extensible, and modular architecture to support

rapid prototyping of a variety of cryptographic primi-

tives and protocols. Our implementation provides the

necessary building blocks to achieve this central goal.

For example, at the lowest level, we provide abstract

C/C++ interfaces around the C math libraries to make

them interchangeable at build time. This allows cryp-

tographers to evaluate their scheme implementations

against different libraries by only changing the Charm

install configuration. With the pairingmath module, for

instance, we can evaluate the performance of schemes

against the PBC, MIRACL, and RELIC libraries with-
out changing the scheme itself. It is relatively easy to

extend our framework with new math libraries that ad-

here to our C/C++ abstract interface. Moreover, we are

able to extend our platform to diverse environments with

relatively low effort and without affecting the higher

level components in Charm. Thus, all of these features

enable Charm to provide a test bed for rapidly proto-

typing and evaluating advanced cryptosystems against

any appropriate underlying C library.

While the Charm architecture addresses a number

of issues to facilitate rapid implementations of modern

cryptography, it did not come without technical chal-

lenges. Our first challenge was determining the interface

that should be exposed in Python for building schemes

and protocols in a way that is standard and compre-

hensive. The second challenge was conforming the math

libraries to this interface. This was not a significant

issue for well established math libraries such as GMP,

OpenSSL, PBC, and MIRACL. However, for more recent

research libraries such as RELIC, this presented chal-

lenges due to missing functionality (e.g., serialization)

and the alpha software quality of the pairings interface.
But given the optimizations available in RELIC for pair-

ings, it has the potential to become the standard for

pairing-based cryptography in the near future.

6 Performance

Charm is primarily intended for rapid prototyping, with

an emphasis on compactness of source code and sim-

ilarity between standard protocol notation and code.

These properties all favor the developer and are qual-

ities designed to facilitate more semantically correct,

robust, and secure code. However, we recognize that

achieving these properties is likely to come at a tradeoff

in performance.

As such, in this section we report representative per-

formance metrics collected through the use of Charm’s

built-in benchmarking system. These metrics are quan-

titatively compared against detailed timing experiments

of two existing C cryptographic system implementations.

We observe that the performance cost of using Charm

12 Joseph A. Akinyele et al.

is variable, and it is directly dependent on the nature

of the scheme implementation.

6.1 Comparison with C Implementations

We conducted detailed timing experiments on two of the

cryptosystems we implemented: EC-DSA and a CP-ABE

scheme due to Bethencourt, Sahai, and Waters [14]. We
chose these two because of their available C implemen-

tations, thus realistic choices against which to compare.

Our experiments comprise two different points on a

spectrum: our EC-DSA experiment considers Charm’s

performance in an algorithm with very fast operation

times, and our CP-ABE experiment considered a scheme

with a high computational burden (to stress this, we

instantiated the scheme with a 50-element policy).

Experimental setup. We used the benchmark module to

collect timings for our Charm implementation of the

EC-DSA Sign and Verify algorithms. This provided us

with total operation time for both algorithms. We then

collected total operation times for OpenSSL’s implemen-

tation of the same algorithms using the built-in speed

command.

For CP-ABE we used benchmark again to collect

measurements for our ABE key generation, encryption

and decryption implementations (omitting the setup

routine). For key generation, we extracted a key con-

taining 50 attributes (1, . . . , 50). We next encrypted a

random message (in the group GT) under a policy con-

sisting solely of AND gates: (1 and 2 and . . . and 50).

Finally, we decrypted the message using the extracted

key. For each experiment, we measured total time and

repeated these experiments using John Bethencourt’s
library (available from [1]) to obtain the C time.

We conducted our experiments on a Macbook Pro

with a 2.4Ghz Intel i5 with 8GB of RAM running Mac

OS 10.7 and Python v3.2.3. All of our experiments were

performed on a single core of the processor. For all exper-
iments (Charm and C), we used either OpenSSL v1.0.1c

library or libpbc 0.5.12 to perform the underlying math-

ematical operations. Our EC-DSA experiments used

the standard NIST P-192 elliptic curve. For CP-ABE,

we used a 512-bit supersingular curve (with embedding

degree k = 2) from libpbc. All of our timing results are

the average of 10 experimental runs.

Experimental results. The results of our experiments

are presented in Figure 7. Unsurprisingly, our Charm

implementation of EC-DSA suffered a substantial perfor-

mance penalty when compared to the OpenSSL version.

This is unavoidable given the relatively low overall time

required for EC-DSA operations—even small interpre-

tation inefficiencies add up to a large percentage of the

total cost. Our results with CP-ABE (and 50 attributes)

are encouraging. For the CP-ABE algorithms, Charm

is competitive with the C implementation. As a result,

we believe Charm can be a primary tool for cryptogra-

phers wishing to approximate the performance of their

schemes or protocols in practice [68]. For additional

performance measurements, see our technical report [4].

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

sign verify

M
ill

is
e

c
o
n

d
s

Algorithm

Openssl library vs. Charm

EC-DSA (C)
EC-DSA (Python)

(a) Comparison to OpenSSL

 0

 200

 400

 600

 800

 1000

 1200

keygen encrypt decrypt

M
ill

is
e

c
o
n
d

s

Algorithms

Bethencourt library vs. Charm (50 attributes in policy)

cpabe toolkit (C)
CP-ABE (Python)

(b) Comparison to Beth-cpabe toolkit

Fig. 7 For EC-DSA, we select the NIST P-192 elliptic curve
and for CP-ABE [14], we measure 50 attributes for keygen
and 50 leaves in the policy tree for encrypt and decrypt.

7 Related Work

Our work builds upon previous efforts to provide soft-

ware libraries for developers who use cryptography. We

describe four different types of libraries below.

Cryptographic (primitive) libraries. The first widely avail-

able general purpose library for commonly used crypto-

graphic functions was Jack Lacey’s CryptoLib [54]. Fol-

lowing CryptoLib, many other packages were developed,

including Peter Guttman’s similarly named CryptLib13,

13 http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

Charm: A Framework for Rapidly Prototyping Cryptosystems 13

RSA’s Bsafe Crypto-C14, and more recently JAVA li-

braries such as Cryptix15, BouncyCastle16. While these

libraries have been useful for application developers,

they were designed for specific and mostly isolated pur-

poses. Moreover, they only implement commonly used

and standardized cryptographic functions.

There have not been as many implementations of

cryptosystems such as IBE, ABE, and related advanced

primitives. Of note is the implementation by Bethen-

court, Sahai and Waters [14], which provides an API for

ciphertext policy ABE. This package is part of the Ad-

vanced Crypto Software collection (ACSC) [1], which in

addition to this ABE library, includes separate packages

for other advanced application-based primitives such

as forward-secure signatures and broadcast encryption.

Our Charm architecture provides a comprehensive and

unified framework that is both usable and developer

friendly for rapid prototyping of advanced primitives.

Math libraries. The GNU Multiple Precision Arithmetic

Library (GMP) [46] is a free, high-precision mathematics
library, specifically optimized for speed of cryptographic

algorithms. The Stanford Pairing-Based Cryptography

(PBC) library [61] is free, written in C, and built on top

of GMP to provide abstractions for developing pairing

algorithms. PBC was built for expressiveness, but not

designed for usability or performance. RELIC [6], also
an open source library which relies on GMP, was built

for speed and portability with support for big number

arithmetic, traditional elliptic curves and pairings. While

RELIC is highly configurable and supports a variety of

cryptographic optimizations, it was not primarily built

for usability.

The Multiprecision Integer and Rational Arithmetic

Library (MIRACL) [70] is written in C/C++ and pro-

vides APIs for big number arithmetic, elliptic curve

cryptography, block ciphers and hash functions. Similar

to RELIC, MIRACL is a highly optimized library that

is compatible with a variety of architectures and is quite
expressive in terms of functionality. However, MIRACL

places a secondary focus on usability. Using the library

effectively requires knowledge of its inner workings. Our

Charm framework shields developers from dealing with

these libraries directly via layers of abstractions. In-

stead, cryptographers can utilize our abstractions to

implement their schemes or protocols using standard

notation and evaluate them against any of the math

libraries supported in Charm.

14 http://www.rsa.com/rsalabs/node.asp?id=2301
15 http://www.cryptix.org/
16 http://www.bouncycastle.org/

Cryptographic compilers and frameworks. Ben Laurie’s

Stupid programming language [55] compiles into C and

Haskell and is intended for constructs like ciphers and

hash functions. Cryptol [56] compiles to a VHDL circuit

for use with an FPGA. More recently, Dan Bernstein’s

NaCl (or “salt”) [12] software library in C/C++ pro-

vides an easy-to-use interface (e.g., encryption, decryp-

tion, signatures, etc.) to build higher-level cryptographic

tools.

Protocol and Secure Function Evaluation compilers.

The authors of the Zero Knowledge Proof Descriptive

Language (ZKPDL) [63] offer a language and an inter-

preter for implementing privacy-preserving protocols.

Their example application is electronic cash, but their

descriptive language is more general. A similar approach

is provided by FairPlay [62], which provides a language-

based system for secure multi-party computations. The

authors of FairPlay provide a Secure Function Definition
Language (SFDL), which can be used by programmers

to specify code for multi-party computations. Charm

takes a similar approach but with a focus on providing a

simple language in the Camenisch and Stadler [32] nota-

tion for specifying high-level proof statements. From this

proof statement, our compiler automatically generates
the interactive protocol details.

A software package called Tool for Automating Se-

cure Two-Party Computations (TASTY) [49] allows pro-

tocol designers to specify a high-level description of a

computation that is to be performed on encrypted data.

TASTY then generates protocols based on the specifica-

tion, and compares the efficiency of different protocols.

Similarly, the Computer Aided Cryptography Engineer-

ing (CACE) project has also developed a system that

specifies a language for zero knowledge proofs [8, 9]. In

this system, a compiler translates zero-knowledge pro-

tocol specifications into Java code or LATEX statements.

The CACE ZK compiler has many features, optimiza-

tions, and performance benefits. Our framework is cer-

tainly compatible with the CACE design and we intend

on leveraging CACE as a building block in Charm.

8 Availability

The Charm framework is freely available at http://

charm-crypto.com/Download.html with extensive doc-

umentation17 for how to use it. To make Charm easy-

to-use, we provide automated installers for various plat-

forms such as Windows, Mac OS X and Linux. Addi-

tionally, to support embedded environments, we have

17 http://charm-crypto.com/Documentation.html

14 Joseph A. Akinyele et al.

ported the framework to mobile platforms such as An-

droid. Our end goal is to enable Charm on as many

platforms as possible.

9 Conclusion

This paper describes Charm, a framework for rapidly

prototyping cryptographic systems. We believe the ap-

proaches outlined in this paper, together with the Python

implementation, constitute a solution to many of the

theoretical and practical shortcomings of existing cryp-

tographic prototyping tools. We believe that the frame-

work is easy enough to not deter implementers yet pow-

erful enough to capture many of the recent developments

in cryptography. It is our aim to encourage others to

develop schemes and to contribute them to the frame-

work.

An open area is to develop automated compilers for

performing various operations on cryptographic schemes.

One such example is the translation of schemes between

various settings, e.g., composite-order to prime-order

bilinear groups. Both David Freeman [44] and Alison

Lewko [59] have recently proposed tools for this type of

translation; however, all of these tools currently require

human intervention. We believe that Charm provides

an excellent platform for implementing techniques that

automatically translate such schemes (represented in a

domain-specific language) to working implementations.

On the engineering side, there are a number of issues
related to improving Charm for applications that require

extremely high performance. For example, the current

Python threading model is not ideal for applications

that would benefit from substantial parallel process-

ing (e.g., lattice-based fully-homomorphic encryption

schemes [45]). One of our major open problems is to find
ways to take full advantage of multi-core systems. Fi-

nally, we understand that there may be instances where

development requirements cannot support a high-level

interpreted language such as Python. To address this

we plan to examine the possibility of compiling Charm

code directly to languages such as Haskell and C, using

tools such as Shedskin [41].

References

1. The Advanced Crypto Software Collection. http://acsc.

cs.utexas.edu/.
2. Acar, T., Belenkiy, M., Bellare, M., and Cash, D.

Cryptographic agility and its relation to circular encryp-
tion. In EUROCRYPT (2010).

3. Acar, T., Fournet, C., and Shumow, D. Design and
verication of a crypto-agile distributed key manager, 2011.

4. Akinyele, J. A., Green, M., and Rubin, A. Charm-
crypto framework. http://eprint.iacr.org/2011/617.

5. Almeida, J. B., Bangerter, E., Barbosa, M., Krenn,
S., Sadeghi, A.-R., and Schneider, T. A certifying
compiler for zero-knowledge proofs of knowledge based
on Σ-protocols. In Proceedings of the 15th European
conference on Research in computer security (Berlin, Hei-
delberg, 2010), ESORICS, Springer-Verlag, pp. 151–167.

6. Aranha, D. F., and Gouvêa, C. P. L. RELIC is an
Efficient Library for Cryptography. http://code.google.
com/p/relic-toolkit/.

7. Ateniese, G., and de Medeiros, B. On the key exposure
problem in chameleon hashes. In SCN (2004), vol. 3352
of LNCS, Springer, pp. 165–179.

8. Bangerter, E., Barzan, S., Sadeghi, A., Schneider,
T., and Tsay, J. Bringing zero-knowledge proofs of
knowledge to practice. 17th International Workshop on
Security Protocols (2009).

9. Bangerter, E., Camenisch, J., Krenn, S., Sadeghi, A.-
R., and Schneider, T. Automatic generation of sound
zero-knowledge protocols. Cryptology ePrint Archive,
Report 2008/471, 2008. http://eprint.iacr.org/.

10. Bellare, M., and Rogaway, P. Optimal asymmetric
encryption padding — how to encrypt with rsa. In EU-
ROCRYPT (1994), pp. 92–111.

11. Bellare, M., and Rogaway, P. The exact security of
digital signatures: How to sign with RSA and Rabin. In
EUROCRYPT (1996), U. Maurer, Ed., vol. 1070 of LNCS,
Springer-Verlag.

12. Bernstein, D. J., Lange, T., and Schwabe, P. The se-
curity impact of a new cryptographic library. In Progress
in Cryptology – LATINCRYPT (2012), A. Hevia and
G. Neven, Eds., vol. to appear of Lecture Notes in
Computer Science, Springer-Verlag Berlin Heidelberg.
Document ID: 5f6fc69cc5a319aecba43760c56fab04, http:
//cryptojedi.org/papers/#coolnacl.

13. Bethencourt, J. Libpaillier, July 2006.
14. Bethencourt, J., Sahai, A., and Waters, B.

Ciphertext-policy Attribute-Based Encryption. In Pro-
ceedings of the 2007 IEEE Symposium on Security and
Privacy (2007), IEEE Computer Society, pp. 321–334.

15. Bethencourt, J., Song, D., and Waters, B. Analysis-
resistant malware. In NDSS (2008).

16. Blakley, G., Chaum, D., and ElGamal, T. A Public
Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms, vol. 196. Springer Berlin / Heidelberg,
1985, pp. 10–18.

17. Boneh, D., and Boyen, X. Efficient selective-ID secure
Identity-Based Encryption without random oracles. In
EUROCRYPT (2004), vol. 3027 of LNCS, pp. 223–238.

18. Boneh, D., Boyen, X., and Shacham, H. Short group
signatures. In CRYPTO (2004), vol. 3152 of LNCS, pp. 45–
55.

19. Boneh, D., and Franklin, M. K. Identity-based encryp-
tion from the Weil Pairing. In CRYPTO (2001), vol. 2139
of LNCS, pp. 213–229.

20. Boneh, D., and Katz, J. Improved efficiency for cca-
secure cryptosystems built using identity based encryption.
In CT-RSA (2005), vol. 3376 of LNCS, Springer.

21. Boneh, D., Lynn, B., and Shacham, H. Short signatures
from the Weil Pairing. In ASIACRYPT (2001), vol. 2248
of LNCS, pp. 514–532.

22. Boyen, X. Mesh signatures: How to leak a secret with
unwitting and unwilling participants. In EUROCRYPT,
volume 4515 of LNCS (2007), Springer, pp. 210–227.

23. Brassard, G., and Schnorr, C. Efficient Identification
and Signatures for Smart Cards, vol. 435. Springer Berlin
/ Heidelberg, 1990, pp. 239–252.

Charm: A Framework for Rapidly Prototyping Cryptosystems 15

24. Brickell, E., Camenisch, J., and Chen, L. Direct
anonymous attestation. In Proceedings of the 11th ACM
conference on Computer and communications security
(New York, NY, USA, 2004), CCS, ACM, pp. 132–145.

25. Camenisch, J., and Groth, J. Group signatures: Better
efficiency and new theoretical aspects. In Security in Com-
munication Networks (2005), C. Blundo and S. Cimato,
Eds., vol. 3352 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, pp. 120–133.

26. Camenisch, J., Hohenberger, S., and stergaard Ped-
ersen, M. Batch verification of short signatures. In
EUROCRYPT, volume 4515 of LNCS (2007), Springer,
pp. 246–263.

27. Camenisch, J., Kohlweiss, M., Rial, A., and Sheedy, C.
Blind and anonymous identity-based encryption and au-
thorised private searches on public key encrypted data. In
PKC (Berlin, Heidelberg, 2009), Irvine, Springer-Verlag,
pp. 196–214.

28. Camenisch, J., and Lysyanskaya, A. An efficient system
for non-transferable anonymous credentials with optional
anonymity revocation. In EUROCRYPT (2001), vol. 2045
of LNCS, Springer, pp. 93–118.

29. Camenisch, J., and Lysyanskaya, A. A signature scheme
with efficient protocols. In Proceedings of the 3rd interna-
tional conference on Security in communication networks
(Berlin, Heidelberg, 2003), SCN, Springer-Verlag, pp. 268–
289.

30. Camenisch, J., and Lysyanskaya, A. Signature schemes
and anonymous credentials from bilinear maps. Springer-
Verlag, pp. 56–72.

31. Camenisch, J., Neven, G., and abhi shelat. Simulatable
adaptive oblivious transfer. In EUROCRYPT (2007),
vol. 4515 of LNCS, pp. 573–590.

32. Camenisch, J., and Stadler, M. Efficient group sig-
nature schemes for large groups. In CRYPTO (1997),
vol. 1296 of LNCS, pp. 410–424.

33. Camenisch, J., and Van Herreweghen, E. Design
and implementation of the idemix anonymous credential
system. In Proceedings of the 9th ACM conference on
Computer and communications security (New York, NY,
USA, 2002), CCS, ACM, pp. 21–30.

34. Canetti, R., Halevi, S., and Katz, J. Chosen-ciphertext
security from Identity Based Encryption. In EURO-
CRYPT (2004), vol. 3027 of LNCS, pp. 207–222.

35. Cha, J. C., and Cheon, J. H. An identity-based signature
from gap diffie-hellman groups. In PKC (2003), Springer-
Verlag, LNCS 2139, pp. 18–30.

36. Chow, S. S. M., Yiu, S. M., and Hui, L. C. K. Efficient
identity based ring signature. In Applied Crypto And
Network Security - ACNS, LNCS 3531 (2005), Springer,
pp. 499–512.

37. Condra, G. pypbc. Available from http://www.

gitorious.org/pypbc.
38. Cramer, R., and Shoup, V. A practical public key

cryptosystem provably secure against adaptive chosen
ciphertext attack. In CRYPTO (London, UK, 1998),
Springer, pp. 13–25.

39. Denis, T. S. LibTomCrypt Project. Available at http:

//libtom.org.
40. Dolev, D., Dwork, C., and Naor, M. Non-malleable

cryptography. In SIAM Journal on Computing (2000),
pp. 542–552.

41. Dufour, M. Shedskin. Available from http://code.

google.com/p/shedskin, July 2009.
42. El Gamal, T. A public key cryptosystem and a signature

scheme based on discrete logarithms. In Proceedings of
Crypto (1984), pp. 10–18.

43. Fiat, A., and Shamir, A. How to prove yourself: Practical
solutions to identification and signature problems. In
CRYPTO (1986), vol. 263 of LNCS, pp. 186–194.

44. Freeman, D. Converting pairing-based cryptosystems
from composite-order groups to prime-order groups. In
EUROCRYPT, 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques
(2010), pp. 44–61.

45. Gentry, C. Fully homomorphic encryption using ideal
lattices. In Proceedings of the 41st annual ACM sym-
posium on Theory of computing (New York, NY, USA,
2009), STOC, ACM, pp. 169–178.

46. GNU. The GNU Multiple Precision Arithmetic Library.
Available from http://www.gmplib.org.

47. Goldreich, O., Micali, S., and Wigderson, A. Proofs
that yield nothing but their validity or all languages in np
have zero-knowledge proof systems. J. ACM 38, 3 (July
1991), 690–728.

48. Groth, J., and Sahai, A. Efficient non-interactive proof
systems for bilinear groups. In EUROCRYPT (2008),
vol. 4965 of LNCS, Springer, pp. 415–432.

49. Henecka, W., K ögl, S., Sadeghi, A.-R., Schneider, T.,
and Wehrenberg, I. Tasty: tool for automating secure
two-party computations. In Proceedings of the 17th ACM
conference on Computer and communications security
(New York, NY, USA, 2010), CCS, ACM, pp. 451–462.

50. Hess, F. Efficient identity based signature schemes based
on pairings. In SAC, LNCS 2595 (2002), Springer-Verlag,
pp. 310–324.

51. Hohenberger, S., and Waters, B. Realizing hash-and-
sign signatures under standard assumptions. In Advances
in Cryptology – EUROCRYPT (2009).

52. Hohenberger, S., and Waters, B. Constructing veri-
fiable random functions with large input spaces. In EU-
ROCRYPT, 29th Annual International Conference on
the Theory and Applications of Cryptographic Techniques
(2010), pp. 656–672.

53. Iovino, V., and Persiano, G. Hidden-vector encryption
with groups of prime order. In Proceedings of the 2nd
international conference on Pairing-Based Cryptography
(Berlin, Heidelberg, 2008), Pairing ’08, Springer-Verlag,
pp. 75–88.

54. Lacy, J. B. CryptoLib: Cryptography in software.
USENIX Security Conference IV (1993), 1–18.

55. Laurie, B., and Clifford, B. The Stupid programming
language. Source code available at http://code.google.

com/p/stupid-crypto/.
56. Lewis, J. R., and Martin, B. CRYPTOL: High Assur-

ance, Retargetable Crypto Development and Validation.
Available from http://www.galois.com/files/Cryptol_

Whitepaper.pdf, October 2003.
57. Lewko, A., Sahai, A., and Waters, B. Revocation

systems with very small private keys. In Proceedings of the
IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2010), SP, IEEE Computer Society, pp. 273–
285.

58. Lewko, A., and Waters, B. Decentralizing attribute-
based encryption. In EUROCRYPT (2011), K. G. Pat-
terson, Ed., vol. 6632 of LNCS, Springer, pp. 568–588.
http://eprint.iacr.org/.

59. Lewko, A. B. Tools for simulating features of composite
order bilinear groups in the prime order setting. IACR
Cryptology ePrint Archive 2011 (2011), 490.

60. Litzenberger, D. C. PyCrypto - The Python Cryp-
tography Toolkit. Available at http://www.dlitz.net/

software/pycrypto/.

16 Joseph A. Akinyele et al.

61. Lynn, B. The Stanford Pairing Based Crypto Library.
Available from http://crypto.stanford.edu/pbc.

62. Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. Fair-
play - a secure two-party computation system. In Proceed-
ings of the 13th USENIX Security Symposium (Berkeley,
CA, USA, 2004), USENIX Association, pp. 287–302.

63. Meiklejohn, S., Erway, C. C., Küpçü, A., Hinkle, T.,
and Lysyanskaya, A. ZKPDL: a language-based system
for efficient zero-knowledge proofs and electronic cash. In
Proceedings of the 19th USENIX conference on Security
(Berkeley, CA, USA, 2010), USENIX Security, USENIX
Association, pp. 13–13.

64. Meiklejohn, S., Mowery, K., Checkoway, S., and
Shacham, H. The phantom tollbooth: privacy-preserving
electronic toll collection in the presence of driver collusion.
In Proceedings of the 20th USENIX conference on Security
(Berkeley, CA, USA, 2011), SEC, USENIX Association,
pp. 32–32.

65. NIST. Digital Signature Standard (DSS). Federal In-
formation Processing Standards Publication 186, May
1994.

66. Pedersen, T. P. Non-interactive and information-
theoretic secure verifiable secret sharing. In CRYPTO
(1992), vol. 576 of LNCS, pp. 129–140.

67. Regev, O. Lattice-based cryptography. In Advances
in Cryptology - CRYPTO 2006 (2006), C. Dwork, Ed.,
vol. 4117 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp. 131–141.

68. Rouselakis, Y., and Waters, B. New constructions and
proof methods for large universe attribute-based encryp-
tion. Cryptology ePrint Archive, Report 2012/583, 2012.
http://eprint.iacr.org/.

69. Sahai, A., and Waters, B. Fuzzy identity-based encryp-
tion. In EUROCRYPT (2005), pp. 457–473.

70. Scott, M. MIRACL library. Indigo Software.
http://indigo.ie/∼mscott/#download.

71. Stein, W., et al. Sage Mathematics Software (Ver-
sion 5.0.1). The Sage Development Team, YYYY.
http://www.sagemath.org.

72. Stern, J., and Paillier, P. Public-Key Cryptosystems
Based on Composite Degree Residuosity Classes, vol. 1592.
Springer Berlin / Heidelberg, 1999, pp. 223–238.

73. The OpenSSL Project. OpenSSL: The open source
toolkit for SSL/TLS. www.openssl.org, April 2010.

74. Wang, X., Yin, Y. L., and Yu, H. Finding collisions in
the full sha-1. In Proceedings of Crypto (2005), Springer,
pp. 17–36.

75. Wang, X., and Yu, H. How to break md5 and other hash
functions. In In EUROCRYPT (2005), Springer-Verlag.

76. Waters, B. Efficient Identity-Based Encryption without
random oracles. In EUROCRYPT (2005), vol. 3494 of
LNCS, pp. 114–127.

77. Waters, B. Ciphertext-policy attribute-based encryption:
An expressive, efficient, and provably secure realization.
Cryptology ePrint Archive, Report 2008/290, 2008. http:
//eprint.iacr.org/.

78. Waters, B. Functional encryption for regular languages.
In Advances in Cryptology CRYPTO 2012 (2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg,
pp. 218–235.

79. Wustrow, E., Wolchok, S., Goldberg, I., and Hal-
derman, J. A. Telex: Anticensorship in the network
infrastructure. In Proceedings of the 20th USENIX Secu-
rity Symposium (Aug. 2011).

A Appendix

Charm: A Framework for Rapidly Prototyping Cryptosystems 15

international conference on Pairing-Based Cryptography
(Berlin, Heidelberg, 2008), Pairing ’08, Springer-Verlag,
pp. 75–88.

50. Lacy, J. B. CryptoLib: Cryptography in software.
USENIX Security Conference IV (1993), 1–18.

51. Laurie, B., and Clifford, B. The Stupid programming
language. Source code available at http://code.google.

com/p/stupid-crypto/.
52. Lewis, J. R., and Martin, B. CRYPTOL: High Assur-

ance, Retargetable Crypto Development and Validation.
Available from http://www.galois.com/files/Cryptol_

Whitepaper.pdf, October 2003.
53. Lewko, A., Sahai, A., and Waters, B. Revocation

systems with very small private keys. In Proceedings of the
IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2010), SP, IEEE Computer Society, pp. 273–
285.

54. Lewko, A., and Waters, B. Decentralizing attribute-
based encryption. In EUROCRYPT (2011), K. G. Pat-
terson, Ed., vol. 6632 of LNCS, Springer, pp. 568–588.
http://eprint.iacr.org/.

55. Lewko, A. B. Tools for simulating features of composite
order bilinear groups in the prime order setting. IACR
Cryptology ePrint Archive 2011 (2011), 490.

56. Litzenberger, D. C. PyCrypto - The Python Cryp-
tography Toolkit. Available at http://www.dlitz.net/

software/pycrypto/.
57. Lynn, B. The Stanford Pairing Based Crypto Library.

Available from http://crypto.stanford.edu/pbc.
58. Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. Fair-

play - a secure two-party computation system. In Proceed-
ings of the 13th USENIX Security Symposium (Berkeley,
CA, USA, 2004), USENIX Association, pp. 287–302.

59. Meiklejohn, S., Erway, C. C., Küpçü, A., Hinkle, T.,
and Lysyanskaya, A. ZKPDL: a language-based system
for e�cient zero-knowledge proofs and electronic cash. In
Proceedings of the 19th USENIX conference on Security
(Berkeley, CA, USA, 2010), USENIX Security, USENIX
Association, pp. 13–13.

60. Meiklejohn, S., Mowery, K., Checkoway, S., and
Shacham, H. The phantom tollbooth: privacy-preserving
electronic toll collection in the presence of driver collusion.
In Proceedings of the 20th USENIX conference on Security
(Berkeley, CA, USA, 2011), SEC, USENIX Association,
pp. 32–32.

61. NIST. Digital Signature Standard (DSS). Federal In-
formation Processing Standards Publication 186, May
1994.

62. Pedersen, T. P. Non-interactive and information-
theoretic secure verifiable secret sharing. In CRYPTO
(1992), vol. 576 of LNCS, pp. 129–140.

63. Sahai, A., and Waters, B. Fuzzy identity-based encryp-
tion. In EUROCRYPT (2005), pp. 457–473.

64. Scott, M. MIRACL library. Indigo Software.
http://indigo.ie/⇠mscott/#download.

65. Stein, W., et al. Sage Mathematics Software (Ver-
sion 5.0.1). The Sage Development Team, YYYY.
http://www.sagemath.org.

66. Stern, J., and Paillier, P. Public-Key Cryptosystems
Based on Composite Degree Residuosity Classes, vol. 1592.
Springer Berlin / Heidelberg, 1999, pp. 223–238.

67. The OpenSSL Project. OpenSSL: The open source
toolkit for SSL/TLS. www.openssl.org, April 2010.

68. Wang, X., Yin, Y. L., and Yu, H. Finding collisions in
the full sha-1. In Proceedings of Crypto (2005), Springer,
pp. 17–36.

69. Wang, X., and Yu, H. How to break md5 and other hash
functions. In In EUROCRYPT (2005), Springer-Verlag.

70. Waters, B. E�cient Identity-Based Encryption without
random oracles. In EUROCRYPT (2005), vol. 3494 of
LNCS, pp. 114–127.

71. Waters, B. Ciphertext-policy attribute-based encryption:
An expressive, e�cient, and provably secure realization.
Cryptology ePrint Archive, Report 2008/290, 2008. http:
//eprint.iacr.org/.

72. Waters, B. Functional encryption for regular languages.
In Advances in Cryptology CRYPTO 2012 (2012),
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg,
pp. 218–235.

73. Wustrow, E., Wolchok, S., Goldberg, I., and Hal-
derman, J. A. Telex: Anticensorship in the network
infrastructure. In Proceedings of the 20th USENIX Secu-
rity Symposium (Aug. 2011).

A Appendix

Below is a working example of how the API is utilized in
a C application to embed a hybrid encryption adapter (see
Figure 9) for any CP-ABE scheme such as the one shown
in Figure 11:

variable declarations

Charm_t *group,*cpabe,*hyabe,*keyTupl,*recmsg;

Charm_t *pkDict,*mskDict,*skDict,*ctDict,*ctBlob;

char *msg,*policy,*attrlist;

setup Charm environment

InitializeCharm();

initialize group with super singular curve

and 512-bits for base field.

group = InitPairingGroup(module, "SS512");

initialize the scheme

cpabe = InitScheme("abenc_bsw07",

"CPabe_BSW07",group);

call to initialize adapters

hyabe = InitAdapter("abenc_adapt_hybrid",

"HybridABEnc",cpabe,group);

no arguments to setup

keyTupl = CallMethod(hyabe, "setup", "");

extract master public & private keys

pkDict = GetIndex(keyTupl, 0);

mskDict = GetIndex(keyTupl, 1);

call keygen

attrlist = "[SALES, IT]";

skDict = CallMethod(hyabe,"keygen","%O%O%A",

pkDict,mskDict,attrlist);

call encrypt

msg = "this is a test message";

policy = "(CORPORATE and (SALES or IT))";

ctDict = CallMethod(hyabe,"encrypt","%O%b%s",

pkDict,msg,policy);

serialize object into base-64 string

ctBlob = objectToBytes(ctDict, group);

call decrypt

recmsg = CallMethod(hyabe,"decrypt","%O%O%O",

pkDict,skDict,ctDict);

. . . free Charm_t variables . . .

tear down the Charm environment

CleanupCharm();

Using BSW07 Scheme in C

Fig. 8 A working example of how the API is utilized in a C ap-
plication to embed a hybrid encryption adapter (see Figure 9b)
for any CP-ABE scheme such as the BSW07 [14] scheme shown
in Figures 11 and 12. We provide several high-level functions
that simplify using Charm schemes. In particular, the Call-
Method() encapsulates several types of arguments to Python
such as: %O for Charm objects, %s for ASCII strings, %A to
convert into a Python list, and %b to a binary object.

Charm: A Framework for Rapidly Prototyping Cryptosystems 17

def __init__(self, scheme, groupObj):
 PKSig.__init__(self)
 global ibe, group
 condition = [('secDef',IND_ID_CPA),('scheme','IBenc'),
 ('messageSpace',GT)]
 if PKSig.checkProperty(self, scheme, condition):
 # inherit properties of scheme & update definitions
 PKSig.updateProperty(self, scheme, secDef=EU_CMA,
 id=str, secModel=ROM)
 ibe = scheme; group = groupObj

def keygen(self, secparam=None):
 (mpk, msk) = ibe.setup(secparam)
 return (mpk, msk)

def sign(self, sk, m):
 return ibe.extract(sk, str(m))

def verify(self, pk, m, sig):
 if hasattr(ibe, 'verify'):
 result = ibe.verify(pk, m sig)
 if result == False: return False
 new_m = group.random(GT)
 C = ibe.encrypt(pk, sig['IDstr'], new_m)
 if ibe.decrypt(sig, C) == new_m:
 return True
 else:
 return False

IBE-to-Sig Adapter

(a) IBE-to-Sig Adapter

class HybridABEnc(ABEnc):
 def __init__(self, scheme, groupObj):
 ABEnc.__init__(self)
 global abenc, group
 # ... verify scheme properties ...
 abenc = scheme
 group = groupObj

 def setup(self):
 return abenc.setup()

 def keygen(self, pk, mk, object):
 return abenc.keygen(pk, mk, object)

 def encrypt(self, pk, M, object):
 key = group.random(GT)
 c1 = abenc.encrypt(pk, key, object)
 # init a symmetric enc scheme from this key
 cipher = AuthCryptoAbstraction(sha1(key))
 c2 = cipher.encrypt(M)
 return { 'c1':c1, 'c2':c2 }

 def decrypt(self, pk, sk, ct):
 c1, c2 = ct['c1'], ct['c2']
 key = abenc.decrypt(pk, sk, c1)
 cipher = AuthCryptoAbstraction(sha1(key))
 return cipher.decrypt(c2)

Hybrid-Enc-ABE Adapter

(b) Hybrid Enc Adapter

Fig. 9 (a). The entire IBE to signature adapter scheme [19]. (b) A hybrid encryptor for ABE schemes in Charm.

 def keygen(self, secparam):
 # code for checking group setting
 g1, g2 = group.random(G, 2)
 x1, x2, y1, y2, z = group.random(ZR, 5)
 c = (g1 ** x1) * (g2 ** x2)
 d = (g1 ** y1) * (g2 ** y2)
 h = (g1 ** z)
 pk = { 'g1':g1, 'g2':g2, 'c':c, 'd':d, 'h':h }
 sk = { 'x1':x1, 'x2':x2, 'y1':y1, 'y2':y2, 'z':z }
 return (pk, sk)

CS98 Keygen Description Charm Implementationone-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 2 G are chosen, and random elements

x1, x2, y1, y2, z 2 Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m 2 G, the encryption algorithm runs as
follows. First, it chooses r 2 Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, ↵ = H(u1, u2, e), v = crdr↵.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes ↵ = H(u1, u2, e), and tests if

ux1+y1↵
1 ux2+y2↵

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 2 G are chosen, and random elements

x1, x2, y1, y2, z 2 Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m 2 G, the encryption algorithm runs as
follows. First, it chooses r 2 Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, ↵ = H(u1, u2, e), v = crdr↵.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes ↵ = H(u1, u2, e), and tests if

ux1+y1↵
1 ux2+y2↵

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 2 G are chosen, and random elements

x1, x2, y1, y2, z 2 Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m 2 G, the encryption algorithm runs as
follows. First, it chooses r 2 Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, ↵ = H(u1, u2, e), v = crdr↵.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes ↵ = H(u1, u2, e), and tests if

ux1+y1↵
1 ux2+y2↵

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 2 G are chosen, and random elements

x1, x2, y1, y2, z 2 Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m 2 G, the encryption algorithm runs as
follows. First, it chooses r 2 Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, ↵ = H(u1, u2, e), v = crdr↵.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes ↵ = H(u1, u2, e), and tests if

ux1+y1↵
1 ux2+y2↵

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

one-way family of hash functions that map long bit strings to elements of Zq

(although we can do without this—see §5.3).

Key Generation. The key generation algorithm runs as follows. Random
elements g1, g2 2 G are chosen, and random elements

x1, x2, y1, y2, z 2 Zq

are also chosen. Next, the group elements

c = gx1
1 gx2

2 , d = gy1
1 gy2

2 , h = gz
1

are computed. Next, a hash function H is chosen from the family of universal
one-way hash functions. The public key is (g1, g2, c, d, h, H), and the private
key is (x1, x2, y1, y2, z).

Encryption. Given a message m 2 G, the encryption algorithm runs as
follows. First, it chooses r 2 Zq at random. Then it computes

u1 = gr
1, u2 = gr

2, e = hrm, ↵ = H(u1, u2, e), v = crdr↵.

The ciphertext is
(u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes ↵ = H(u1, u2, e), and tests if

ux1+y1↵
1 ux2+y2↵

2 = v.

If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

m = e/uz
1.

We first verify that this is an encryption scheme, in the sense that the
decryption of an encryption of a message yields the message. Since u1 = gr

1

and u2 = gr
2, we have

ux1
1 ux2

2 = grx1
1 grx2

2 = cr.

Likewise, uy1
1 uy2

2 = dr and uz
1 = hr Therefore, the test performed by the

decryption algorithm will pass, and the output will be e/hr = m.

8

Fig. 10 Keygen in the Cramer-Shoup scheme [38]. We exclude group parameter generation.

def setup(self):
 g, gp = group.random(G1), group.random(G2)
 alpha, beta = group.random(ZR), group.random(ZR)
 g_alpha = gp**alpha

 pk = { 'g': g, 'g2': gp, 'h': g**beta,
 'f': g**~beta,
 'egg_alpha': pair(g, g_alpha) }
 mk = { 'beta':beta, 'g2_alpha': g_alpha }

 return (pk, mk)

wishes to encrypt a message will specify through an
access tree structure a policy that private keys must
satisfy in order to decrypt.

Each interior node of the tree is a threshold gate and
the leaves are associated with attributes. (We note
that this setting is very expressive. For example, we
can represent a tree with “AND” and “OR” gates by
using respectively 2 of 2 and 1 of 2 threshold gates.) A
user will be able to decrypt a ciphertext with a given
key if and only if there is an assignment of attributes
from the private key to nodes of the tree such that the
tree is satisfied. We use the same notation as [15] to
describe the access trees, even though in our case the
attributes are used to identify the keys (as opposed to
the data).

Access tree T . Let T be a tree representing an ac-
cess structure. Each non-leaf node of the tree repre-
sents a threshold gate, described by its children and
a threshold value. If numx is the number of chil-
dren of a node x and kx is its threshold value, then
0 < kx ≤ numx. When kx = 1, the threshold gate is
an OR gate and when kx = numx, it is an AND gate.
Each leaf node x of the tree is described by an attribute
and a threshold value kx = 1.

To facilitate working with the access trees, we define
a few functions. We denote the parent of the node x
in the tree by parent(x). The function att(x) is defined
only if x is a leaf node and denotes the attribute asso-
ciated with the leaf node x in the tree. The access tree
T also defines an ordering between the children of ev-
ery node, that is, the children of a node are numbered
from 1 to num. The function index(x) returns such
a number associated with the node x. Where the in-
dex values are uniquely assigned to nodes in the access
structure for a given key in an arbitrary manner.

Satisfying an access tree. Let T be an access tree
with root r. Denote by Tx the subtree of T rooted at
the node x. Hence T is the same as Tr. If a set of
attributes γ satisfies the access tree Tx, we denote it as
Tx(γ) = 1. We compute Tx(γ) recursively as follows.
If x is a non-leaf node, evaluate Tx′(γ) for all children
x′ of node x. Tx(γ) returns 1 if and only if at least
kx children return 1. If x is a leaf node, then Tx(γ)
returns 1 if and only if att(x) ∈ γ.

4.2 Our Construction

Let G0 be a bilinear group of prime order p, and let
g be a generator of G0. In addition, let e : G0 × G0 →
G1 denote the bilinear map. A security parameter, κ,
will determine the size of the groups. We also define

the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S,
of elements in Zp: ∆i,S(x) =

∏
j∈S,j #=i

x−j
i−j . We will

additionally employ a hash function H : {0, 1}∗ → G0

that we will model as a random oracle. The function
will map any attribute described as a binary string to
a random group element. Our construction follows.

Setup. The setup algorithm will choose a bilinear
group G0 of prime order p with generator g. Next
it will choose two random exponents α,β ∈ Zp. The
public key is published as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is (β, gα). (Note that f is used
only for delegation.)

Encrypt(PK,M, T). The encryption algorithm en-
crypts a message M under the tree access structure T .
The algorithm first chooses a polynomial qx for each
node x (including the leaves) in the tree T . These
polynomials are chosen in the following way in a top-
down manner, starting from the root node R. For each
node x in the tree, set the degree dx of the polynomial
qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses
a random s ∈ Zp and sets qR(0) = s. Then, it chooses
dR other points of the polynomial qR randomly to
define it completely. For any other node x, it sets
qx(0) = qparent(x)(index(x)) and chooses dx other points
randomly to completely define qx.

Let, Y be the set of leaf nodes in T . The ciphertext
is then constructed by giving the tree access structure
T and computing

CT =
(
T , C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)

)
.

KeyGen(MK, S). The key generation algorithm
will take as input a set of attributes S and output a
key that identifies with that set. The algorithm first
chooses a random r ∈ Zp, and then random rj ∈ Zp

for each attribute j ∈ S. Then it computes the key as

SK =
(
D = g(α+r)/β ,

∀j ∈ S : Dj = gr · H(j)rj ,D′
j = grj

)
.

Delegate(SK, S̃). The delegation algorithm takes in
a secret key SK, which is for a set S of attributes, and
another set S̃ such that S̃ ⊆ S. The secret key is of
the form SK = (D, ∀j ∈ S : Dj ,D

′
j). The algorithm

def keygen(self, pk, mk, S):
 r = group.random(ZR); g_r = (pk['g2'] ** r)
 D = (mk['g2_alpha'] * g_r) ** (1 / mk['beta'])
 D_j, D_j_pr = {}, {}
 for j in S:
 r_j = group.random(ZR)
 D_j[j] = g_r * (group.hash(j, G2) ** r_j)
 D_j_pr[j] = pk['g'] ** r_j

 return { 'D':D, 'Dj':D_j, 'Djp':D_j_pr, 'S':S }

wishes to encrypt a message will specify through an
access tree structure a policy that private keys must
satisfy in order to decrypt.

Each interior node of the tree is a threshold gate and
the leaves are associated with attributes. (We note
that this setting is very expressive. For example, we
can represent a tree with “AND” and “OR” gates by
using respectively 2 of 2 and 1 of 2 threshold gates.) A
user will be able to decrypt a ciphertext with a given
key if and only if there is an assignment of attributes
from the private key to nodes of the tree such that the
tree is satisfied. We use the same notation as [15] to
describe the access trees, even though in our case the
attributes are used to identify the keys (as opposed to
the data).

Access tree T . Let T be a tree representing an ac-
cess structure. Each non-leaf node of the tree repre-
sents a threshold gate, described by its children and
a threshold value. If numx is the number of chil-
dren of a node x and kx is its threshold value, then
0 < kx ≤ numx. When kx = 1, the threshold gate is
an OR gate and when kx = numx, it is an AND gate.
Each leaf node x of the tree is described by an attribute
and a threshold value kx = 1.

To facilitate working with the access trees, we define
a few functions. We denote the parent of the node x
in the tree by parent(x). The function att(x) is defined
only if x is a leaf node and denotes the attribute asso-
ciated with the leaf node x in the tree. The access tree
T also defines an ordering between the children of ev-
ery node, that is, the children of a node are numbered
from 1 to num. The function index(x) returns such
a number associated with the node x. Where the in-
dex values are uniquely assigned to nodes in the access
structure for a given key in an arbitrary manner.

Satisfying an access tree. Let T be an access tree
with root r. Denote by Tx the subtree of T rooted at
the node x. Hence T is the same as Tr. If a set of
attributes γ satisfies the access tree Tx, we denote it as
Tx(γ) = 1. We compute Tx(γ) recursively as follows.
If x is a non-leaf node, evaluate Tx′(γ) for all children
x′ of node x. Tx(γ) returns 1 if and only if at least
kx children return 1. If x is a leaf node, then Tx(γ)
returns 1 if and only if att(x) ∈ γ.

4.2 Our Construction

Let G0 be a bilinear group of prime order p, and let
g be a generator of G0. In addition, let e : G0 × G0 →
G1 denote the bilinear map. A security parameter, κ,
will determine the size of the groups. We also define

the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S,
of elements in Zp: ∆i,S(x) =

∏
j∈S,j #=i

x−j
i−j . We will

additionally employ a hash function H : {0, 1}∗ → G0

that we will model as a random oracle. The function
will map any attribute described as a binary string to
a random group element. Our construction follows.

Setup. The setup algorithm will choose a bilinear
group G0 of prime order p with generator g. Next
it will choose two random exponents α,β ∈ Zp. The
public key is published as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is (β, gα). (Note that f is used
only for delegation.)

Encrypt(PK,M, T). The encryption algorithm en-
crypts a message M under the tree access structure T .
The algorithm first chooses a polynomial qx for each
node x (including the leaves) in the tree T . These
polynomials are chosen in the following way in a top-
down manner, starting from the root node R. For each
node x in the tree, set the degree dx of the polynomial
qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses
a random s ∈ Zp and sets qR(0) = s. Then, it chooses
dR other points of the polynomial qR randomly to
define it completely. For any other node x, it sets
qx(0) = qparent(x)(index(x)) and chooses dx other points
randomly to completely define qx.

Let, Y be the set of leaf nodes in T . The ciphertext
is then constructed by giving the tree access structure
T and computing

CT =
(
T , C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)

)
.

KeyGen(MK, S). The key generation algorithm
will take as input a set of attributes S and output a
key that identifies with that set. The algorithm first
chooses a random r ∈ Zp, and then random rj ∈ Zp

for each attribute j ∈ S. Then it computes the key as

SK =
(
D = g(α+r)/β ,

∀j ∈ S : Dj = gr · H(j)rj ,D′
j = grj

)
.

Delegate(SK, S̃). The delegation algorithm takes in
a secret key SK, which is for a set S of attributes, and
another set S̃ such that S̃ ⊆ S. The secret key is of
the form SK = (D, ∀j ∈ S : Dj ,D

′
j). The algorithm

BSW07 Scheme Description Charm Implementation

Fig. 11 Setup and Keygen in the Bethencourt, Sahai, and Waters scheme [14]. We exclude group parameter generation.

18 Joseph A. Akinyele et al.

 def encrypt(self, pk, M, policy_str):
 policy = util.createPolicy(policy_str)
 Y = util.getAttributeList(policy)
 s = group.random(ZR)
 share = util.calculateSharesDict(s, policy)
 C_y, C_yp = {}, {}
 for i in Y.keys():
 j = util.strip_index(i)
 C_y[i] = pk['g'] ** share[i]
 C_yp[i] = group.hash(j, G2) ** share[i]
 return { 'C_tilde': (pk['e_gg_alpha'] ** s) * M,
 'C': pk['h'] ** s,
 'Cy': C_y, 'Cyp':C_yp,
 'policy':policy,'attributes':Y }

wishes to encrypt a message will specify through an
access tree structure a policy that private keys must
satisfy in order to decrypt.

Each interior node of the tree is a threshold gate and
the leaves are associated with attributes. (We note
that this setting is very expressive. For example, we
can represent a tree with “AND” and “OR” gates by
using respectively 2 of 2 and 1 of 2 threshold gates.) A
user will be able to decrypt a ciphertext with a given
key if and only if there is an assignment of attributes
from the private key to nodes of the tree such that the
tree is satisfied. We use the same notation as [15] to
describe the access trees, even though in our case the
attributes are used to identify the keys (as opposed to
the data).

Access tree T . Let T be a tree representing an ac-
cess structure. Each non-leaf node of the tree repre-
sents a threshold gate, described by its children and
a threshold value. If numx is the number of chil-
dren of a node x and kx is its threshold value, then
0 < kx ≤ numx. When kx = 1, the threshold gate is
an OR gate and when kx = numx, it is an AND gate.
Each leaf node x of the tree is described by an attribute
and a threshold value kx = 1.

To facilitate working with the access trees, we define
a few functions. We denote the parent of the node x
in the tree by parent(x). The function att(x) is defined
only if x is a leaf node and denotes the attribute asso-
ciated with the leaf node x in the tree. The access tree
T also defines an ordering between the children of ev-
ery node, that is, the children of a node are numbered
from 1 to num. The function index(x) returns such
a number associated with the node x. Where the in-
dex values are uniquely assigned to nodes in the access
structure for a given key in an arbitrary manner.

Satisfying an access tree. Let T be an access tree
with root r. Denote by Tx the subtree of T rooted at
the node x. Hence T is the same as Tr. If a set of
attributes γ satisfies the access tree Tx, we denote it as
Tx(γ) = 1. We compute Tx(γ) recursively as follows.
If x is a non-leaf node, evaluate Tx′(γ) for all children
x′ of node x. Tx(γ) returns 1 if and only if at least
kx children return 1. If x is a leaf node, then Tx(γ)
returns 1 if and only if att(x) ∈ γ.

4.2 Our Construction

Let G0 be a bilinear group of prime order p, and let
g be a generator of G0. In addition, let e : G0 × G0 →
G1 denote the bilinear map. A security parameter, κ,
will determine the size of the groups. We also define

the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S,
of elements in Zp: ∆i,S(x) =

∏
j∈S,j #=i

x−j
i−j . We will

additionally employ a hash function H : {0, 1}∗ → G0

that we will model as a random oracle. The function
will map any attribute described as a binary string to
a random group element. Our construction follows.

Setup. The setup algorithm will choose a bilinear
group G0 of prime order p with generator g. Next
it will choose two random exponents α,β ∈ Zp. The
public key is published as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is (β, gα). (Note that f is used
only for delegation.)

Encrypt(PK,M, T). The encryption algorithm en-
crypts a message M under the tree access structure T .
The algorithm first chooses a polynomial qx for each
node x (including the leaves) in the tree T . These
polynomials are chosen in the following way in a top-
down manner, starting from the root node R. For each
node x in the tree, set the degree dx of the polynomial
qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses
a random s ∈ Zp and sets qR(0) = s. Then, it chooses
dR other points of the polynomial qR randomly to
define it completely. For any other node x, it sets
qx(0) = qparent(x)(index(x)) and chooses dx other points
randomly to completely define qx.

Let, Y be the set of leaf nodes in T . The ciphertext
is then constructed by giving the tree access structure
T and computing

CT =
(
T , C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)

)
.

KeyGen(MK, S). The key generation algorithm
will take as input a set of attributes S and output a
key that identifies with that set. The algorithm first
chooses a random r ∈ Zp, and then random rj ∈ Zp

for each attribute j ∈ S. Then it computes the key as

SK =
(
D = g(α+r)/β ,

∀j ∈ S : Dj = gr · H(j)rj ,D′
j = grj

)
.

Delegate(SK, S̃). The delegation algorithm takes in
a secret key SK, which is for a set S of attributes, and
another set S̃ such that S̃ ⊆ S. The secret key is of
the form SK = (D, ∀j ∈ S : Dj ,D

′
j). The algorithm

wishes to encrypt a message will specify through an
access tree structure a policy that private keys must
satisfy in order to decrypt.

Each interior node of the tree is a threshold gate and
the leaves are associated with attributes. (We note
that this setting is very expressive. For example, we
can represent a tree with “AND” and “OR” gates by
using respectively 2 of 2 and 1 of 2 threshold gates.) A
user will be able to decrypt a ciphertext with a given
key if and only if there is an assignment of attributes
from the private key to nodes of the tree such that the
tree is satisfied. We use the same notation as [15] to
describe the access trees, even though in our case the
attributes are used to identify the keys (as opposed to
the data).

Access tree T . Let T be a tree representing an ac-
cess structure. Each non-leaf node of the tree repre-
sents a threshold gate, described by its children and
a threshold value. If numx is the number of chil-
dren of a node x and kx is its threshold value, then
0 < kx ≤ numx. When kx = 1, the threshold gate is
an OR gate and when kx = numx, it is an AND gate.
Each leaf node x of the tree is described by an attribute
and a threshold value kx = 1.

To facilitate working with the access trees, we define
a few functions. We denote the parent of the node x
in the tree by parent(x). The function att(x) is defined
only if x is a leaf node and denotes the attribute asso-
ciated with the leaf node x in the tree. The access tree
T also defines an ordering between the children of ev-
ery node, that is, the children of a node are numbered
from 1 to num. The function index(x) returns such
a number associated with the node x. Where the in-
dex values are uniquely assigned to nodes in the access
structure for a given key in an arbitrary manner.

Satisfying an access tree. Let T be an access tree
with root r. Denote by Tx the subtree of T rooted at
the node x. Hence T is the same as Tr. If a set of
attributes γ satisfies the access tree Tx, we denote it as
Tx(γ) = 1. We compute Tx(γ) recursively as follows.
If x is a non-leaf node, evaluate Tx′(γ) for all children
x′ of node x. Tx(γ) returns 1 if and only if at least
kx children return 1. If x is a leaf node, then Tx(γ)
returns 1 if and only if att(x) ∈ γ.

4.2 Our Construction

Let G0 be a bilinear group of prime order p, and let
g be a generator of G0. In addition, let e : G0 × G0 →
G1 denote the bilinear map. A security parameter, κ,
will determine the size of the groups. We also define

the Lagrange coefficient ∆i,S for i ∈ Zp and a set, S,
of elements in Zp: ∆i,S(x) =

∏
j∈S,j #=i

x−j
i−j . We will

additionally employ a hash function H : {0, 1}∗ → G0

that we will model as a random oracle. The function
will map any attribute described as a binary string to
a random group element. Our construction follows.

Setup. The setup algorithm will choose a bilinear
group G0 of prime order p with generator g. Next
it will choose two random exponents α,β ∈ Zp. The
public key is published as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is (β, gα). (Note that f is used
only for delegation.)

Encrypt(PK,M, T). The encryption algorithm en-
crypts a message M under the tree access structure T .
The algorithm first chooses a polynomial qx for each
node x (including the leaves) in the tree T . These
polynomials are chosen in the following way in a top-
down manner, starting from the root node R. For each
node x in the tree, set the degree dx of the polynomial
qx to be one less than the threshold value kx of that
node, that is, dx = kx − 1.

Starting with the root node R the algorithm chooses
a random s ∈ Zp and sets qR(0) = s. Then, it chooses
dR other points of the polynomial qR randomly to
define it completely. For any other node x, it sets
qx(0) = qparent(x)(index(x)) and chooses dx other points
randomly to completely define qx.

Let, Y be the set of leaf nodes in T . The ciphertext
is then constructed by giving the tree access structure
T and computing

CT =
(
T , C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)

)
.

KeyGen(MK, S). The key generation algorithm
will take as input a set of attributes S and output a
key that identifies with that set. The algorithm first
chooses a random r ∈ Zp, and then random rj ∈ Zp

for each attribute j ∈ S. Then it computes the key as

SK =
(
D = g(α+r)/β ,

∀j ∈ S : Dj = gr · H(j)rj ,D′
j = grj

)
.

Delegate(SK, S̃). The delegation algorithm takes in
a secret key SK, which is for a set S of attributes, and
another set S̃ such that S̃ ⊆ S. The secret key is of
the form SK = (D, ∀j ∈ S : Dj ,D

′
j). The algorithm

. . .

def decrypt(self, pk, sk, ct):
 policy = util.createPolicy(ct['policy'])
 pruned_list = util.prune(policy, sk['S'])
 if pruned_list == False: return False
 z = util.getCoefficients(ct['policy'])
 A = 1
 for i in pruned_list:
 # j has index in case of duplicate attributes
 j = i.getAttributeAndIndex(); k = i.getAttribute()
 A *= (pair(ct['Cy'][j],sk['Dj'][k])
 / pair(sk['Djp'][k],ct['Cyp'][j]) ** z[j]

 return ct['C_tilde']/((pair(ct['C'], sk['D']) / A)

all but k of its children are thrown away. By consid-
ering ahead of time which leaf nodes are satisfied and
picking a subset of them which results in the satisfac-
tion of the entire access tree, we may avoid evaluating
DecryptNode where the result will not ultimately be
used.

More precisely, let M be a subset of the nodes in an
access tree T . We define restrict(T ,M) to be the ac-
cess tree formed by removing the following nodes from
T (while leaving the thresholds unmodified). First, we
remove all nodes not in M . Next we remove any node
not connected to the original root of T along with any
internal node x that now has fewer children than its
threshold kx. This is repeated until no further nodes
are removed, and the result is restrict(T ,M). So given
an access tree T and a set of attributes γ that satisfies
it, the natural problem is to pick a set M such that γ
satisfies restrict(T ,M) and the number of leaves in M
is minimized (considering pairing to be the most ex-
pensive operation). This is easily accomplished with a
straightforward recursive algorithm that makes a single
traversal of the tree. We may then use DecryptNode
on restrict(T ,M) with the same result.

Direct computation of DecryptNode. Further
improvements may be gained by abandoning the
DecryptNode function and making more direct com-
putations. Intuitively, we imagine flattening out the
tree of recursive calls to DecryptNode, then combin-
ing the exponentiations into one per (used) leaf node.
Precisely, let T be an access tree with root r, γ be a
set of attributes, and M ⊆ T be such that γ satis-
fies restrict(T ,M). Assume also that M is minimized
so that no internal node has more children than its
threshold. Let L ⊆ M be the leaf nodes in M . Then
for each " ∈ L, we denote the path from " to r as

ρ(") = (", parent("), parent(parent(")), . . . r) .

Also, denote the set of siblings of a node x (including
itself) as sibs(x) = { y | parent(x) = parent(y) }. Given
this notation, we may proceed to directly compute the
result of
DecryptNode(CT,SK, r). First, for each " ∈ L, com-
pute z! as follows.

z! =
∏

x∈ρ(!)
x"=r

∆i,S(0) where i=index(x)
S={ index(y) | y ∈ sibs(x) }

Then

DecryptNode(CT,SK, r) =
∏

!∈L
i=att(!)

(
e(Di, C!)

e(D′
i, C

′
!)

)z!

.

Using this method, the number of exponentiations in
the entire decryption algorithm is reduced from |M |−1
(i.e., one for every node but the root) to |L|. The
number of pairings is 2|L|.

Merging pairings. Still further reductions (this
time in the number of pairings) are possible by com-
bining leaves using the same attribute. If att("1) =
att("2) = i for some "1, "2 in L, then

e(Di, C!1)

e(D′
i, C

′
!1

)

!z!1

·

e(Di, C!2)

e(D′
i, C

′
!2

)

!z!2

=
e(Di, C

z!1
!1

)

e(D′
i, C

′ z!1
!1

)
·

e(Di, C
z!2
!2

)

e(D′
i, C

′ z!2
!2

)

=
e(Di, C

z!1
!1

· C
z!2
!2

)

e(D′
i, C

′ z!1
!1

· C
′ z!2
!2

)
.

Using this fact, we may combine all the pairings for
each distinct attribute in L, reducing the total pairings
to 2m, where m is the number of distinct attributes
appearing in L. Note, however, that the number of
exponentiations increases, and some of the exponenti-
ations must now be performed in G0 rather than G1.
Specifically, if m′ is the number of leaves sharing their
attribute with at least one other leaf, we must perform
2m′ exponentiations in G0 and |L| − m′ in G1, rather
than zero and |L| respectively. If exponentiations in G0

(an elliptic curve group) are slower than in G1 (a finite
field of the same order), this technique has the poten-
tial to increase decryption time. We further investigate
this tradeoff in Section 5.3.

5.2 The cpabe Toolkit

We have implemented the construction of Section 4
as a convenient set of tools we call the cpabe pack-
age [4], which has been made available on the web
under the GPL. The implementation uses the Pairing
Based Cryptography (PBC) library [21].3 The inter-
face of the toolkit is designed for straightforward invo-
cation by larger systems in addition to manual usage.
It provides four command line tools.

cpabe-setup

Generates a public key and a master key.

cpabe-keygen

Given a master key, generates a private key for a
set of attributes, compiling numerical attributes
as necessary.

3PBC is in turn based on the GNU Multiple Precision arith-
metic library (GMP), a high performance arbitrary precision
arithmetic implementation suitable for cryptography.

all but k of its children are thrown away. By consid-
ering ahead of time which leaf nodes are satisfied and
picking a subset of them which results in the satisfac-
tion of the entire access tree, we may avoid evaluating
DecryptNode where the result will not ultimately be
used.

More precisely, let M be a subset of the nodes in an
access tree T . We define restrict(T ,M) to be the ac-
cess tree formed by removing the following nodes from
T (while leaving the thresholds unmodified). First, we
remove all nodes not in M . Next we remove any node
not connected to the original root of T along with any
internal node x that now has fewer children than its
threshold kx. This is repeated until no further nodes
are removed, and the result is restrict(T ,M). So given
an access tree T and a set of attributes γ that satisfies
it, the natural problem is to pick a set M such that γ
satisfies restrict(T ,M) and the number of leaves in M
is minimized (considering pairing to be the most ex-
pensive operation). This is easily accomplished with a
straightforward recursive algorithm that makes a single
traversal of the tree. We may then use DecryptNode
on restrict(T ,M) with the same result.

Direct computation of DecryptNode. Further
improvements may be gained by abandoning the
DecryptNode function and making more direct com-
putations. Intuitively, we imagine flattening out the
tree of recursive calls to DecryptNode, then combin-
ing the exponentiations into one per (used) leaf node.
Precisely, let T be an access tree with root r, γ be a
set of attributes, and M ⊆ T be such that γ satis-
fies restrict(T ,M). Assume also that M is minimized
so that no internal node has more children than its
threshold. Let L ⊆ M be the leaf nodes in M . Then
for each " ∈ L, we denote the path from " to r as

ρ(") = (", parent("), parent(parent(")), . . . r) .

Also, denote the set of siblings of a node x (including
itself) as sibs(x) = { y | parent(x) = parent(y) }. Given
this notation, we may proceed to directly compute the
result of
DecryptNode(CT,SK, r). First, for each " ∈ L, com-
pute z! as follows.

z! =
∏

x∈ρ(!)
x"=r

∆i,S(0) where i=index(x)
S={ index(y) | y ∈ sibs(x) }

Then

DecryptNode(CT,SK, r) =
∏

!∈L
i=att(!)

(
e(Di, C!)

e(D′
i, C

′
!)

)z!

.

Using this method, the number of exponentiations in
the entire decryption algorithm is reduced from |M |−1
(i.e., one for every node but the root) to |L|. The
number of pairings is 2|L|.

Merging pairings. Still further reductions (this
time in the number of pairings) are possible by com-
bining leaves using the same attribute. If att("1) =
att("2) = i for some "1, "2 in L, then

e(Di, C!1)

e(D′
i, C

′
!1

)

!z!1

·

e(Di, C!2)

e(D′
i, C

′
!2

)

!z!2

=
e(Di, C

z!1
!1

)

e(D′
i, C

′ z!1
!1

)
·

e(Di, C
z!2
!2

)

e(D′
i, C

′ z!2
!2

)

=
e(Di, C

z!1
!1

· C
z!2
!2

)

e(D′
i, C

′ z!1
!1

· C
′ z!2
!2

)
.

Using this fact, we may combine all the pairings for
each distinct attribute in L, reducing the total pairings
to 2m, where m is the number of distinct attributes
appearing in L. Note, however, that the number of
exponentiations increases, and some of the exponenti-
ations must now be performed in G0 rather than G1.
Specifically, if m′ is the number of leaves sharing their
attribute with at least one other leaf, we must perform
2m′ exponentiations in G0 and |L| − m′ in G1, rather
than zero and |L| respectively. If exponentiations in G0

(an elliptic curve group) are slower than in G1 (a finite
field of the same order), this technique has the poten-
tial to increase decryption time. We further investigate
this tradeoff in Section 5.3.

5.2 The cpabe Toolkit

We have implemented the construction of Section 4
as a convenient set of tools we call the cpabe pack-
age [4], which has been made available on the web
under the GPL. The implementation uses the Pairing
Based Cryptography (PBC) library [21].3 The inter-
face of the toolkit is designed for straightforward invo-
cation by larger systems in addition to manual usage.
It provides four command line tools.

cpabe-setup

Generates a public key and a master key.

cpabe-keygen

Given a master key, generates a private key for a
set of attributes, compiling numerical attributes
as necessary.

3PBC is in turn based on the GNU Multiple Precision arith-
metic library (GMP), a high performance arbitrary precision
arithmetic implementation suitable for cryptography.

chooses random r̃ and r̃k∀k ∈ S̃. Then it creates a new
secret key as

S̃K = (D̃ = Df r̃,

∀k ∈ S̃ : D̃k = Dkgr̃H(k)r̃k , D̃′
k = D′

kgr̃k).

The resulting secret key S̃K is a secret key for the
set S̃. Since the algorithm re-randomizes the key, a
delegated key is equivalent to one received directly from
the authority.

Decrypt(CT,SK). We specify our decryption pro-
cedure as a recursive algorithm. For ease of exposition
we present the simplest form of the decryption algo-
rithm and discuss potential performance improvements
in the next subsection.

We first define a recursive algorithm
DecryptNode(CT,SK, x) that takes as input a ci-
phertext CT = (T , C̃, C,∀y ∈ Y : Cy, C ′

y), a private
key SK, which is associated with a set S of attributes,
and a node x from T .

If the node x is a leaf node then we let i = att(x)
and define as follows: If i ∈ S, then

DecryptNode(CT,SK, x) =
e(Di, Cx)

e(D′
i, C

′
x)

=
e
(
gr · H(i)ri , gqx(0)

)

e(gri ,H(i)qx(0))

= e(g, g)rqx(0).

If i /∈ S, then we define DecryptNode(CT,SK, x) = ⊥.
We now consider the recursive case when x is a

non-leaf node. The algorithm DecryptNode(CT,SK, x)
then proceeds as follows: For all nodes z that are chil-
dren of x, it calls DecryptNode(CT,SK, z) and stores
the output as Fz. Let Sx be an arbitrary kx-sized set
of child nodes z such that Fz $= ⊥. If no such set ex-
ists then the node was not satisfied and the function
returns ⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆

i,S
′
x
(0)

z , where
i=index(z)

S
′
x={index(z):z∈Sx}

=
∏

z∈Sx

(e(g, g)r·qz(0))
∆

i,S
′
x
(0)

=
∏

z∈Sx

(e(g, g)r·qparent(z)(index(z)))
∆

i,S
′
x
(0)

(by construction)

=
∏

z∈Sx

e(g, g)
r·qx(i)·∆

i,S
′
x
(0)

= e(g, g)r·qx(0) (using polynomial interpolation)

and return the result.

Now that we have defined our function
DecryptNode, we can define the decryption algo-
rithm. The algorithm begins by simply calling the
function on the root node R of the tree T . If the tree is
satisfied by S we set A = DecryptNode(CT,SK, R) =
e(g, g)rqR(0) = e(g, g)rs. The algorithm now decrypts
by computing

C̃/(e(C,D)/A) = C̃/
(
e
(
hs, g(α+r)/β

)
/e(g, g)rs

)
= M.

4.3 Discussion

We now provide a brief discussion about the security
intuition for our scheme (a full proof is given in Ap-
pendix A), our scheme’s efficiency, and how we might
handle key revocation.

Security intuition. As in previous attribute-based
encryption schemes the main challenge in designing our
scheme was to prevent against attacks from colluding
users. Like the scheme of Sahai and Waters [24] our
solution randomizes users private keys such that they
cannot be combined; however, in our solution the secret
sharing must be embedded into the ciphertext instead
to the private keys. In order to decrypt an attacker
clearly must recover e(g, g)αs. In order to do this the
attacker must pair C from the ciphertext with the D
component from some user’s private key. This will re-
sult in the desired value e(g, g)αs, but blinded by some
value e(g, g)rs. This value can be blinded out if and
only if enough the user has the correct key compo-
nents to satisfy the secret sharing scheme embedded in
the ciphertext. Collusion attacks won’t help since the
blinding value is randomized to the randomness from
a particular user’s private key.

While we described our scheme to be secure against
chosen plaintext attacks, the security of our scheme
can efficiently be extended to chosen ciphertext at-
tacks by applying a random oracle technique such as
that of the the Fujisaki-Okamoto transformation [13].
Alternatively, we can leverage the delegation mecha-
nism of our scheme and apply the Cannetti, Halevi,
and Katz [10] method for achieving CCA-security.

Efficiency. The efficiencies of the key generation and
encryption algorithms are both fairly straightforward.
The encryption algorithm will require two exponentia-
tions for each leaf in the ciphertext’s access tree. The
ciphertext size will include two group elements for each
tree leaf. The key generation algorithm requires two
exponentiations for every attribute given to the user,
and the private key consists of two group elements for

chooses random r̃ and r̃k∀k ∈ S̃. Then it creates a new
secret key as

S̃K = (D̃ = Df r̃,

∀k ∈ S̃ : D̃k = Dkgr̃H(k)r̃k , D̃′
k = D′

kgr̃k).

The resulting secret key S̃K is a secret key for the
set S̃. Since the algorithm re-randomizes the key, a
delegated key is equivalent to one received directly from
the authority.

Decrypt(CT,SK). We specify our decryption pro-
cedure as a recursive algorithm. For ease of exposition
we present the simplest form of the decryption algo-
rithm and discuss potential performance improvements
in the next subsection.

We first define a recursive algorithm
DecryptNode(CT,SK, x) that takes as input a ci-
phertext CT = (T , C̃, C,∀y ∈ Y : Cy, C ′

y), a private
key SK, which is associated with a set S of attributes,
and a node x from T .

If the node x is a leaf node then we let i = att(x)
and define as follows: If i ∈ S, then

DecryptNode(CT,SK, x) =
e(Di, Cx)

e(D′
i, C

′
x)

=
e
(
gr · H(i)ri , gqx(0)

)

e(gri ,H(i)qx(0))

= e(g, g)rqx(0).

If i /∈ S, then we define DecryptNode(CT,SK, x) = ⊥.
We now consider the recursive case when x is a

non-leaf node. The algorithm DecryptNode(CT,SK, x)
then proceeds as follows: For all nodes z that are chil-
dren of x, it calls DecryptNode(CT,SK, z) and stores
the output as Fz. Let Sx be an arbitrary kx-sized set
of child nodes z such that Fz $= ⊥. If no such set ex-
ists then the node was not satisfied and the function
returns ⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆

i,S
′
x
(0)

z , where
i=index(z)

S
′
x={index(z):z∈Sx}

=
∏

z∈Sx

(e(g, g)r·qz(0))
∆

i,S
′
x
(0)

=
∏

z∈Sx

(e(g, g)r·qparent(z)(index(z)))
∆

i,S
′
x
(0)

(by construction)

=
∏

z∈Sx

e(g, g)
r·qx(i)·∆

i,S
′
x
(0)

= e(g, g)r·qx(0) (using polynomial interpolation)

and return the result.

Now that we have defined our function
DecryptNode, we can define the decryption algo-
rithm. The algorithm begins by simply calling the
function on the root node R of the tree T . If the tree is
satisfied by S we set A = DecryptNode(CT,SK, R) =
e(g, g)rqR(0) = e(g, g)rs. The algorithm now decrypts
by computing

C̃/(e(C,D)/A) = C̃/
(
e
(
hs, g(α+r)/β

)
/e(g, g)rs

)
= M.

4.3 Discussion

We now provide a brief discussion about the security
intuition for our scheme (a full proof is given in Ap-
pendix A), our scheme’s efficiency, and how we might
handle key revocation.

Security intuition. As in previous attribute-based
encryption schemes the main challenge in designing our
scheme was to prevent against attacks from colluding
users. Like the scheme of Sahai and Waters [24] our
solution randomizes users private keys such that they
cannot be combined; however, in our solution the secret
sharing must be embedded into the ciphertext instead
to the private keys. In order to decrypt an attacker
clearly must recover e(g, g)αs. In order to do this the
attacker must pair C from the ciphertext with the D
component from some user’s private key. This will re-
sult in the desired value e(g, g)αs, but blinded by some
value e(g, g)rs. This value can be blinded out if and
only if enough the user has the correct key compo-
nents to satisfy the secret sharing scheme embedded in
the ciphertext. Collusion attacks won’t help since the
blinding value is randomized to the randomness from
a particular user’s private key.

While we described our scheme to be secure against
chosen plaintext attacks, the security of our scheme
can efficiently be extended to chosen ciphertext at-
tacks by applying a random oracle technique such as
that of the the Fujisaki-Okamoto transformation [13].
Alternatively, we can leverage the delegation mecha-
nism of our scheme and apply the Cannetti, Halevi,
and Katz [10] method for achieving CCA-security.

Efficiency. The efficiencies of the key generation and
encryption algorithms are both fairly straightforward.
The encryption algorithm will require two exponentia-
tions for each leaf in the ciphertext’s access tree. The
ciphertext size will include two group elements for each
tree leaf. The key generation algorithm requires two
exponentiations for every attribute given to the user,
and the private key consists of two group elements for

chooses random r̃ and r̃k∀k ∈ S̃. Then it creates a new
secret key as

S̃K = (D̃ = Df r̃,

∀k ∈ S̃ : D̃k = Dkgr̃H(k)r̃k , D̃′
k = D′

kgr̃k).

The resulting secret key S̃K is a secret key for the
set S̃. Since the algorithm re-randomizes the key, a
delegated key is equivalent to one received directly from
the authority.

Decrypt(CT,SK). We specify our decryption pro-
cedure as a recursive algorithm. For ease of exposition
we present the simplest form of the decryption algo-
rithm and discuss potential performance improvements
in the next subsection.

We first define a recursive algorithm
DecryptNode(CT,SK, x) that takes as input a ci-
phertext CT = (T , C̃, C,∀y ∈ Y : Cy, C ′

y), a private
key SK, which is associated with a set S of attributes,
and a node x from T .

If the node x is a leaf node then we let i = att(x)
and define as follows: If i ∈ S, then

DecryptNode(CT,SK, x) =
e(Di, Cx)

e(D′
i, C

′
x)

=
e
(
gr · H(i)ri , gqx(0)

)

e(gri ,H(i)qx(0))

= e(g, g)rqx(0).

If i /∈ S, then we define DecryptNode(CT,SK, x) = ⊥.
We now consider the recursive case when x is a

non-leaf node. The algorithm DecryptNode(CT,SK, x)
then proceeds as follows: For all nodes z that are chil-
dren of x, it calls DecryptNode(CT,SK, z) and stores
the output as Fz. Let Sx be an arbitrary kx-sized set
of child nodes z such that Fz $= ⊥. If no such set ex-
ists then the node was not satisfied and the function
returns ⊥.

Otherwise, we compute

Fx =
∏

z∈Sx

F
∆

i,S
′
x
(0)

z , where
i=index(z)

S
′
x={index(z):z∈Sx}

=
∏

z∈Sx

(e(g, g)r·qz(0))
∆

i,S
′
x
(0)

=
∏

z∈Sx

(e(g, g)r·qparent(z)(index(z)))
∆

i,S
′
x
(0)

(by construction)

=
∏

z∈Sx

e(g, g)
r·qx(i)·∆

i,S
′
x
(0)

= e(g, g)r·qx(0) (using polynomial interpolation)

and return the result.

Now that we have defined our function
DecryptNode, we can define the decryption algo-
rithm. The algorithm begins by simply calling the
function on the root node R of the tree T . If the tree is
satisfied by S we set A = DecryptNode(CT,SK, R) =
e(g, g)rqR(0) = e(g, g)rs. The algorithm now decrypts
by computing

C̃/(e(C,D)/A) = C̃/
(
e
(
hs, g(α+r)/β

)
/e(g, g)rs

)
= M.

4.3 Discussion

We now provide a brief discussion about the security
intuition for our scheme (a full proof is given in Ap-
pendix A), our scheme’s efficiency, and how we might
handle key revocation.

Security intuition. As in previous attribute-based
encryption schemes the main challenge in designing our
scheme was to prevent against attacks from colluding
users. Like the scheme of Sahai and Waters [24] our
solution randomizes users private keys such that they
cannot be combined; however, in our solution the secret
sharing must be embedded into the ciphertext instead
to the private keys. In order to decrypt an attacker
clearly must recover e(g, g)αs. In order to do this the
attacker must pair C from the ciphertext with the D
component from some user’s private key. This will re-
sult in the desired value e(g, g)αs, but blinded by some
value e(g, g)rs. This value can be blinded out if and
only if enough the user has the correct key compo-
nents to satisfy the secret sharing scheme embedded in
the ciphertext. Collusion attacks won’t help since the
blinding value is randomized to the randomness from
a particular user’s private key.

While we described our scheme to be secure against
chosen plaintext attacks, the security of our scheme
can efficiently be extended to chosen ciphertext at-
tacks by applying a random oracle technique such as
that of the the Fujisaki-Okamoto transformation [13].
Alternatively, we can leverage the delegation mecha-
nism of our scheme and apply the Cannetti, Halevi,
and Katz [10] method for achieving CCA-security.

Efficiency. The efficiencies of the key generation and
encryption algorithms are both fairly straightforward.
The encryption algorithm will require two exponentia-
tions for each leaf in the ciphertext’s access tree. The
ciphertext size will include two group elements for each
tree leaf. The key generation algorithm requires two
exponentiations for every attribute given to the user,
and the private key consists of two group elements for

Direct computation of DecryptNode (optimization):

BSW07 Scheme Description Charm Implementation

Fig. 12 Encryption and decryption in the Bethencourt, Sahai, and Waters ABE scheme [14]. The Charm toolbox provides
several utility routines that are shared by different ABE schemes.

def keygen(self):
 g = group.random(G1)
 x, y = group.random(ZR, 2)
 sk = { 'x':x, 'y':y }
 pk = { 'X':g ** x, 'Y':g ** y, 'g':g }
 return (pk, sk)

def sign(self, sk, M):
 (x, y) = sk['x'], sk['y']
 a = group.random(G2)
 m = group.hash(M, ZR)
 sig = { 'a':a, 'b':a ** y, 'c':a ** (x + (m * x * y)) }
 return sig

def verify(self, pk, M, sig):
 (a, b, c) = sig['a'], sig['b'], sig['c']
 m = group.hash(M, ZR)
 if pair(pk['Y'],a) == pair(pk['g'],b) and
 (pair(pk['X'],a) * (pair(pk['X'],b) ** m)) == pair(pk['g'],c):
 return True
 return False

CL04 Scheme Description
3.1 A Simple Signature Scheme: Scheme A

The signature scheme consists of the following algorithms:

Key generation. The key generation algorithm runs the Setup algorithm in order to generate (q,G ,G, g , g, e).
It then chooses x Zq and y Zq, and sets sk = (x, y), pk = (q,G ,G, g , g, e,X, Y).

Signature. On input message m, secret key sk = (x, y), and public key pk = (q,G ,G, g , g, e, X, Y),
choose a random a 2 G , and output the signature � = (a, ay, ax+mxy).

Verification. On input pk = (q,G ,G, g , g, e, X, Y), message m, and purported signature � = (a, b, c),
check that

e(a, Y) = e(g , b) and e(X, a) · e(X, b)m = e(g , c) (1)

holds.

Theorem 3.1. Signature Scheme A described above is correct and secure under the LRSW assumption.

Proof. We first show correctness. The first verification equation holds as e(a, Y) = e(a, g)y = e(g , a)y =
e(g , b) and the second one holds because e(X, a)·e(X, b)m = e(g , a)x·e(g , a)mxy = e(g , a)x+mxy = e(g , c).

We now show security. Without loss of generality, let g = e(g , g).
Consider the adversary interacting with the signer and outputting a valid signature � on some

message m that he did not query for. It is clear that the signer acts the same way as the oracle OX,Y

defined in the LRSW assumption. Therefore, in order to prove security, we must show that the forgery
� = (a, b, c) that passes the verification equations, must be of the form (*) b = ay and (**) c = ax+mxy.

Let a = g↵, b = g� , c = g� . So, we wish to show that �/↵ = y, and that �/↵ = x + mxy.
From the first verification equation and the bilinearity of e, we get that

g↵y = e(g , g)↵y = e(a, Y) = e(g , b) = e(g , g)� = g� .

Since g is a generator of G, we can take the logarithm base g on both sides, and obtain ↵y = � mod q,
which gives us (*) as desired.

From the second verification equation, using the above, and, again, the fact that g is a generator:

e(X, a) · e(X, b)m = e(g , c)

e(g , g)x↵e(g , g)mx� = e(g , g)�

x↵ + mx� = �

↵(x + mxy) = � .

3.2 A Scheme Where Signature � Is Independent of the Message: Scheme B

For constructing anonymous credentials, we need a signature scheme where the signature itself is dis-
tributed in a way that is information-theoretically independent of the message m being signed. In
essence, what is being signed should be an information-theoretically secure commitment (Pedersen
commitment) of the message. Thus, we modify Scheme A and obtain Scheme B as follows:

Key generation. Run the Setup algorithm to generate (q,G ,G, g , g, e). Choose x Zq, y Zq,
z Zq. Let X = gx, Y = gy and Z = gz. Set sk = (x, y, z), pk = (q,G ,G, g , g, e, X, Y, Z).

5

Fig. 13 CL signatures [30] are a useful building block for anonymous credential systems. We provide a full scheme description
and Charm code, but exclude group parameter generation.

