
Automating Fast and Secure Translations from
Type-I to Type-III Pairing Schemes

Joseph A. Akinyele∗
Johns Hopkins University

Baltimore, MD, USA
akinyelj@cs.jhu.edu

Christina Garman†
Johns Hopkins University

Baltimore, MD, USA
cgarman@cs.jhu.edu

Susan Hohenberger‡
Johns Hopkins University

Baltimore, MD, USA
susan@cs.jhu.edu

ABSTRACT
Pairing-based cryptography has exploded over the last decade,
as this algebraic setting offers good functionality and ef-
ficiency. However, there is a huge security gap between
how schemes are usually analyzed in the academic litera-
ture and how they are typically implemented. The issue at
play is that there exist multiple types of pairings: Type-
I called “symmetric” is typically how schemes are presented
and proven secure in the literature, because it is simpler and
the complexity assumptions can be weaker; however, Type-
III called “asymmetric” is typically the most efficient choice
for an implementation in terms of bandwidth and computa-
tion time.

There are two main complexities when moving from one
pairing type to another. First, the change in algebraic set-
ting invalidates the original security proof. Second, there
are usually multiple (possibly thousands) of ways to trans-
late from a Type-I to a Type-III scheme, and the “best”
translation may depend on the application.

Our contribution is the design, development and evalua-
tion of a new software tool, AutoGroup+, that automatically
translates from Type-I to Type-III pairings. The output of
AutoGroup+ is: (1) “secure” provided the input is “secure”
and (2) optimal based on the user’s efficiency constraints
(excluding software and run-time errors). Prior automation
work for pairings was either not guaranteed to be secure or
only partially automated and impractically slow. This work
addresses the pairing security gap by realizing a fast and
secure translation tool.

∗Supported by Zeutro, LLC and the Office of Naval Research
under contract N00014-14-1-0333.
†Supported by the Office of Naval Research under contract
N00014-14-1-0333.
‡Supported by the National Science Foundation CNS-
1228443 and CNS-1414023; the Office of Naval Research
under contract N00014-14-1-0333, and a Microsoft Faculty
Fellowship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813601.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Cryptographic controls
and Verification

Keywords
Automation, Pairing-Based Cryptography, Cryptographic
Compilers, Public-Key Encryption, Digital Signatures

1. INTRODUCTION
Automation is increasingly being explored as a means of

assisting in the design or implementation of a cryptographic
scheme. The benefits of using computer assistance include
speed, accuracy, and cost.

Recently, automation for pairing (also called bilinear) cryp-
tographic constructions (e.g., [2, 6, 7, 9]) has been under ex-
ploration. Since the seminal work of Boneh and Franklin [13],
interest in pairings is strong: they have become a staple
at top cryptography and security conferences, the open-
source Charm library has been downloaded thousands of
times worldwide and recently pairing-commercializer Volt-
age Security was acquired by a major US company (HP) [22].

Pairings are algebraic groups with special properties (see
Section 2.1), which are often employed for their functionality
and efficiency. There are different types of pairings: Type-I
called “symmetric” is typically how schemes are presented
and proven secure in the literature, because it is simpler
and the complexity assumptions can be weaker; however,
Type-III called “asymmetric” is typically the most efficient
choice for an implementation in terms of bandwidth and
computation time.

Unfortunately, translating a Type-I scheme into the Type-
III scheme is complicated. First, there may be thousands of
different Type-III translations of a Type-I scheme and the
“best” translation may depend on the application. For in-
stance, one translation might optimize ciphertext size while
another offers the fastest decryption time. Second, each new
translation requires a new proof under Type-III assump-
tions. Exploring and analyzing all possible translations is
clearly a great burden on a human cryptographer. Indeed a
small subset of manual translations of a scheme or particular
set of schemes is regarded as a publishable result in its own
right, e.g., [17, 18, 23].

Given this translation hurdle, common practice today is
to analyze a Type-I scheme, but then use ad-hoc means to
derive a Type-III translation that is unproven and possibly
non-optimal. The goal of this work is to address this problem
by covering new ground in cryptographic automation.

1370

Our Contribution: The AutoGroup+ Tool. Our pri-
mary contribution is the design, development, and perfor-
mance evaluation of a new publicly-available1 tool, Auto-
Group+, that automatically translates pairing schemes from
Type-I to Type-III. The output of AutoGroup+ is: (1) “se-
cure” provided the input is “secure” (see Section 3.2) and
(2) optimal based on the user’s efficiency constraints (see
Section 3.1.5).2 The input is a computer-readable format of
the Type-I construction, metadata about its security analy-
sis, and user-specified efficiency constraints. The output is
a translated Type-III construction (in text, C++, Python,
or LATEX) with metadata about its security analysis. (See
Figure 1.)

The audience for this tool is: (1) anyone wanting to im-
plement a pairing construction, and (2) pairing construction
designers. We highlight some features.

New Scheme Description Language (SDL) Database. The in-
put to AutoGroup+ requires a computer-readable format
of the Type-I construction, the Type-I complexity assump-
tion(s), and the Type-I security proof. It was a challenge to
create a means of translating human-written security proofs
into SDL. We focused on a common type of proof exhibiting
a certain type of black-box reduction.3 We created a new
SDL structure for representing assumptions and reductions
of this type that may be of independent interest. Addi-
tionally, we did the tedious work of carefully transcribing
five assumptions, eight reductions and improving the SDLs
for nine popular constructions (the latter from [6]). (See
the full version [4] for examples.) Once transcribed, how-
ever, these SDL files can be reused. We believe the future
of cryptographic automation research will involve process-
ing the assumptions and proofs; thus our database is made
public as a testbed for future automation research.

Speed of Tool. AutoGroup+ took less than 21 seconds to pro-
cess any of the test set, which included seven simple schemes
(16 or less solutions), three medium schemes (256 to 512
solutions), and three complex schemes (1024 to 2048 solu-
tions). (The preference for simple schemes was to compare
with prior work.) This measures from SDL input to a C++
(or alternative) output. Speed is very important here for
usage, because we anticipate that designers may iteratively
use this tool like a compiler and implementors may want to
try out many different efficiency optimizations.

In contrast, in CRYPTO 2014, Abe, Groth, Ohkubo and
Tango [2] laid out an elegant theoretical framework for do-
ing pairing translations in four steps. It left open the issue
of whether their framework was practical to implement for
a few reasons: (1) they automated only one of four steps
(code not released), (2) their algorithm for this step was ex-
ponential time, and (3) they tested it on only simple and
medium schemes, but their medium scheme took over 1.75
hours for one step. Our fully automated translation of that
scheme took 6.5 seconds, which is much more in line with
the “compiler”-like usage we anticipate.

We attribute our drastic efficiency improvement in part to
our use of the Z3 SMT Solver. As described in Section 3, we

1AutoGroup+ can be downloaded at https://github.com/
jhuisi/auto-tools.
2These claims regard the cryptographic transformation and
exclude any software or run-time errors.
3The theoretical translation security results of [2] on which
we will base our security are also limited to this class of
proof.

encode the translation of the scheme, its assumption(s) and
its reduction as a constraint-satisfaction problem and then
use Z3 to quickly find the satisfying set of solutions.

New Results. We evaluated AutoGroup+ on 9 distinct con-
structions (plus 4 additional variations of one scheme), with
various optimization priorities, for 48 bandwidth-optimizing
translations. In Figure 4, we report the sizes compared to
the symmetric case, which are significantly smaller. In Fig-
ure 5, we report on over 140 timing experiments resulting
from the translations. Due both to the asymmetric setting
and AutoGroup+’s optimizations, in most cases, the running
times were reduced to less than 10% of the symmetric case.
In the full version [4], we report on the effect that differ-
ent levels of complexity have on translation time for a single
scheme.

In Section 5, we compare the performance of AutoGroup+
to prior automation works, published manual translations,
and translations existing as source code in the Advanced
Crypto Software Collection [19] and Charm library [5]. We
discovered a few things. In fourteen points of comparison
with AutoGroup, AutoGroup+ matches those solutions and
provides a security validation and new assumptions, adding
only a few additional seconds of running time. In three
points of comparison with Abe et al. [2] and subsequent
personal communications [3], our translated results match.

In the five points of overlap with ACSC and Charm, we are
able to confirm the security and ciphertext-size optimality
of one broadcast encryption and one hierarchical identity-
based encryption implementation. We are also able to con-
firm the security of two signature implementations, although
only one is signature-size optimal. These confirmations are
new results. Our tool was able to confirm the ciphertext-size
optimality, but not the security of the Charm implementa-
tion of Dual System Encryption [26] (meaning it may not
be secure). That implementation made changes to the keys
outside the scope of the translations here or in [2, 6]. How-
ever, our tool did find a secure translation with the same
ciphertext-size.

Overall, our tests show that the tool can produce high-
quality solutions in just seconds, demonstrating that pairing
translations can be practically and securely performed by
computers.

1.1 Prior Work
The desirability of translating Type-I to Type-III pairings

is well documented. First, this is an exercise that cryptog-
raphers are still actively doing by hand. In PKC 2012, Ra-
manna, Chatterjee and Sarkar [23] nicely translated the dual
system encryption scheme of Waters [26] from the Type-I
pairing setting to a number of different Type-III possibilities.
Recently, Chen, Lim, Ling, Wang and Wee [17, 18] presented
an elegant semi-general framework for (re-)constructing var-
ious IBE, Inner-Product Encryption and Key-Policy Func-
tional Encryption schemes in the Type-III setting, assuming
the SXDH assumption holds.4 These works go into deeper
creative detail (changing the scheme or adding assumptions)
than our automator, and thus mainly get better results, but
then, these works appear to have taken significant human
resources. In contrast, our work offers a computerized trans-
lation as a starting point.

4Informally, the SXDH assumption asserts that in a Type-
III pairing group, there exist no efficient isomorphisms from
G1 to G2 or from G2 to G1.

1371

The Advanced Crypto Software Collection (ACSC) [19],
including the Charm library [5], contains many Type-III im-
plementations of schemes that were published and analyzed
in the Type-I format. To the best of our knowledge, there is
no formal analysis of these converted schemes and thus also
no guarantees that the translations are secure or optimal
efficiency-wise for a user’s specific application. (We remark
that ACSC/Charm makes no claims that they are secure or
optimal.) The public Github records for Charm show that
it has been downloaded thousands of times; thus, it would
be prudent to verify these implementations. (See our results
on this in Section 5.)

In ACM CCS 2013, Akinyele, Green and Hohenberger [6]
presented a publicly-available tool called AutoGroup, which
offered an automated translation from Type-I to Type-III
pairing schemes. This work employed sophisticated tools,
such as the Z3 Satisfiability Modulo Theories (SMT) solver
produced by Microsoft Research (see Section 2), to quickly
find a set of possible assignments of elements into G1 or G2.
There was not, however, any guarantee that the resulting
translation remained secure. Indeed, Akinyele et al. [6] ex-
plicitly framed their results as follows: translation has two
parts: (1) the search for an efficient translation, and (2) a
security analysis of it. They automated the first part and
left the security analysis to a human cryptographer. Since
they made their source code public, we used it as a starting
point and thus named our work after theirs.

While using AutoGroup is certainly faster than a com-
pletely manual approach, the lack of a security guarantee
is a real drawback. At that time, there was simply no es-
tablished theory on how to generalize these translations.

Fortunately, in CRYPTO 2014, Abe, Groth, Ohkubo and
Tango [2] pushed the theory forward in this area. They el-
egantly formalized the notion that if certain dependencies
from the Type-I complexity assumption(s) and the reduc-
tion in the security analysis were added to the dependencies
imposed by the scheme itself, then there was a generic way to
reason about the security of the translated scheme. Their
main theorem, which we will later use, can informally be
stated as:

Theorem 1.1 (Informal [2]). Following the conversion
method of [2], if the Type-I scheme is correct and secure in
the generic Type-I group model, then its converted Type-III
scheme is correct and secure in the generic Type-III group
model.

There are four steps in their translation: (1) build a de-
pendency graph between the group elements for each algo-
rithm in the construction, the complexity assumption(s) and
the security reduction (In the graph, elements are nodes and
a directed edge goes from g to h if h is derived from g, such
as h = gx.), (2) merge all graphs into a single graph, (3) split
this graph into two graphs (where elements of the first graph
will be assigned to G1 and elements of the second assigned
to G2), and (4) derive the converted scheme.

For the four schemes tested in [2], steps (1), (2), and (4)
were done by hand. The algorithm for step (3) was exponen-
tial in two variables5 and the Java program to handle step
(3) reported taking 1.75 hours on a medium scheme. Thus,

5Their splitting algorithm runs exponentially in both the
number of pairings and the bottom nodes (without outgoing
edges) of the dependency graph. Thus, scalability is a real
concern.

this is a great theory advance, but it left open the question
of whether the entire translation could be efficiently auto-
mated as a “real-time” tool.

AutoGroup+ in a Nutshell. In short, prior work admitted
a public tool that is fast, but possibly insecure [6], and a
cryptographic framework that is slow, but secure [2]. Our
goal was to realize the best of both worlds. Even though the
implementations differed, we discovered that both works be-
gan by tracing generator to pairing dependencies, where [6]
did this bottom up and [2] used a top down approach. Since
both of these representations can be helpful for different op-
timizations, AutoGroup+ does both. It also traces these de-
pendencies for the complexity assumptions and reductions.
The pairings and hash variables in the combined depen-
dency graph are translated into a formula and constraints,
and then fed into a SMT solver. The output set is then
efficiently searched for an optimal solution using the SMT
solver again, then verified as a valid graph split (as formal-
ized in [2]). Finally, if the split is valid, then a converted
scheme and complexity assumption(s) are output.

2. BACKGROUND

2.1 Pairings
Let G1, G2 and GT be groups of prime order p. A map

e : G1 × G2 → GT is an admissible pairing (also called a
bilinear map) if it satisfies the following three properties:

1. Bilinearity: for all g ∈ G1, h ∈ G2, and a, b ∈ Zp, it
holds that e(ga, hb) = e(gb, ha) = e(g, h)ab.

2. Non-degeneracy: if g and h are generators of G1 and
G2, resp., then e(g, h) is a generator of GT .

3. Efficiency: there exists an efficient method that given
any g ∈ G1 and h ∈ G2, computes e(g, h).

A pairing generator is an algorithm that on input a se-
curity parameter 1λ, outputs the parameters for a pairing
group (p, g, h,G1,G2,GT , e) such that p is a prime in Θ(2λ),
G1, G2 and GT are groups of order p where g generates G1, h
generates G2 and e : G1×G2 → GT is an admissible pairing.

The above pairing is called an asymmetric or Type-III
pairing. This type of pairing is generally preferred in im-
plementations for its efficiency. We also consider symmetric
or Type-I pairings, where there is an efficient isomorphism
ψ : G1 → G2 (and vice versa) such that a symmetric map
is defined as e : G1 × ψ(G1) → GT . We generally treat
G = G1 = G2 for simplicity and write e : G × G → GT .
These types of pairings are typically preferred for present-
ing constructions in the academic literature for two reasons.
First, they are simpler from a presentation perspective, re-
quiring fewer subscripts and other notations. More impor-
tantly, they are sometimes preferred because the underlying
symmetric assumption on which the proof is based may be
viewed as simpler or weaker than the corresponding asym-
metric assumption.

We include current efficiency numbers for Type-I and Type-
III groups in the full version [4] and Section 5, demonstrating
the significant advantages of the latter.

2.2 Z3 Theorem Prover
Our implementation also relies on the power of the state-

of-the-art Z3 SMT solver [20] developed at Microsoft Re-
search. SMT is a generalization of boolean satisfiability (or

1372

SAT) solving where the goal is to decide whether solutions
exist to a given logical formula. The publicly available Z3 is
one such tool that is highly efficient in solving constraint sat-
isfaction problems and used in many different applications.

2.3 The SDL Toolchain
This work builds on the efforts of prior automation works

[6, 7] which include several tools such as a scheme description
language (or SDL), an accompanying parser for SDL, a code
generator that translates SDL schemes into executable code
in either C++ or Python, and a LATEX generator for SDL
descriptions. We obtained all these prior tools from the
publicly-available AutoTools GitHub repository.6 Our code
and SDL database will be made public in this repository
as well. The SDL for the constructions are the same in
AutoGroup and AutoGroup+; the difference is that the latter
also includes SDL for assumptions and security reductions.
Since we used the code of AutoGroup as a starting point, we
derived our tool name from it.

3. THE AUTOGROUP+ SYSTEM
As described in Section 1, AutoGroup+ is a new tool built

to realize the best of both worlds from a prior tool called
AutoGroup [6] (fast, but no security guarantees) and new
theoretical insights [2] (secure, but exponential time and no
public tool.)

3.1 How It Works
We begin with an illustration of the AutoGroup+ system in

Figure 1. This system takes in the description of a symmet-
ric (Type-I) pairing-based scheme S, together with metadata
about its security and user-desired efficiency constraints,
and outputs an asymmetric (Type-III) pairing-based trans-
lation S′, together with metadata about its security. In-
formally, if S was secure, then S′ will be both secure and
optimal for the constraints set by the user over the space of
“basic” translations.

3.1.1 Step 1: Generating Computer-Readable Inputs
AutoGroup+ operates on four inputs: an abstract descrip-

tion of the (1) scheme itself, (2) the complexity assump-
tion(s) on which the scheme is based, (3) the black-box
reduction in the scheme’s proof of security, and (4) a set
of efficiency optimization constraints specified by the user
(e.g., optimize for smallest key or ciphertext size.). The ab-
stract descriptions are all specified in a Scheme Description
Language (SDL) [6, 7].

The need for SDL representations of the complexity as-
sumptions and security reductions are new challenges for
this work. To run our Section 5 tests, we had to translate
the text in the published papers to the SDL format by hand.
This was a time-consuming and tedious task. However, we
maximize the benefit of doing this, by making these SDL files
publicly available. This enables anyone to check their cor-
rectness and provides a ready-made base of test files for any
future automation exercises that require this deeper scheme
analysis.

One novel and curious observation we made during these
experiments was that how group elements were derived in
the symmetric group impacted the dependency graphs and

6Project link: https://github.com/jhuisi/auto-tools

therefore the asymmetric results. To say this another way,
two schemes computing the exact same elements, but in dif-
ferent ways, could have different dependency graphs and
therefore different asymmetric translations. As a toy ex-
ample, suppose a scheme has PK = (g,A = ga, B = gb) and
SK = (PK, a, b). Now suppose that as part of a signing al-
gorithm, the holder of SK must compute the value C = gab.
Suppose in Scheme 1, the signer computes this as x = ab
mod p and C = gx. Suppose in Scheme 2, the signer com-
putes this as C = Ab. Then in the dependency graph for
Scheme 1, there is a root node g, with nodes A and C hang-
ing off it. Whereas for the graph of Scheme 2, there is a root
node g with A off it, and C off of A. The importance of these
differences comes alive when we attempt to split the graph
(see Step 3.1.4). Suppose there is the pairing e(A,C). Then
in Scheme 1, the generator g must be split, but A can be
assigned to G1 and C to G2, resulting in a 4 element public
key. However, in Scheme 2, the generator g and the element
A must be split, with A1 ∈ G1 and A2 ∈ G2, so that one
can compute C = (A2)b ∈ G2. This results in a 5 element
public key. The general rule is that the fewer unnecessary
dependencies the better. Interestingly, Abe et al. [2] some-
times added dependencies that did not exist in the original
schemes. For instance, for the Waters 2005 IBE [25], Waters
clearly states to choose g2, u

′, ui as fresh random generators,
but Abe et al. explicitly ”assume” that they are generated
from a separate generator g. For this particular scheme, this
does not impact the asymmetric translations, but in theory
it could.

Our experiments did not add any dependencies. We note
that in this step, a human is not being tasked with any job
but simple transcription of the input into a language the
computer can understand.

System Limitations and Allowable Inputs.
This system shares some of the same limitations as prior

works [2, 6]. First, this is a junk-in-makes-junk-out system.
AutoGroup+ assumes that the security reduction is correct,
the complexity assumptions are true, and that the SDL was
typed in correctly. If any of these turn out to be false,
the output cannot be depended on. Fortunately, we can
mitigate these risks as follows. The correctness of the se-
curity reductions might be verified automatically using a
number of tools, such as EasyCrypt [24], but this likely re-
quires further research. The pairing-based assumptions may
be sanity-checked in the generic group model using the re-
cently developed tool by Barthe et al. [9] from CRYPTO
2014. Finally, the SDL transcriptions can be verified in the
usual crowd-based manner which we encourage by making
them public.

Second, the system does not accept all possible schemes
that might appear in the literature. AutoGroup+ supports
only prime-order symmetric pairing schemes with a “stan-
dard”reduction analysis7. It can support most non-interactive
assumptions. It can also support dynamic (also called q-
based) assumptions, where the size of the assumption may
grow depending on the usage of the scheme. It can also sup-

7We refer the reader to Abe et al. [2] for a formal definition
of the allowed reductions. Roughly, we mean an analysis
where there is an efficient algorithm called a reduction that
is successful in solving the hard problem (underlying the
complexity assumption) given black-box access to an adver-
sary that successfully attacks the scheme.

1373

Input: SDL of
Scheme S

SDL Parser
Extract Dependencies

from S and Assumption(s)

Output: SDL of
Scheme S'

Program Slice/Graph
for each pairing input

Merge Dependency
Graphs into G

AutoGroup+

Execute Z3
1. find all solutions that respect constraints

2. reduce iteratively by user constraint priorities
3. split graph G using selected solution

4. check that split is valid

Efficiency Pass
optimize solution

Input: SDL of
Symmetric

Assumption(s)

Input: SDL of
Reduction

Extract Dependencies
introduced in Reduction

Output: SDL of
Asymmetric

Assumption(s)

Encode
Pairings/Hashes

from G as
Formula & Constraints

Input: User
Optimization
Constraints

Figure 1: A high-level presentation of the AutoGroup+ tool. Components that are new or improved, over AutoGroup, are
included with dashed lines. Both AutoGroup+ and AutoGroup use external tools Z3, SDL Parser and Code generator (omitted
from the figure).

port interactive (also called oracle-based) assumptions such
as the LRSW assumption behind the popular Camenisch-
Lysyanskaya [16] pairing-based signatures.

Third, how the scheme hashes into pairing groups also
may disqualify it from being translated. We now give an ex-
ample of how to alter the Setup algorithm of the Waters 2005
IBE scheme [25], so that AutoGroup+ cannot translate it.
(Indeed, it is not clear to us if a translation even exists.) In
the original Setup algorithm, the master authority chooses
a generator g ∈ G at random. Then public parameter g1 is
derived from g, while parameters g2, u0, . . . , un ∈ G are cho-
sen independently at random. Instead, suppose we treat the
hash function H : {0, 1}∗ → G as a random oracle. Let gen-
erator g ∈ G be computed as g = H(ID), where ID is some
string describing the master authority. Then g1 is derived
from g as before, but we set g2 = gr, u0 = gr0 , . . . , un = grn

for random r, r0, . . . , rn ∈ Zp (where p is the order of G). It
is easy to see that the public parameters have the same dis-
tribution as before (assuming the random oracle model); all
we have changed is how the master authority samples these
parameters. Thus, this variant of the Waters IBE remains
secure in the symmetric setting, and yet it is not clear how
to translate it to the asymmetric setting. We return to this
example in Section 5.

These limitations also appear in the theoretical work of
Abe et al. [2], and fortunately, these issues seem relatively
rare and did not come up for any of the schemes we tested
(except our hand-made counterexample). As in [2, 6], we
note that if AutoGroup+ cannot produce a translation, it
does not imply that a translation does not exist. A charac-
terization of untranslatable schemes is an open problem.

3.1.2 Step 2: Extracting Algebraic Dependencies
Once AutoGroup+ has parsed all its input files, it begins

processing them to graph the algebraic dependencies be-
tween source group elements in a scheme, assumption and
reduction. All source group elements are nodes in the graph
and a directed edge exists if there is a direct dependency
between two elements. E.g., if h = gx, then h is derived
from g and we place an edge from g and h.

AutoGroup+ extracts the dependency graphs automati-
cally from the SDL for each input file and builds a distinct
graph from the SDL representations and metadata. Auto-
Group+ defines two new procedures that programmatically
extract the dependency graph for the assumption(s) as well
as the reduction(s) (see Section 4 for an example). Then, Au-
toGroup+ reuses logic from AutoGroup to programmatically
build the graph of the scheme by tracking the generators
in the setup algorithm and by tracing backward from each
pairing in the scheme. It merges the program slice (or trace)
extracted for each pairing input into one dependency graph
for the scheme. The resulting graphs are the same as those
produced by Abe et al. [2] (except where we reduced depen-
dencies by computing elements more directly as discussed in
the last step.)

The work of Abe et al. [2] required a human to build (and
later merge) these dependency graphs and the graphs were
constructed starting from the common generators downward.
The AutoGroup work of Akinyele et al. [6] automatically de-
rived these graphs for the scheme only from the SDL descrip-
tion of the scheme. They did not consider the assumptions
or reduction dependencies. Indeed, AutoGroup only graphed
the dependencies as a traceback from the pairings, whereas
AutoGroup+ also adds a top-down analysis from the assump-
tion down to the pairings for the security logic.

3.1.3 Step 3: Merge Dependency Graphs
After extracting the dependencies, AutoGroup+ has a set

of distinct graphs: one graph that represents dependencies
from the setup, key generation, encryption/signature and
decryption/verification algorithms, as well as a graph for
each complexity assumption and one or more graphs for the
reduction. These graphs are then systematically merged to-
gether using the metadata provided with the SDL inputs.
The metadata includes a reduction map which relates the
names of source group elements in the reduction to those in
the assumption. We require this map to understand which
nodes represent the same group element (across the scheme,
assumption and reduction) to simplify merging into a single
node. See the example in Section 4. AutoGroup+ program-

1374

matically checks the type information in the reduction map
across all SDL inputs to ensure correctness during the merge.

3.1.4 Step 4: Assign Variables using the SMT Solver
This is the most complex step in the automation. In the

symmetric setting, all group elements in the scheme were
in G. To move to the asymmetric setting, we must assign
elements to either G1 or G2 in such a way that the depen-
dencies between elements are not violated (e.g., if h = gx,
then both g, h must be in the same group) and such that for
all variables a, b, if we have a pairing between them e(a, b),
then a and b must be in distinct source groups (e.g., a ∈ G1

and b ∈ G2 or vice versa). Such an assignment may not
be feasible (see such an example in Section 3.1.1) or it may
require that one or more variables in the symmetric scheme
be duplicated in the asymmetric scheme with one assigned
to G1 and another to G2. E.g., in the symmetric setting if
g ∈ G, a = gx and b = gy and these elements are paired as
e(a, b), then in the asymmetric setting, g will be split into
g1 ∈ G1 and g2 ∈ G2, where a = gx1 and b = gy2 , so that one
can compute e(a, b).

To efficiently make these variable assignments, AutoGroup+
follows the approach of AutoGroup in that it uses a pow-
erful Z3 Satisfiability Modulo Theories (SMT) solver pro-
duced by Microsoft Research (see Section 2) to compute
the set of all possible splits (i.e., all possible variable as-
signment combinations) and then later identifies the best
one. Z3 takes as input a logical formula and determines
whether valid variable assignments exist that evaluate that
formula to true. Similar to AutoGroup, AutoGroup+ ex-
presses the pairing equations as a logical formula of conjunc-
tions and inequality operations over binary variables. For
example, e(a, b) · e(c, d) is translated to the logical formula
P1[0] 6= P1[1] ∧ P2[0] 6= P2[1] where P1[0] is a reference
to a, P1[1] to b, and so on. AutoGroup+ simply follows the
pairing identifier convention established by Abe et al. [2].

One major difference between AutoGroup+ and AutoGroup
is that the former’s dependency graphs include dependencies
based on the assumptions and reductions. The formula is
derived from the pairings that occur in the graph (from the
construction, reduction and assumption(s)) with a conjunc-
tion joining each pairing piece, plus extra constraints added
for variables that cannot be duplicated (regarding hashing).
This formula is then fed into the solver. The solver returns
a set of 0 or 1 assignments for each variable. We then apply
each solution to the merged dependency graph to generate
the split (variables assigned to 0 on one side and the rest on
the other).

3.1.5 Step 5: Search for Optimal Solution
There are often many (possibly thousands) of ways to

translate a symmetric scheme into an asymmetric one; thus,
we can end up with many feasible graph splits. Indeed, the
output of the SMT solver in the last step is a set of assign-
ments of the variables. In this step, we again use the SMT
solver to deduce which assignment from this set is “best”.
AutoGroup+ allows selection of assignments based on a num-
ber of user-specified optimization constraints. For public-
key encryption, the user can choose to minimize the public-
key, assumption, secret key and/or ciphertext size. Similarly
for signature schemes, the user can mimize the public-key
parameters, assumption, and/or the signature size.

To select an optimal assignment, AutoGroup+ encodes
these user requirements as parameters of some objective func-
tion. We then call the solver a second time with this objec-
tive function set to rank/narrow the given solutions to one.
Depending on the optimization goal, the objective function
can be specified in one of two ways. If reducing public-key
size or the assumption, then we are concerned with mini-
mizing the duplication of source group elements. As such,
we first specify an EvalGraph function that the solver uses to
compute the splits for each element in the public key or as-
sumption: EvalGraph(Aj , B,G) = S, where Aj = a1, . . . , an
represents pairing input variable assignments for the j-th
solution (each ai variable is either 0 = G1 or 1 = G2),
B = b1, . . . , bm represents the source group elements to min-
imize either in the assumption or public-key, and G repre-
sents the merged dependency graph.

Our search algorithm first applies the EvalGraph function
to determine how the bi values are assigned for each so-
lution. Once the bi values are assigned, we then compute
S = s1, . . . , sm where each si corresponds to one of three
values for each bi assignment. That is, let a w1 value denote
a G1 only assignment, w2 is G2 only, and w3 = w1 + w2 is
both a G1 and G2 assignment (or simply a split). We then
set w1 and w2 to the group size of G1 and G2 for Type-
III pairing curves (e.g., BN256). Each solution is ranked
in terms of splits and the total size of group elements in
B. Our search returns the j-th solution that results in the
fewest splits in B with the smallest overall size Sj . This
overall size breaks ties between multiple solutions with the
same number of splits.

min
j∈|A|

(CountSplits(Sj),
m∑
i=1

Sj,i) (1)

For the other optimization options (i.e., secret-key, cipher-
text, etc), we can reuse the objective function specified by
AutoGroup as is:

min
j∈|A|

F (Aj , C, w1, w2) =

n∑
i=1

((1− ai) · w1 + ai · w2) · ci (2)

where the Aj represents the j-th solution as before, C =
{c1, . . . , cn} represent some cost associated with each ai vari-
able reference, and w1 and w2 correspond to weights (for
different Type-III pairing curves) over groups G1 and G2.
By encoding these cost values, it is feasible to create differ-
ent weight functions that adhere to the user specified con-
straints. Once these functions are specified correctly, we
minimize it across the set of assignments and return the so-
lution that yields the lowest value. Thus, the combination
of equations 1 and 2 yield all the possible ways a current
user can optimize a given symmetric scheme. Further opti-
mizations are future work.

Once the “best” solution is found, we have a CheckValid-
Split procedure that verifies that the conditions (1) and (2)
of a “valid split” hold as defined in Definition 3.1. If this
solution satisfies these conditions, we are done. If not, we
simply test the next best solution, because the solver caches
all solutions and we record metadata about each solution in
terms of efficiency and security.

3.1.6 Step 6: Evaluate and Process the Solution
Once a split is chosen, AutoGroup+ must reconstruct SDL

for the asymmetric scheme and assumption(s). It reuses the

1375

functionality provided by AutoGroup to construct the SDL
as dictated by the split.8 To output the new asymmetric
assumptions, AutoGroup+ follows the logic of Abe et al. [2]
(although they did not implement this step) and implements
a new procedure that uses the graph split to reconstruct the
asymmetric assumption(s). For each element in the asym-
metric assumption, we learn the new assignments of the el-
ements using the graph split and mechanically generate the
asymmetric assumption SDL. Finally, we rely on existing
tools [6, 7] to translate the new asymmetric SDL represen-
tation into executable code for C++ or Python, or LATEX.

3.2 Analysis of AutoGroup+
We analyze AutoGroup+’s security and optimizations.

Security. At a high-level, the Abe et al. [2] security ar-
gument works as follows. In the Type-I setting, we treat
G1 = G2 because there are efficient isomorphisms between
these two groups. However, suppose we work in the generic
Type-I group model, where elements are a black box and
to compute this isomorphism, a party must utilize an ora-
cle O. Next, consider moving to a Type-III group, where
every element (for which the discrete logarithm is known
with respect to the base generators) is duplicated; that is,
for h = gx ∈ G, we have h1 = gx1 ∈ G1 and h2 = gx2 ∈ G2.
Then in the generic Type-III group model, we can simulate
having efficiently computable isomorphisms between these
groups by exposing an oracle O′ that on input d1 ∈ G1

outputs d2 ∈ G2 (or vice versa). In essence, by exposing
the “corresponding” group element (through the oracle in
the Type-III setting), we “allow” all necessary isomorphism
computations for the scheme itself to operate, however, at
the same time, we can argue that any adversary that breaks
this scheme (with these elements exposed) can be turned
into an attacker against the Type-I scheme, where these iso-
morphisms are natively computable. The resulting theorem
was summarized in Theorem 1.1: namely, the Type-III con-
version will be secure in the generic group model, if one
follows the conversion criteria in [2] and the Type-I input
was secure in the generic group model.

Thus, we must argue that the AutoGroup+ implementa-
tion satisfies the criteria in [2]. The dependency graphs
are created and merged according to the same algorithm.
(AutoGroup+ tracks some additional information on the side
for optimization purposes.) What is required is that the
splitting of the merged dependency graph satisfies Abe et
al.’s notion of a “valid split.”

Definition 3.1 (Valid Split [2]). Let Γ = (V,E) be a depen-
dency graph for Π = (S,R,A), a tuple representing a scheme,
reduction and assumption(s) that are in the set covered by
the [2] translation. Let P = (p1[0], . . . , pn[1]) ⊂ V be pairing
nodes. A pair of graphs Γ0 = (V0, E0) and Γ1 = (V1, E1) is
a valid split of Γ with respect to NoDup ⊆ V if the following
hold:

1. merging Γ0 and Γ1 recovers Γ,

2. for each i ∈ {0, 1} and every X ∈ Vi\P , the ancestor
subgraph of X in Γ is included in Γi.

3. for each i ∈ {1, . . . , np} pairing nodes pi[0] and pi[1]
are separately included in V0 and V1,

8We further perform an efficiency check on the final scheme
as previously done in AutoGroup.

4. No node in V0 ∩ V1 is included in NoDup. NoDup is a
list of nodes that cannot be assigned to both V0 and V1.

In terms of AutoGroup+ security, conditions (1) and (2)
are satisfied in the search procedure (step 5). That is, before
we admit a split, we do these simple tests. Condition (3) is
satisfied by the SMT solver with the logical formula encoding
of pairing nodes (step 4). Condition (4) is also satisfied by
the SMT solver (step 4). We encode the output of hashes as
constraints over the logical formula; specifically, we ask the
solver to find splits that keep hashes in G1. This is the only
place we differ slightly. Abe et al. allow G1 or G2 assignment
for hashes but not both. Our approach prioritizes solutions
that preserve efficiency but we could give the user the option
of relaxing this to match Abe et al. The translation back to
SDL is fairly straightforward from the split.

Optimizations. In terms of optimality over the set of so-
lutions admitted by the “valid split” method, AutoGroup+
finds the “best” one by searching over the entire set. It
does this efficiently by turning the user-specified optimiza-
tions into the appropriate objective function and passing this
function into the SMT solver. Our experiments in Section 5
provide evidence that the tool is, indeed, finding the optimal
solutions over the space of valid translations.

As discussed in Section 1.1, we do not rule out the exis-
tence of even better solutions that employ insights outside
of this method (such as altering the construction or adding
“stronger” assumptions, such as SXDH.)

4. AN EXAMPLE WITH BB-HIBE
In this section, we illustrate each phase of the AutoGroup+

implementation described in Section 3 by showing the step-
by-step translation of the Boneh-Boyen hierarchical identity-
based encryption [10] (or BB HIBE) scheme. We begin
by recalling the scheme: an efficient HIBE scheme (with
` = 2) [11, §4.1] that is selective identity secure based on
the standard Decisional Bilinear-Diffie Hellman (DBDH) as-
sumption.

This scheme consists of four algorithms: Setup, KeyGen,
Encrypt and Decrypt. The Setup algorithm takes as input a
security parameter and defines public keys (ID) of depth ` as
vectors of elements in Z`p. We define ` = 2, thus the identity
is comprised of ID = (ID1, ID2) ∈ Z2

p. The algorithm gen-
erates system parameters as follows. First, select a random
generator g ∈ G, a random α ∈ Zp, and sets g1 = gα. Then,
pick random h1, h2, g2 ∈ G. Set the master public param-
eters params = (g, g1, g2, h1, h2) and the master secret key
msk = g2

α.
The KeyGen algorithm takes as input an ID = (ID1, ID2) ∈
Zp2, picks random r1, r2 ∈ Zp and outputs:

d1 = g2
α · (g1ID1 · h1)r1 · (g1ID2 · h2)r2 , d2 = gr1 , d3 = gr2

and the algorithm outputs dID = (d1, d2, d3)
The Encrypt algorithm takes as input the public parameters
params, an identity ID and a message M ∈ GT . To encrypt
the message M under the public key ID = (ID1, ID2), picks
a random s ∈ Zp and computes:

C = (e(g1, g2)s ·M, gs, (g1
ID1 · h1)s, (g1

ID2 · h2)s)

and the algorithm outputs C = (C1, C2, C3, C4).

1376

g1

P1[0]

d1

h2

C4 C3

h1

P4[1]P3[0]

g

C2

C d2

d3

BA

P2[0]

g3 g2

P1[1]g2alpha

P4[0]

P2[1]

P3[1]

Figure 2: The merged dependency graph for the assumption, reduction to DBDH, and the BB HIBE scheme. This graph was
generated by AutoGroup+.

The Decrypt algorithm takes as input a private key dID =
(d1, d2, d3) and a ciphertext C and computes M as:

M = C1 ·
e(C3, d2) · e(C4, d3)

e(C2, d1)

The scheme is based on the DBDH assumption.

Assumption 1 (Decisional Bilinear Diffie-Hellman). Let g
generate group G of prime order p ∈ Θ(2λ) with mapping
e : G×G→ GT . For all p.p.t. adversaries A, the following
probability is negligible in λ:

| 1
2
− Pr[a, b, c← Zp, z ← {0, 1}, A = ga,

B = gb, C = gc, T0 = e(g, g)abc, T1 ← GT ;

z′ ← A(g,A,B,C, Tz) : z = z′]|.

Step 1: Generating SDL Inputs.
In order for AutoGroup+ to perform the translation, we

first begin by transcribing the scheme, reduction and the
DBDH assumption into SDL. We provide the SDL descrip-
tion of the above scheme, reduction and assumption in [4].
The SDL descriptions closely and concisely follow the paper
counterpart. This design is on purpose as to reduce the bur-
den of transcribing these constructions for AutoGroup+ users.
Indeed, in our experience the most time consuming and te-
dious part is in specifying the reductions accurately.

Step 2: Extracting the Dependencies.
Once the SDLs have been generated along with the meta-

data and the user’s desired optimization goal, the user can
proceed with executing AutoGroup+ to begin deriving the
dependency graphs for each input file. AutoGroup+ pro-
grammatically extracts the dependencies from the SDL de-
scriptions starting with the assumption(s), then the reduc-
tion(s) and finally, the scheme. The dependency graph di-
agrams for BB HIBE [11, §4.1] are included in the full ver-
sion [4]. Note that these diagrams were generated auto-
matically by our tool; we believe this feature provides more

transparency to make it easier for humans to verify that the
software is operating correctly. In “naming” the nodes of
our dependency graphs, we closely follow the naming con-
ventions that the user employed in the SDL, thus supporting
the quick and easy verification.

Step 3: Merge the Graphs.
In Figure 2, we show the third step in AutoGroup+ which

is to merge the multiple dependency graphs (assumption,
reduction and scheme graphs) into one single graph.

Step 4: Assignment of Variables.
With the merged graph, we encode the pairing equations

as a logical formula as in AutoGroup but also encode cer-
tain group elements in the dependency graph as additional
constraints to the solver (with optimization requirements):

P1[0] 6= P1[1] ∧ P2[0] 6= P2[1] ∧
P3[0] 6= P3[1] ∧ P4[0] 6= P4[1]

Recall that pairing identifiers (e.g., P2[0], P2[1]) are unique
references which refer to pairing inputs from the scheme
(e.g., e(C3, d2)).

Step 5: Search for an Optimal Solution.
In our BB HIBE example, the goal is to minimize the

number of splits in the master public parameters params,
so this requires specifying the following parameters of the
EvalGraph function. Let B = {g, g1, g2, h1, h2} be the set of
elements in the public parameters we wish to minimize and
let G be an encoding of the merged dependency graph shown
in Figure 2. As reflected in Table 4, the solver identifies 16
possible solutions for the BB HIBE scheme and computes
the following on each solution as Sj = EvalGraph(Aj , B,G)
where Aj is the j-th set of possible variable assignments.
Recall that EvalGraph simply applies a given solution to G
and records how elements of B are assigned. From the set S,
the solver finds an assignment that has the fewest number

1377

d1

P4[1]

gG1

g1g2G1 h2G1 h1G1

C4 P1[0] C3g2alpha

P3[0] P2[0]

(a) Showing G1 elements in the scheme

d3

P3[1]

g2G2

P1[1]

gG2

d2 C2

P2[1] P4[0]

(b) Showing G2 elements in the scheme

Figure 3: The dependency graphs for the asymmetric translation of BB HIBE scheme only (with PK optimization).

of duplicated public key elements with the smallest overall
size. Based on this criteria, the solver returned a optimal
solution in the fifth step which consisted of 2 splits (i.e.,
two duplicated elements). The new public key elements are
assigned as B′ = {g, g̃, g1, g2, g̃2, h1, h2} ∈ G5

1 × G2
2. This

constitutes only an addition of 2 group elements in G2.

Step 6: Assignment of Variables.
In the last step, AutoGroup+ splits the graph as dictated

by the optimal solution found by the solver. The resulting
graphs for G1 and G2 assignments for the BB HIBE scheme
are shown in Figure 3. AutoGroup+ programmatically con-
verts the split graph into an asymmetric translation for the
scheme and assumption. We improve on code from Auto-
Group to do the former translation and write a new module
to do the latter. See the full version for the graph split of
co-DBDH and resulting SDL files [4]. As mentioned before,
there is a publicly-available tool (see Section 2.3) for auto-
matically turning this SDL into C++, Python or LATEX.

5. EXPERIMENTAL EVALUATION
We tested AutoGroup+ on 9 schemes, with 3-4 optimiza-

tion options and 4 different levels of BB HIBE, for 48 total
translations.9 Figure 4 summarizes the translation times
and resulting scheme sizes.10 To demonstrate the improve-
ment in running times due to both the asymmetric setting
and AutoGroup+’s optimizations, Figure 5 includes over 140
timing experiments, showing drastic improvements. In the
full version [4], we summarize the effect of scheme complex-
ity on AutoGroup+ conversion time by varying the complex-

9Currently the tool does not support the assumption mini-
mization option for schemes with more than one assumption.
This is future work, although we would like to explore how
valuable assumption minimization is to tool users.

10We only give details for two variations of BB HIBE because
the results are similar for all levels.

ity of BB HIBE. We note that even given a more complex
scheme than attempted by any other tool, AutoGroup+ still
provides fast conversion times.

System Configuration. All of our benchmarks were executed
on a standard workstation that has a 2.20GHz quad-core
Intel Core i7-2720QM processor with 8GB RAM running
Ubuntu 11.04 LTS, Linux Kernel version 2.6.38-16-generic
(x86-64-bit architecture). Our measurements only use a sin-
gle core of the Intel processor for consistency. The Auto-
Group+ implementation utilizes the same building blocks
as AutoGroup which include the MIRACL library (v5.5.4)
and/or RELIC cryptographic toolkit [8], Charm v0.43 [5] in
C++ or Python code, and the Z3 SMT solver (v4.3.2).

Limitations. In Section 3.1.1, we provide an example of a
scheme which falls into a category of things that Abe et
al. warned about and on which AutoGroup gets confused.
AutoGroup tries to power through and split the hash out-
put (which it cannot really do because the discrete log is
unknown), so while it eventually outputs some SDL, this
SDL is not a proper translation. Unlike AutoGroup, Auto-
Group+ includes logic to output a warning when processing
such inputs and continues trying to translate the scheme. If
the verification check of a valid split fails (e.g., due to hash
split), then AutoGroup+ identifies the split as invalid and
attempts checking the next best solution. If there are no
such solutions, AutoGroup+ outputs no solution.

5.1 Comparison with ACSC/Charm
Our experiments have five schemes in common with pub-

lic implementations in the Advanced Crypto Software Col-
lection [19] and Charm [5]. Where we have matches, our
new results confirm the security and optimality of those (un-
proven) implemented translations.

For Waters 2009 [26], we compare with the Charm imple-
mentation by Fan Zhang. For our PK-size optimization, our

1378

Conversion Number of Group Elements Assumption Num.
Time Public Key Secret Key Ciphertext Assumption Solutions

ID-Based Enc.
BB04 HIBE [10, §4] Symmetric (l = 2) - G5 G3 G3 × GT G4 × GT DBDH
Asymmetric [Min. PK] 592 ms G5

1 × G2
2 G1 × G2

2 G2
1 × G2 × GT G4

1 × G3
2 × GT 16

Asymmetric [Min. SK] 641 ms G5
1 × G4

2 G3
1 G3

2 × GT G3
1 × G3

2 × GT 16
Asymmetric [Min. CT] 626 ms G4

1 × G5
2 G3

2 G3
1 × GT G3

1 × G3
2 × GT 16

Asymmetric [Min. Assump] 582 ms G4
1 × G5

2 G3
2 G3

1 × GT G3
1 × G3

2 × GT 16

BB04 HIBE [10, §4] Symmetric (l = 9) - G12 G10 G10 × GT G4 × GT DBDH
Asymmetric [Min. PK] 20629 ms G12

1 × G2
2 G1 × G9

2 G9
1 × G2 × GT G4

1 × G3
2 × GT 2048

Asymmetric [Min. SK] 15714 ms G12
1 × G11

2 G10
1 G10

2 × GT G3
1 × G3

2 × GT 2048
Asymmetric [Min. CT] 15690 ms G11

1 × G12
2 G10

2 G10
1 × GT G3

1 × G3
2 × GT 2048

Asymmetric [Min. Assump] 20904 ms G11
1 × G12

2 G10
2 G10

1 × GT G3
1 × G3

2 × GT 2048

GENTRY06 [21, §3.1] Symmetric - G3 Zp × G G× G2
T G3+q × GT trunc. dec. q-ABDHE

Asymmetric [Min. PK] 669 ms G2
1 × G2

2 Zp × G2 G1 × G2
T G3+q

1 × G2+q
2 × GT 4

Asymmetric [Min. SK] 718 ms G2
1 × G3

2 Zp × G1 G2 × G2
T G2+q

1 × G3+q
2 × GT 4

Asymmetric [Min. CT] 723 ms G2
1 × G2

2 Zp × G2 G1 × G2
T G3+q

1 × G2+q
2 × GT 4

Asymmetric [Min. Assump] 676 ms G2
1 × G2

2 Zp × G2 G1 × G2
T G3+q

1 × G1+q
2 × GT 4

WATERS05 [25, §4] Symmetric - G4+n G2 G2 × GT G4 × GT DBDH

Asymmetric [Min. PK] 725 ms G4+n
1 × G2

2 G1 × G2 G1 × G2 × GT G4
1 × G3

2 × GT 8

Asymmetric [Min. SK] 770 ms G4+n
1 × G3+n

2 G2
1 G2

2 × GT G3
1 × G3

2 × GT 8

Asymmetric [Min. CT] 767 ms G3+n
1 × G4+n

2 G2
2 G2

1 × GT G3
1 × G3

2 × GT 8

Asymmetric [Min. Assump] 716 ms G4+n
1 × G3+n

2 G2
1 G2

2 × GT G3
1 × G3

2 × GT 8

WATERS09 (DSE) [26, §3.1] Symmetric - G13 × GT G8 × Zp Zp × G9 × GT (G4 × GT), (G6), (G6) DBDH, DLIN, DLIN
Asymmetric [Min. PK] 6217 ms G10

1 × G4
2 × GT G4

1 × G4
2 × Zp G5

1 × G4
2 × GT (G4

1 × G3
2 × GT), (G6

1 × G6
2) 256

Asymmetric [Min. SK] 5871 ms G7
1 × G13

2 × GT G8
1 × Zp G9

2 × GT (G3
1 × G3

2 × GT), (G6
1 × G6

2), (G6
1 × G6

2) 256
Asymmetric [Min. CT] 5858 ms G13

1 × G7
2 × GT G8

2 × Zp G9
1 × GT (G3

1 × G3
2 × GT), (G6

1 × G6
2), (G6

1 × G6
2) 256

Asymmetric [Min. Assump] 6228 ms G12
1 × G5

2 × GT G3
1 × G5

2 × Zp G6
1 × G3

2 × GT (G4
1 × G2

2 × GT), (G6
1 × G6

2), (G6
1 × G6

2) 256

Broadcast Encryption

BGW05 [14, §3.1] Symmetric (n users) - G2n+1 G G3 G2l+1 × GT decision l-BDHE

Asymmetric [Min. PK] 530 ms G2n+1
1 × G2n

2 G2 G2
1 × GT G2l

1 × G2l+1
2 × GT 4

Asymmetric [Min. SK] 601 ms G2n
1 × G2n+1

2 G1 G2
2 ×GT G2l

1 × G2l+1
2 × GT 4

Asymmetric [Min. CT] 587 ms G2n+1
1 × G2n

2 G2 G2
1 × GT G2l

1 × G2l+1
2 × GT 4

Asymmetric [Min. Assump] 544 ms G2n+1
1 × G2n

2 G2 G2
1 × GT G2l

1 × G2l+1
2 × GT 4

Signature
ACDKNO [1, §5.3] Symmetric - G15 G2 G8 (G4), (G6), (G6) CDH, DLIN, DLIN
Asymmetric [Min. PK] 18216 ms G14

1 × G5
2 G2

2 G1 × G7
2 (G2

1 × G4
2), (G2

1 × G6
2), (G2

1 × G6
2) 1024

Asymmetric [Min. Sig] 14689 ms G6
1 × G14

2 G2
1 G8

1 (G4
1 × G2

2), (G6
1 × G2

2), (G6
1 × G2

2) 1024
Asymmetric [Min. Assump] 18135 ms G5

1 × G14
2 G2

1 G7
1 × G2 (G4

1 × G2
2), (G6

1 × G2
2), (G6

1 × G2
2) 1024

BLS [15, §2.2] Symmetric - G2 Z∗p G G4 CDH
Asymmetric [Min. PK] 515 ms G2

2 Z∗p G1 (G4
1 × G3

2), (G3
1 × G3

2), (G3
1 × G3

2) 2
Asymmetric [Min. Sig] 556 ms G2

2 Z∗p G1 (G4
1 × G3

2), (G3
1 × G3

2), (G3
1 × G3

2) 2
Asymmetric [Min. Assump] 517 ms G2

2 Z∗p G1 (G4
1 × G3

2), (G3
1 × G2

2), (G3
1 × G3

2) 2

CL04 [16, §3.1] Symmetric - G3 Z∗p2 G3 G3 LRSW

Asymmetric [Min. PK] 278 ms G3
1 × G2 Z∗p2 G3

2 G3
1 2

Asymmetric [Min. Sig] 328 ms G1 × G3
2 Z∗p2 G3

1 G3
2 2

Asymmetric [Min. Assump] 275 ms G3
1 × G2 Z∗p2 G3

2 G3
1 2

WATERS05 [25, §7] Symmetric - G4+n G G2 G4 × GT DBDH
Asymmetric [Min. PK] 724 ms G3

1 × G2 G3
2 G1 × G2 G4

1 × G2
2 × GT 8

Asymmetric [Min. Sig] 721 ms G4+n
1 × G3+n

2 G1 G2
1 G3

1 × G3
2 × GT 8

Asymmetric [Min. Assump] 755 ms G4+n
1 × G2

2 G1 G1 × G2 G4
1 × G2

2 × GT 8

Figure 4: A summary of the experimental evaluations of AutoGroup+ on a variety of schemes and optimization options. For
the symmetric baseline with curve SS1536, elements in G are 1536 bits and GT are 3072 bits. For the asymmetric translations
with BN256, elements in G1 are 256 bits, G2 are 1024 bits, and GT are 3072 bits. For BGW05, the private key size is listed
for a single user.

translation is 3 elements shorter (we split only g, whereas
they split g, w, u, h.) For our ciphertext-size optimization,
it looks the closest to theirs, but they do not match. Both
translations have short ciphertexts leaving all base elements
in G1. However, the Charm translation appears to have
shifted some elements from the public key to the secret key
and dropped some elements from the master secret key (e.g.,
we split v and include both in the MSK, because that is the
naive way to do it, but they use the v split for G1 only in
the Setup and then drop it from the MSK.) While we cannot
confirm the security of this implementation using our tool,
the tool did produce a translation with the same ciphertext-
size that is secure.

For BGW 2005 [14], we compared with the C implemen-
tation on the ACSC website by Matt Steiner and Ben Lynn.
Indeed, our translations that minimize the public parame-
ters or ciphertext size are the same, and the same as their
manual translation. We confirm security and PP/ciphertext-
size optimality.

For BB HIBE [10], Charm has a full HIBE implementa-
tion. We tested it for a minimum of 2 levels, but their imple-
mentation matches ours for ciphertext minimization, except
that they add a precomputed pairing (element in GT) to the

public key so that it does not have to be done per encryp-
tion. This impacts only efficiency. We confirm security and
ciphertext-size optimality.

For CL [16], we can confirm that the Charm implementa-
tion is secure and public-key-size optimal. However, in the
more likely event that one wants to minimize signature size,
AutoGroup+ found a translation with a shorter signature.

For BLS [15], our translations also match. This is a simple
case with only two translation options.

Charm [5] also includes variants of the Waters encryption
and signature schemes [25] from 2005, but we translated the
original schemes (as did [2, 6]), so our translations are not
directly comparable to these Charm variants.

5.2 Comparison with Abe et al.
Abe et al. [2] tested their method on two encryption schemes:

Waters 2005 [25] and Waters 2009 (Dual System Encryp-
tion) [26]. They looked at minimizing the size of the public
key and the Type-III assumption. We conjecture that prac-
titioners would be more interested in minimizing ciphertext
or private key size, so our summary also includes those op-
timizations.

1379

Time•

Setup Keygen Encrypt/ Decrypt/
Sign Verify

ID-Based Enc.
BB04 HIBE [10, §4] Symmetric (SS1536) (l = 2) 346.47 ms 84.75 ms 118.64 ms 133.48 ms
Asymmetric (BN256) [Min. PK] 5.09 ms 4.79 ms 12.92 ms 21.36 ms
Asymmetric (BN256) [Min. SK] 8.15 ms 2.95 ms 14.95 ms 21.32 ms
Asymmetric (BN256) [Min. CT] 9.84 ms 6.23 ms 12.38 ms 21.22 ms
Asymmetric (BN256) [Min. Assump] 9.08 ms 7.30 ms 12.27 ms 21.64 ms

BB04 HIBE [10, §4] Symmetric (SS1536) (l = 9) 892.69 ms 283.11 ms 217.39 ms 446.10 ms
Asymmetric (BN256) [Min. PK] 9.25 ms 17.64 ms 17.10 ms 70.84 ms
Asymmetric (BN256) [Min. SK] 20.53 ms 11.14 ms 24.36 ms 71.45 ms
Asymmetric (BN256) [Min. CT] 21.60 ms 27.02 ms 16.48 ms 72.03 ms
Asymmetric (BN256) [Min. Assump] 21.68 ms 31.96 ms 16.77 ms 70.48 ms

GENTRY06 [21, §3.1] Symmetric (SS1536) 172.30 ms 28.23 ms 137.79 ms 48.42 ms
Asymmetric (BN256) [Min. PK] 2.88 ms 2.47 ms 21.08 ms 10.01 ms
Asymmetric (BN256) [Min. SK] 4.22 ms 1.18 ms 22.46 ms 9.96 ms
Asymmetric (BN256) [Min. CT] 2.93 ms 2.53 ms 21.02 ms 10.02 ms
Asymmetric (BN256) [Min. Assump] 2.88 ms 2.53 ms 21.10 ms 10.09 ms

WATERS05 [25, §4] Symmetric (SS1536) 908.94 ms 29.78 ms 78.08 ms 111.76 ms
Asymmetric (BN256) [Min. PK] 10.31 ms 2.04 ms 11.98 ms 14.23 ms
Asymmetric (BN256) [Min. SK] 24.11 ms 1.37 ms 13.68 ms 14.11 ms
Asymmetric (BN256) [Min. CT] 25.39 ms 3.67 ms 11.25 ms 14.23 ms
Asymmetric (BN256) [Min. Assump] 23.81 ms 1.36 ms 13.71 ms 14.38 ms

WATERS09 (DSE) [26, §3.1] Symmetric (SS1536) 755.50 ms 195.27 ms 212.88 ms 414.79 ms
Asymmetric (BN256) [Min. PK] 23.13 ms 9.71 ms 13.70 ms 66.45 ms
Asymmetric (BN256) [Min. SK] 36.83 ms 7.07 ms 20.08 ms 66.42 ms
Asymmetric (BN256) [Min. CT] 34.41 ms 14.82 ms 11.08 ms 66.92 ms
Asymmetric (BN256) [Min. Assump] 29.90 ms 11.09 ms 13.03 ms 66.92 ms

Broadcast Encryption
BGW05 [14, §3.1] Symmetric (SS1536) (n = 10) 376.84 ms 140.27 ms 86.96 ms 68.65 ms
Asymmetric (BN256) [Min. PK] 55.29 ms 13.98 ms 11.457 ms 6.13 ms
Asymmetric (BN256) [Min. SK] 38.45 ms 5.82 ms 12.49 ms 8.122 ms
Asymmetric (BN256) [Min. CT] 37.75 ms 12.32 ms 11.18 ms 6.27 ms
Asymmetric (BN256) [Min. Assump] 37.74 ms 12.31 ms 11.186 ms 6.12 ms

Signature
ACDKNO [1, §5.3] Symmetric (SS1536) 395.23 ms 497.04 ms 275.99 ms 937.14 ms
Asymmetric (BN256) [Min. PK] 9.05 ms 17.19 ms 15.27 ms 147.62 ms
Asymmetric (BN256) [Min. Sig] 8.31 ms 22.65 ms 14.33 ms 152.60 ms
Asymmetric (BN256) [Min. Assump] 8.43 ms 22.23 ms 13.94 ms 147.77 ms

BLS [15, §] Symmetric (SS1536) - 93.20 ms 92.61 ms 167.73 ms
Asymmetric (BN256) [Min. PK] - 2.99 ms 0.74 ms 14.20 ms
Asymmetric (BN256) [Min. Sig] - 3.00 ms 0.75 ms 14.20 ms
Asymmetric (BN256) [Min. Assump] - 3.03 ms 0.69 ms 14.18 ms

CL04 [16, §3.1] (SS1536) - 464.7 ms 178.18 ms 973.48 ms
Asymmetric (BN256) [Min. PK] - 9.27 ms 15.12 ms 121.61 ms
Asymmetric (BN256) [Min. Sig] - 14.54 ms 7.38 ms 119.16 ms
Asymmetric (BN256) [Min. Assump] - 11.53 ms 15.32 ms 124.19 ms

WATERS05 [25, §7] (SS1536) - 720.75 ms 29.72 ms 135.00 ms
Asymmetric (BN256) [Min. PK] - 10.42 ms 2.02 ms 21.44 ms
Asymmetric (BN256) [Min. Sig] - 25.60 ms 1.43 ms 23.13 ms
Asymmetric (BN256) [Min. Assump] - 10.18 ms 2.01 ms 21.42 ms
•Average time measured over 100 test runs and the standard deviation in all test runs were within ±1% of the average.

Figure 5: A summary of the running times of the AutoGroup+ translations using curve BN256 as compared to the running
times using the roughly security-equivalent symmetric curve SS1536 in MIRACL. The asymmetric setting plus AutoGroup+’s
optimizations cut the running times by one or two orders of magnitude.

For Waters 2005, AutoGroup+ found the same construc-
tion as their semi-automated method. As remarked in Sec-
tion 3.1.1, their dependency graph for this scheme included
some unnecessary dependencies. Waters [25] clearly states
to choose g2, u

′, ui as fresh random generators, but Abe et al.
explicitly “assume” that they are generated from a common
generator g. From a functionality and security standpoint of
the Type-I scheme, this distinction certainly does not mat-
ter. However, it does change the intermediate dependency
graphs, which could in some cases affect the output (though
it does not in this situation). Both their partial automation
and our full one of Waters 2005 took under one second.

For Waters 2009, AutoGroup+ first appeared to find a PK-
optimized construction with one less group element than
the PK-optimized construction of Abe et al. [2]. However,
subsequent discussions [3] determined that this was merely
the product of a different counting method; the numbers

reported in this work are the correct ones for both Auto-
Group+ and the Abe et al. method.

In the original work [2], no schemes with interactive as-
sumptions were reported on. In subsequent communica-
tions [3], Abe et al. demonstrated a translation for the
Camenisch-Lysyanskaya signatures [16] based on the inter-
active LSRW assumption. We derived the SDL files for
the scheme, assumption and proof and ran it through Auto-
Group+. The results matched.

Drawing and merging the dependency graphs by hand is
tedious and becomes infeasible for a complex scheme like [1].
In addition, the Abe et al. graph splitting program took 1.75
hours for Waters09, whereas our tool handled everything in
6.5 seconds. Thus, we find that it is considerably easier and
faster to transcribe the SDL and use AutoGroup+.

1380

5.3 Comparison with AutoGroup
The AutoGroup tool [6] was used as the starting point for

our implementation, hence the name of AutoGroup+. Our 48
translation experiments overlap with AutoGroup in 14 points
(seven schemes in common and they do fewer optimizations).
For these 14, the tools found the same constructions. How-
ever, a major difference is that with AutoGroup+, we have
security guarantees. This required us to write new SDL de-
scriptions for all the assumptions and proofs involved.

Indeed, one crucial question was how the security logic
would increase translation times. We focused our effort on
leveraging an SMT Solver to help handle this security logic,
which kept the running times of AutoGroup+ within a few
seconds of AutoGroup.

In addition to the security logic we added, we also found
that the public key optimization flag for encryption was not
implemented. Because we wanted to compare our results
with [2], we implemented it.

AutoGroup was tested on one signature scheme omitted
here. Boneh-Boyen [12] has a nested proof structure that
falls outside of the black box reductions considered here.

5.4 Comparison with manual translations
The Dual System Encryption scheme of Waters [26] has a

few manual translations with a security analysis. Ramanna,
Chatterjee and Sarkar [23] provide a variety of translations,
one with the smallest public parameter/key size, at the cost
of introducing some mild complexity assumptions. Similarly,
Chen, Lim, Ling, Wang and Wee [17] presented a transla-
tion introducing the SXDH assumption, which achieved the
shortest ciphertext size. These results are superior to those
derived by AutoGroup+ and [2, 6], but it is not yet clear how
to generalize and systematize the human creativity used.

6. CONCLUSIONS
Automation is the future for many cryptographic design

tasks. This work successfully demonstrates automating a
complex translation of a scheme from one algebraic setting
to another. There was a demonstrated need for such a com-
piler both for pairing designers and implementors. Its re-
alization combined and improved on contributions from the
systems [6] and theory [2] communities. The result is a prac-
tical tool, AutoGroup+, that enables secure pairing transla-
tions for everyone.

7. ACKNOWLEDGMENTS
The authors thank Masayuki Abe, Jens Groth, Miyako

Ohkubo, Takeya Tango for very helpful discussions regard-
ing this work and their prior CRYPTO 2014 work.

8. REFERENCES
[1] M. Abe, M. Chase, B. David, M. Kohlweiss, R. Nishimaki,

and M. Ohkubo. Constant-size structure-preserving
signatures: Generic constructions and simple assumptions.
Cryptology ePrint Archive, Report 2012/285, 2012.

[2] M. Abe, J. Groth, M. Ohkubo, and T. Tango. Converting
cryptographic schemes from symmetric to asymmetric
bilinear groups. In CRYPTO, pages 241–260, 2014.

[3] M. Abe, J. Groth, M. Ohkubo, and T. Tango, 2015. Private
communications.

[4] J. A. Akinyele, C. Garman, and S. Hohenberger.
Automating Fast and Secure Translations from Type-I to
Type-III Pairing Schemes, 2015. Full version at Cryptology
ePrint Archive Report 2015/290.

[5] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano,
M. Rushanan, M. Green, and A. D. Rubin. Charm: a
framework for rapidly prototyping cryptosystems. Journal
of Cryptographic Engineering, 3(2):111–128, 2013.
http://www.charm-crypto.com/Main.html.

[6] J. A. Akinyele, M. Green, and S. Hohenberger. Using SMT
solvers to automate design tasks for encryption and
signature schemes. In ACM CCS, pages 399–410, 2013.

[7] J. A. Akinyele, M. Green, S. Hohenberger, and M. W.
Pagano. Machine-generated algorithms, proofs and software
for the batch verification of digital signature schemes. In
ACM CCS, pages 474–487, 2012.

[8] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient
Library for Cryptography.
http://code.google.com/p/relic-toolkit/.

[9] G. Barthe, E. Fagerholm, D. Fiore, J. C. Mitchell,
A. Scedrov, and B. Schmidt. Automated analysis of
cryptographic assumptions in generic group models. In
CRYPTO 2014, pages 95–112, 2014.

[10] D. Boneh and X. Boyen. Efficient selective-id secure
identity-based encryption without random oracles. In
EUROCRYPT, volume 3027, pages 223–238. 2004.

[11] D. Boneh and X. Boyen. Efficient selective-id secure
identity based encryption without random oracles.
Cryptology ePrint Archive, Report 2004/172, 2004.

[12] D. Boneh and X. Boyen. Short signatures without random
oracles. In EUROCRYPT, volume 3027, pages 382–400,
2004.

[13] D. Boneh and M. K. Franklin. Identity-based encryption
from the Weil pairing. In CRYPTO, pages 213–229, 2001.

[14] D. Boneh, C. Gentry, and B. Waters. Collusion resistant
broadcast encryption with short ciphertexts and private
keys. In CRYPTO, pages 258–275, 2005.

[15] D. Boneh, B. Lynn, and H. Shacham. Short signatures from
the Weil pairing. J. of Cryptology, 17(4):297–319, 2004.

[16] J. Camenisch and A. Lysyanskaya. Signature schemes and
anonymous credentials from bilinear maps. In CRYPTO,
volume 3152, pages 56–72, 2004.

[17] J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee.
Shorter IBE and signatures via asymmetric pairings. In
Pairing, pages 122–140. Springer, 2013.

[18] J. Chen, H. W. Lim, S. Ling, H. Wang, and H. Wee.
Shorter identity-based encryption via asymmetric pairings.
Des. Codes Cryptography, 73(3):911–947, 2014.

[19] A. Contributors. Advanced crypto software collection.
http://hms.isi.jhu.edu/acsc/.

[20] L. De Moura and N. Bjørner. Z3: an efficient SMT solver.
In Proceedings of the Theory and practice of Software,
TACAS’08/ETAPS’08, pages 337–340, 2008.

[21] C. Gentry. Practical identity-based encryption without
random oracles. In EUROCRYPT, pages 445–464, 2006.

[22] S. Krishnamurthy. HP to Acquire Voltage Security to
Expand Data Encryption Security Solutions for Cloud and
Big Data. http://www.voltage.com/blog/releases,
February 9, 2015.

[23] S. C. Ramanna, S. Chatterjee, and P. Sarkar. Variants of
Waters’ dual system primitives using asymmetric pairings -
(extended abstract). In PKC ’12, pages 298–315, 2012.

[24] E. P. Team. Easycrypt: Computer-aided cryptographic
proofs. https://www.easycrypt.info/trac/.

[25] B. Waters. Efficient identity-based encryption without
random oracles. In EUROCRYPT ’05, volume 3494 of
LNCS, pages 320–329. Springer, 2005.

[26] B. Waters. Dual system encryption: Realizing fully secure
IBE and HIBE under simple assumptions. In CRYPTO,
pages 619–636, 2009.

1381

