
Poster: Bento: Bringing Network Function Virtualization to Tor
Michael Reininger
University of Maryland

Arushi Arora
Purdue University

Stephen Herwig
University of Maryland

Nicholas Francino
University of Maryland

Christina Garman
Purdue University

Dave Levin
University of Maryland

ABSTRACT
Tor is a powerful and important tool for providing anonymity and
censorship resistance to users around theworld. Yet it is surprisingly
difficult to deploy new services in Tor—it is largely relegated to
proxies and hidden services—or to nimbly react to new forms of
attack. Conversely, “non-anonymous” Internet services are thriving
like never before because of recent advances in programmable
networks, such as Network Function Virtualization (NFV) which
provides programmable in-network middleboxes.

This work seeks to close this gap by introducing programmable
middleboxes into the Tor network. In this architecture, users can
install and run sophisticated “functions” on willing Tor routers,
further improving anonymity, resilience to attack, performance of
hidden services, and more. We present the design of an architecture,
Bento, that protects middlebox nodes from the functions they run—
and protects the functions from the middleboxes they run on. Bento
does not require modifications to Tor, and can run on the live
Tor network. Additionally, we give an overview of how we can
significantly extend the capabilities of Tor to meet users’ anonymity
needs and nimbly react to new threats.
ACM Reference Format:
Michael Reininger, Arushi Arora, StephenHerwig, Nicholas Francino, Christina
Garman, and Dave Levin. 2020. Poster: Bento: Bringing Network Function
Virtualization to Tor. In 2020 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’20), November 9–13, 2020, Virtual Event, USA.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3372297.3420020

1 INTRODUCTION
Anonymity systems are critical in achieving free, open commu-
nication on today’s Internet. In particular, Tor [4] has become a
staple in resisting online censorship by rogue nations and allowing
journalists to safely communicate with sources world-wide [10].
However, there is a surprisingly narrow set of services that Tor
is able to support in a robust fashion. Today, the use of Tor is
largely relegated to web proxies and hidden services [13], and, un-
fortunately, neither of these applications has the ability to scale
to handle dynamic workloads or attacks by automated bots [9].
Moreover, Tor has had to wage multiple concurrent arms races
to combat a wide slew of attacks like website fingerprinting and
bridge node detection—unfortunately, rolling out new defenses can

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’20, November 9–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7089-9/20/11.
https://doi.org/10.1145/3372297.3420020

be slow and cumbersome. Conversely, services on the standard,
“non-anonymous” Internet are thriving like never before. Impres-
sive innovations in network function virtualization (NFV) [12] in
particular have resulted in more robust, scalable, and resilient net-
work services. The present and future Internet is comprised of
programmable networks, but there do not exist the basic primitives
to achieve such features in anonymous networks.

We introduce Bento, a new architecture that augments the Tor
anonymity networkwith user-programmable “middleboxes.” Briefly,
Bento allows clients to write sophisticated middlebox “functions”
in a high-level language (Python, in our implementation) and run
them on willing Tor routers. We propose a wide diversity of func-
tions that significantly improve various aspects of Tor, including:
a Browse function that offloads a client’s web browser to avoid
website fingerprinting attacks, a LoadBalance function that auto-
matically scales hidden service replicas up and down to handle
varying load, and a Dropbox function that allows Tor to be used as
an anonymous file store. Through these many functions, we show
that making Tor more programmable carries significant promise.

Naturally, a more programmable Tor network also introduces
several important challenges regarding how to achieve it safely. In
particular, we must be careful to protect middlebox nodes from the
functions they run on others’ behalf—andwemust protect functions
from the middleboxes who run them. To address these concerns,
Bento’s design will employ sandboxes as well as recent advances
in deploying legacy software in trusted secure enclaves [5].

Bento is fundamentally an architecture: its goal is to provide
the core abstractions and mechanisms upon which sophisticated,
anonymous systems can be built. One of our contributions is iden-
tifying and presenting a design for the critical components that col-
lectively support programmable middleboxes: Composable func-
tions: Bento provides mechanisms for installing user-defined func-
tions on Tor nodes, and chaining functions together to perform
more complex tasks; Safe execution environments: Bento em-
ploys an execution environment that is general-purpose enough
to enable a wide range of middlebox functions, but also safe in
the presence of rogue developers or malicious middlebox nodes;
Middlebox node policies: Tor node operators should be able to
express what sorts of things they are willing to do on behalf of func-
tions. We introduce middlebox node policies that represent what a
user is willing to allow functions to do, and enforcement mecha-
nisms to ensure them.

Threat model Our architecture is deployed on top of the existing
Tor network (therefore, it is incrementally and immediately deploy-
able), and as a result we adopt the same network-level threat model
as in traditional Tor. This can vary by user and application, but a

Poster CCS '20, November 9–13, 2020, Virtual Event, USA

2109

https://doi.org/10.1145/3372297.3420020
https://doi.org/10.1145/3372297.3420020

Client InternetBrowse

2 Run function

1 Upload and invoke function

3 Deliver website

Figure 1: Overview of installing, and executing a Browser
“function” that runs on another Tor node, downloads a given
URL, and delivers it, padded to some threshold number of
bytes. Note that, from the perspective of an attacker sniff-
ing the client’s link, the client uploads a small amount and
then downloads a large amount.

common assumption is that of a powerful routing-capable adver-
sary [11], such as a nation-state. Such an adversary often controls a
large network—and can even influence nearby routes to go through
its network—but cannot have a global view of Internet traffic. In
addition to these routing-capable network-based adversaries, our
architecture requires us to consider the threats that can arise from
an altogether new mode of interaction: loading and running code
on other users’ machines. We assume that users naturally have
physical access to their machines, and can thus introspect on run-
ning processes on their machines. However, we also assume that
some Bento middleboxes will have secure enclaves, namely, Intel
SGX. We explicitly assume that these environments are safe; that
is, for any code or data being executed or stored inside of a secure
enclave, we assume that the attacker cannot introspect on either,
despite having physical access to the machine.

Attacks In showing one of the potential benefits of Bento, we con-
sider two broad classes of attack and new ways for how to prevent
them. First, deanonymization attacks [1] seek to infer the two end-
points of a Tor circuit through passive or active traffic analysis.
Routing-capable adversaries are very well-suited for these kinds
of attacks, as they can influence traffic on the entry leg (between
source and entry node) and the exit leg (between exit node and des-
tination) to go through networks they control—at that point, they
can perform straightforward traffic correlation attacks [6]. The sec-
ond broad class of attacks we consider are fingerprinting attacks [8].
Typical defenses involve reordering or batching requests and send-
ing junk control packets to make websites appear indistinguishable
from traffic patterns alone.

2 OVERVIEW OF BENTO
In this poster, we introduce the first architecture to bring the power
of programmable middleboxes to the Tor anonymity network. This
section presents a high-level overview of how Bento enables users
to extend Tor with programmable functions.

Motivating ExampleConsider a user, Alice, who wishes to anony-
mously browse a website over Tor, but who also fears that an ad-
versary who knows her identity has the ability to observe traffic
entering and leaving her machine. Such an adversary could launch,
for instance, a website fingerprinting attack [2] by correlating traffic
patterns with known websites, thereby potentially violating Tor’s
unlinkability property.

Client InternetBrowse

2 Run Browse1 Install Browse+Dropbox

Install Dropbox;

Put data

4 Fetch 3

Dropbox

Tor circuits

Figure 2: In this motivating example, the user composes two
functions: Browser which runs a web client to download a
website, and Dropbox which stores a piece of data to later be
fetched.

Approach Typical solutions to this problem would have Alice
alter her traffic patterns while visiting the website, in the hopes
of confusing the adversary’s attempts at fingerprinting. Instead,
in Bento, Alice can offload processing that would have typically
happened on her own machine to another node in the Tor network.
Figure 1 depicts this; we next describe each step at a high level.

Writing a Function First, Alice writes (or, more likely, downloads)
what we call a function: a (typically small) piece of code in a high-
level, powerful language that is intended to be run on other Tor
nodes. These functions can be powerful, but they are constrained
to a limited API. Also, critically, they run outside of unmodified
Tor—in essence, they are like small servlets running on Tor routers.
In our example, Alice’s function, Browser, is a program that takes
as input a URL to download. Upon being invoked with its input, the
function starts a web client, autonomously downloads her chosen
URL, saves it to a single digest file (e.g., a tarball), and returns the
file, padded to the nearest 1MB.

Deploying a Function InBento, some Tor nodes opt into acting as
middlebox nodes, who are willing to run (some) functions on behalf
of other users. Much like exit nodes, middlebox nodes publicly
specify a policy of what function properties they are and are not
willing to support. Alice chooses a middlebox node who would
be willing to run her function, opens a circuit to it, and, with its
permission, installs the function on it.

Executing a Function Once the function is deployed, Alice sends
a message over the Tor circuit to the middlebox node to invoke
the function on the URL of the site she wishes to visit. Upon re-
ceiving this message, the middlebox node executes the function:
it downloads the website, packages it into a padded archive, and
sends that back to Alice, over the circuit. The attacker observing
Alice’s communication sees two small uploads from Alice (when
she installs the function and when she invokes it), followed by a
large download (the padded website). Thus, because Alice is not
actively involved during the download of the website, the attacker
cannot gain any of the informative traffic dynamics that prior fin-
gerprinting techniques require in order to work.

Composing Functions To further thwart the attacker, Alice de-
cides to go offline completely during the website download. To
achieve this, she composes two functions together, as shown in
Figure 2. In addition to Browser, she also instructs the Browser
function to deploy, on a separate node, a simple Dropbox function

Poster CCS '20, November 9–13, 2020, Virtual Event, USA

2110

Function Description Problem Solved
Browser Runs an application-layer web proxy at the exit node, and delivers padded contents to the client. Website fingerprinting
Cover Instruct desired relay to create a number of circuits; send cover traffic through each new circuit. Circuit fingerprinting
LoadBalancer Balance incoming connections among hidden service hosts. Increased capacity, reliability
Dropbox Allows a node to deposit data; only the node with a matching token can retrieve the data. Traffic correlation
Shard Takes in a file, breaks it into shards, and encrypts each shard. Anonymity, low storage

Table 1: Example middlebox functions.

that supports two invocations: a “put” of a data file and a subse-
quent “get” to retrieve it. Alice then instructs the Browser function
to deliver the (padded) file to Dropbox rather than directly to her.
Some time later, she visits the Dropbox node to fetch the data. From
the perspective of an attacker who can sniff Alice’s link, not only
would she not provide activity that could be fingerprinted: she need
not be online at all while the website was being downloaded!
Why This Helps These motivating use cases show that, with just
simple programs, a user could significantly extend the capabilities
of the Tor anonymity network. We give examples in Table 1 of
a wider variety of functions, which make hidden services more
robust, provide cover traffic when needed, and more. However, to
responsibly achieve this vision, we must adhere to a set of safety
and reliability goals, which we outline next.

3 BENTO GOALS
We have four main goals and one non-goal when designingBento to
ensure safe and secure deployment of our programmable functions:
Expressiveness We wish to empower users to write (or use) so-
phisticated, composable functions. We make use of a high-level
programming language with no inherent limitations.
Protect functions frommiddleboxnodesWemust protect users’
functions against confidentiality and integrity attacks on untrusted
third-party middleboxes. This is similar to the large body of work
on making safe use of untrusted third-party compute resources like
cloud computing [3] or even Tor itself [7]. To achieve these, we
employ recent advances in deploying legacy software in trusted
secure enclaves [5].
Protect middlebox nodes from functionsWe must also protect
the users who run the middlebox nodes. Much like how Tor relays
can express the destinations for which they wish to serve as exit
nodes, middlebox nodes should be able to express policies over the
actions they do and do not wish to perform on behalf of other users.
Our solution is middlebox node policies, which allow middlebox
operators to specify which system calls to permit, and how many
resources to provide to functions. We aim to enforce these policies
by mediating access to all resources.
No Harm to Underlying Tor Deploying Bento should cause no
degradation to the existing anonymity properties of Tor. Our func-
tions run on top of Tor, and interface with it via the Stem library.
NoExtensions to TorWe aim to sit on top of Tor, and to require no
additional user privileges, so as to supportmore robust applications.

4 CONCLUSIONS
In this work, we have argued that programmable anonymity net-
works are useful, possible, and challenging, yet attainable. We have

sketched an example application and various challenges, as well as
some possible avenues to achieve them. Our proposed applications
suggest that even a small amount of programmability would signifi-
cantly improve the speed at which new techniques can be rolled out
into the Tor network; for instance, load balancing at introduction
points has been a proposal for years, but would be a trivial snippet
of code in a more programmable Tor network.

There remain many interesting and important problems that
must be solved in order to achieve programmable anonymity net-
works. We view this work as merely the first step, and we hope that
it engenders a lively discussion among the anonymity community
as well as application developers who wish to expand the offerings
possible on anonymity networks.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CNS-1816422, CNS-
1816802, and CNS-1943240.

REFERENCES
[1] Masoud Akhoondi, Curtis Yu, and Harsha V. Madhyastha. 2013. LASTor: A

Low-Latency AS-Aware Tor Client. In IEEE Symposium on Security and Privacy.
[2] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. 2014.

A Systematic Approach to Developing and Evaluating Website Fingerprinting
Defenses. In ACM Conference on Computer and Communications Security (CCS).

[3] Michael Coughlin, Eric Keller, and Eric Wustrow. 2017. Trusted Click: Over-
coming Security issues of NFV in the Cloud. In ACM International Workshop on
Security in Software Defined Networks & Network Function Virtualization (SDN-
NFVSec).

[4] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium.

[5] Stephen Herwig, Christina Garman, and Dave Levin. 2020. Achieving Keyless
CDNs with Conclaves. In USENIX Security Symposium.

[6] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. 2013.
Users get routed: Traffic correlation on Tor by realistic adversaries. In ACM
Conference on Computer and Communications Security (CCS).

[7] Seong Min Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu Han. 2017.
Enhancing Security and Privacy of Tor’s Ecosystem by Using Trusted Execution
Environments. In Symposium on Networked Systems Design and Implementation
(NSDI).

[8] Albert Kwon, Mashael AlSabah, David Lazar, Marc Dacier, and Srinivas Devadas.
2015. Circuit Fingerprinting Attacks: Passive Deanonymization of Tor Hidden
Services. In USENIX Annual Technical Conference.

[9] Matthew Prince. [n.d.]. The Trouble with Tor. https://blog.cloudflare.com/the-
trouble-with-tor/.

[10] Reporters Without Borders. 2013. Enemies of the Internet 2013, Re-
port. http://surveillance.rsf.org/en/wp-content/uploads/sites/2/2013/03/enemies-
of-the-internet_2013.pdf.

[11] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. 2012.
Routing Around Decoys. In ACM Conference on Computer and Communications
Security (CCS).

[12] R. Soule, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G.Sirer, and N. Foster.
2014. Merlin:A Language for Provisioning Network Resources. InACMConference
on emerging Networking EXperiments and Technologies (CoNEXT).

[13] Tor: Hidden Service Protocol [n.d.]. Tor: Hidden Service Protocol. https:
//www.torproject.org/docs/hidden-services.html.en.

Poster CCS '20, November 9–13, 2020, Virtual Event, USA

2111

https://blog.cloudflare.com/the-trouble-with-tor/
https://blog.cloudflare.com/the-trouble-with-tor/
http://surveillance.rsf.org/en/wp-content/uploads/sites/2/2013/03/enemies-of-the-internet_2013.pdf
http://surveillance.rsf.org/en/wp-content/uploads/sites/2/2013/03/enemies-of-the-internet_2013.pdf
https://www.torproject.org/docs/hidden-services.html.en
https://www.torproject.org/docs/hidden-services.html.en

	Abstract
	1 Introduction
	2 Overview of BENTO
	3 BENTO Goals
	4 Conclusions
	References

