
Authenticated	Encryption	

Kenny	Paterson	

Information	Security	Group	

@kennyog	;	www.isg.rhul.ac.uk/~kp	

Motivation	for	Authenticated	Encryption	

3	

Authenticated	Encryption	(AE)	

Security	goals:		

Confidentiality	and	integrity	of	messages	exchanged	between	Alice	and	Bob.	

Adversarial	capabilities:		

Adversary	can	arbitrarily	delete,	reorder,	modify,	etc,	bits	on	the	wire.	

Adversary	can	mount	chosen	plaintext	and	chosen	ciphertexts	attacks	–	formalised	via	
encryption	and	decryption	oracles.	

Tools	we	have:	

Encryption	(e.g.	block	cipher	in	CBC	mode,	CTR	mode,	stream	cipher)	and	MAC	algorithms	
(e.g.	HMAC,	CBC-MAC).	

m1	

m2	

4	

Formalising	Symmetric	Encryption	

A	symmetric	encryption	scheme	consists	of	a	triple	of	algorithms:	(KGen,Enc,Dec).	

KGen:	key	generation,	selects	a	key	K	uniformly	at	random	from	{0,1}k.	

Enc:	encryption,	takes	as	input	key	K,	plaintext	m	∈	{0,	1}∗	and	produces	output	 	
	c∈	{0,	1}∗.	

Dec:	decryption,	takes	as	input	key	K,	ciphertext	C	∈	{0,	1}∗	and	produces	output	 	
	m	∈	{0,	1}∗	or	an	error	message,	denoted	┴.	

Correctness:	we	require	that	for	all	keys	K,	and	for	all	plaintexts	m,		

DecK(EncK(m))	=	m.	

	

Notes:	

•  Enc	may	be	randomised	(cf.	CBC	mode,	CTR	mode).	

•  In	reality,	there	will	be	a	maximum	plaintext	length	that	can	be	encrypted	by	a	given	
scheme.	

•  	Nonce-based	and	stateful	formalisms	to	follow	later.	

	

	

5	

Authenticated	Encryption	–	Informal	Definition	

A	symmetric	encryption	scheme	is	said	to	offer	Authenticated	Encryption	security	if:	

	

A	chosen	plaintext	attacker	(i.e.	an	attacker	with	access	to	an	encryption	oracle)	can	
learn	nothing	about	plaintexts	from	ciphertexts	except	their	lengths.	

AND		

An	attacker	with	access	to	an	encryption	oracle	cannot	forge	any	new	ciphertexts.	

	

•  What	does	it	mean	“to	learn	nothing	about	plaintexts	from	ciphertexts”?	

•  How	do	we		formalise	“cannot	forge	any	new	ciphertexts”?	

•  Why	is	that	property	important	anyway?	

	

We	use	security	games,	like	the	one	introduced	previously	for	MAC	unforgeability.	

6	

IND-CPA	security	

•  The	adversary	has	repeated	access	to	Left-or-Right	(LoR)	encryption	
oracle.	

•  In	each	query,	the	adversary	submits	pairs	of	equal	length	plaintexts	
(m0,m1)	to	the	oracle.	

•  We	can	have	m0	=	m1,	so	we	get	an	encryption	oracle	“for	free”.	

•  The	adversary	gets	back	c,	an	encryption	of	mb,	where	b	is	a	fixed	but	
random	bit.	

•  After	all	queries	are	made,	the	adversary	outputs	its	estimate	b’	for	bit	b.	

•  The	adversary	wins	if	it	decides	correctly.	

	

	IND	=	Indistinguishable	

	CPA	=	Chosen	Plaintext	Attack	

7	

IND-CPA	security	in	a	picture	

Adversary	 Challenger	

b	←	{0,1}	

(m0,m1)	

c	=	EncK(mb)	c	

b’				Adversary	wins	if	b	=b’	

K	←	KGen	

8	

IND-CPA	security	

The	adversary’s	advantage	in	the	IND-CPA	security	game	is	
defined	to	be:	

|Pr(b=b’)	-	1/2|.	

•  We	have	“-1/2”	here	because	a	dumb	adversary	can	always	
guess.	

•  A	scheme	SE	is	said	to	be	IND-CPA	secure	if	the	advantage	is	
“small”	for	any	adversary	using	“reasonable”	resources.	

•  Concepts	of	“small”	and	“reasonable”	can	be	formalised,	but	
are	beyond	the	scope	of	this	talk.	

•  It	can	be	proved	that	schemes	like	CBC-mode	and	CTR-mode	
meet	this	security	definition	if	used	properly	and	if	they	are	built	
using	a	good	block	cipher.	

9	

Motivating	stronger	security	

In	CBC	and	CTR	modes,	an	active	adversary	can	manipulate	
ciphertexts	and	learn	information	from	how	these	are	decrypted.	

•  For	CTR	mode,	bit	flipping	in	plaintext	is	trivial	by	performing	bit	
flipping	in	the	ciphertext.	

•  Modify	c	to	c	XOR	Δ	to	change	the	underlying	plaintext	from	p	to	p	XOR	
Δ	.	

•  CBC	mode:	cut	and	paste	attacks,	padding	oracle	attacks.	

•  Or	create	completely	new	ciphertexts	from	scratch?	

•  A	random	string	of	bits	of	the	right	length	is	a	valid	ciphertext	
for	some	plaintext	for	both	CBC	and	CTR	modes!	

10	

Motivating	stronger	security	

•  These	kinds	of	attack	do	not	break	IND-CPA	security,	but	are	
clearly	undesirable	if	we	want	to	build	secure	channels.	

•  A	modified	plaintext	may	result	in	wrong	message	being	
delivered	to	an	application,	or	unpredictable	behaviour	at	the	
receiving	application.	

•  We	really	want	some	kind	of	non-malleable	encryption,	
guaranteeing	integrity	as	well	as	confidentiality.	

•  Two	basic	security	notions:	integrity	of	plaintexts	and	integrity	
of	ciphertexts.	

11	

INT-CTXT	security	in	a	picture	

Adversary	 Challenger	

m	

c	=	EncK(m)	c	

Adversary	wins	if	c*	is	
“new”	and	m*	≠	┴		

K	←	KGen	

Try(c*)	
m*	=	DecK(c*)	

12	

Integrity	of	Ciphertexts	–	INT-CTXT	

•  Attacker	has	repeated	access	to	an	encryption	oracle	and	a	“Try”	oracle.	

•  Encryption	oracle	takes	any	m	as	input,	and	outputs	EncK(m).	

•  Try	oracle	takes	any	c*	as	input	(and	has	no	output).	

•  Adversary’s	task	is	to	submit	c*	to	its	Try	oracle	such	that:	

1.  	c*	is	distinct	from	all	the	ciphertexts	c	output	by	the	encryption	oracle;	and	

2.  DecK(c*)	decrypts	to	message	m*	≠	┴.	

•  Hence	adversary	wins	if	it	can	create	a	“ciphertext	forgery”	–	a	new	
ciphertext	that	it	did	not	get	from	its	encryption	oracle.	

•  NB:	we	do	not	insist	that	m*	be	different	from	all	the	m	queried	to	the	
encryption	oracle,	only	that	c*	be	different	from	all	the	outputs	of	that	
oracle.	

13	

INT-CTXT	security	

•  A	symmetric	encryption	scheme	is	said	to	provide	INT-CTXT	
security	if	the	success	probability	of	any	adversary	using	
reasonable	resources	is	small.	

•  Again,	this	can	be	made	precise	(but	not	today!).	

	

14	

INT-PTXT	security	in	a	picture	

Adversary	 Challenger	

m	

c	=	EncK(m)	c	

Adversary	wins	if	m*	is	
“new”	and	m*	≠	┴		

K	←	KGen	

Try(c*)	
m*	=	DecK(c*)	

15	

INT-PTXT	security	

•  INT-PTXT:	same	as	INT-CTXT,	but	now	adversary	needs	to	
come	up	with	a	ciphertext	c*	that	encrypts	a	message	m*	such	
that	m*	was	never	queried	to	the	encryption	oracle.	

•  Informally,	INT-PTXT	security	means	that	the	adversary	can’t	
force	a	new	plaintext	to	be	accepted	by	the	receiver.	

•  If	a	scheme	is	INT-CTXT	secure,	then	it	is	also	INT-PTXT	secure.	

•  For	a	secure	channel,	we	actually	want	INT-PTXT	security,	not	
INT-CTXT	security.	(Why?)	

Definitions	for	AE	Security	

Recall	that	a	symmetric	encryption	scheme	is	said	to	offer	Authenticated	
Encryption	security	if:	
	

A	chosen	plaintext	attacker	can	learn	nothing	about	plaintexts	from	
ciphertexts	except	their	lengths.	

AND		
An	attacker	with	access	to	an	encryption	oracle	cannot	forge	any	new	

ciphertexts.	
	

17	

AE	Security	

More	formally,	we	can	now	say	that:	

AE	=	IND-CPA	+	INT-CTXT	

18	

What	about	chosen	ciphertext	attacks?	

•  We	are	also	interested	in	security	against	chosen	ciphertext	
attacks.	

•  Here	the	adversary	has	access	to	both	an	encryption	oracle	and	a	
decryption	oracle.	

•  Leading	to	the	IND-CCA	security	notion,	stronger	than	IND-CPA.	

•  This	attack	model	may	arise	in	practice,	or	the	attacker	may	
have	an	approximation	to	a	decryption	oracle.	

•  An	attacker	might	not	be	able	to	learn	the	full	plaintext,	but	could	get	
partial	information	about	the	decryption	process,	for	example,	error	
messages,	timing	information,	etc.	

•  cf.	padding	oracle	attacks,	ICMP	attack	on	IPsec,	etc.	

19	

IND-CCA	security	in	a	picture	

Adversary	 Challenger	

b	←	{0,1}	

(m0,m1)	

c*	=	EncK(mb)	
c*	

b’	 			Adversary	wins	if	b	=b’	

K	←	KGen	

c	

┴/m	=	DecK(c)	┴/m	

20	

AE	Security	implies	IND-CCA	security	

Informal	reasoning:	

•  Suppose	we	have	a	successful	IND-CCA	adversary	against	an	AE-secure	
scheme.	

•  Its	decryption	oracle	is	only	any	use	to	it	if	it	can	come	up	with	a	new	and	valid	
ciphertext	c*	not	output	by	the	encryption	oracle.	

•  Because	otherwise	it	knows	the	underlying	plaintext	already.	

•  But	if	it	can	come	up	with	a	new	ciphertext	c*,	then	it	has	broken	INT-CTXT	
security!	

•  But	this	creates	a	contradiction,	since	AE	security	implies	INT-CTXT	security.	

•  So	we	can	assume	the	adversary	never	comes	up	with	a	valid		c*.	

•  This	means	we	can	always	reply	with	“┴”	to	any	decryption	query.	

•  This	means	the	IND-CCA	adversary	is	effectively	reduced	to	being	an	IND-CPA	
one.	

•  But	this	contradicts	AE	security	too,	since	AE	security	implies	IND-CPA	security.	

21	

Relations	between	security	notions	

AE:		
	IND-CPA+	
INT-CTXT	

IND-CCA	 IND-CPA		
+	INT-PTXT	

IND-CPA	 INT-PTXT	

22	

AE	security	and	beyond	

•  AE	security	has	emerged	as	the	natural	target	security	notion	
for	symmetric	encryption.	

•  In	part	because	AE	security	implies	IND-CCA	security	and	INT-
PTXT	security.	

•  However	it’s	not	the	end	of	the	story:	
•  In	many	applications	we	want	to	integrity	protect	some	data	and	provide	

confidentiality	for	the	remainder	–	AE	with	Associated	Data,	AEAD.	

•  AE	security	does	not	protect	against	attacks	on	secure	channels	based	on	
reordering	or	deletion	of	ciphertexts.	

•  For	this,	we	need	stateful	or	nonce-based	security	definitions.	

	

Generic	composition	

Generic	composition	for	AE	

•  We	have	IND-CPA	secure	encryption	schemes	(e.g.	CBC	
mode,	CTR	mode)	and	we	have	SUF-CMA	secure	MAC	
schemes.	

•  Can	we	combine	these	to	obtain	AE	security	for	symmetric	
encryption?	

•  Problem	first	addressed	by	Bellare-Namprempre	(2000)	and	
Krawczyk	(2001).	

•  Generic	options:	E&M,	MtE,	EtM.		

•  (In	what	follows,	KM	denotes	a	MAC	key,	and	KE	an	
encryption	key.)	

	
24	

Generic	composition	for	AE	

Encrypt-and-MAC	(E&M)		

•  compute	c’	←	EncKE(m)	and	τ	←	TagKM	(m)	and	output	c	=	(c’,τ).	

•  used	in	SSH		
MAC-then-Encrypt	(MtE)		

•  compute	τ	←	TagKM(m)	and	output	c	=	EncKE	(m	||	τ).	

•  used	in	TLS		
Encrypt-then-MAC	(EtM)		

•  	compute	c’	←	EncKE	(m)	and	τ		←	TagKM	(c’)	and	output	c	=		(c’,τ).	

•  used	in	IPsec	ESP	“enc	+	auth”	

25	

Security	of	generic	composition	for	AE	

•  Generic	options:	E&M,	MtE,	EtM.	

•  Of	these,	only	EtM	gives	AE	security	in	general.	

•  Assuming	encryption	is	IND-CPA	secure	and	MAC	is	SUF-CMA	secure.	

•  Intuition:	MACing	the	ciphertext	c’	provides	ciphertext	integrity;	IND-
CPA	security	of	encryption	carries	over	to	the	composition.	

•  Plus	point:	check	MAC	on	ciphertext,	don’t	even	decrypt	if	it	fails;	no	
temptation	for	programmer	to	“use	the	plaintext	anyway”	if	MAC	fails.	

26	

Security	of	generic	composition	for	AE	

•  To	see	why	E&M	fails	to	be	secure	in	general:		

•  Suppose	we	have	a	SUF-CMA	secure	MAC	scheme,	with	tagging	
algorithm	TagKM	(m).			

•  Think	about	the	MAC	scheme	which	outputs	TagKM	(m)	||	m.	

•  Is	it	SUF-CMA	secure?	

•  What	about	the	security	of	the	resulting	E&M	scheme?	

27	

Security	of	generic	composition	for	AE	

To	see	why	MtE	can	fail	to	be	secure	is	more	subtle.	

	

Example	

Consider	the	MtE	encryption	scheme	in	which	MAC	is	provided	by	
HMAC	and	the	encryption	scheme	is	provided	by	CBC-mode	
using	simplified	TLS	padding.	

Good	MAC	(SUF-CMA)	and	good	encryption	scheme	(IND-CPA)!	

•  KGen:	select	at	random	two	keys,	KM,	KE.		

•  Encryption:	c	=	CBC-EncKE	(TLS-PAD(m	||	TagKM(m))).	

•  Decryption:	???	
28	

Security	of	MtE	generic	composition	for	AE	

•  Encryption:	c	=	CBC-EncKE	(TLS-PAD(m	||	TagKM(m))).	

•  Decryption:		
1.  Perform	CBC-mode	decryption.	

2.  Perform	depadding		–		possibility	of	padding	error.	

3.  Perform	MAC	verification	–	possibility	of	MAC	verification	error.	

If	the	errors	at	steps	2	and	3	are	distinguishable,	then	we	can	carry	out	a	
padding	oracle	attack!	

•  Padding	error	->	padding	bad.	

•  MAC	verification	error	->	padding	good!	

This	attack	is	a	special	case	of	a	chosen-ciphertext	attack,	which	should	be	
prevented	by	AE	security	(recall	AE	security	implies	IND-CCA	security).	

29	

Security	of	MtE	generic	composition	for	AE	

•  We’ve	just	seen	an	example	of	a	scheme	constructed	from	
components	that	are	both	good	(IND-CPA	secure	encryption	
scheme,	SUF-CMA	secure	MAC)	but		for	which	the	MtE	
composition	fails	to	be	secure.	

•  The	example	is	closely	related	to	the	construction	that	is	used	
in	TLS.	

•  Specific	ways	of	instantiating	MtE	can	be	made	secure,	but	it’s	
unsafe	in	general	and	must	be	avoided	wherever	possible.	

30	

AEAD	

32	

Authenticated	Encryption	with	Associated	Data	(AEAD)	

In	practical	applications,	we	often	require	confidentiality	and	integrity	for	some	
data	fields	and	only	integrity	for	others.	

Example:	ESP	in	transport	and	tunnel	modes	in	IPsec	

Inner	

IP	header	

Tunnel	mode:	

Outer	

IP	header	

Payload		

(e.g.	TCP,	UDP,	ICMP)	

ESP	

trlr	

ESP	hdr	
SPI,	seq#	

MAC	scope	

Encryption	scope	

Payload		

(e.g.	TCP,	UDP,	ICMP)	
ESP	hdr	
SPI,	seq#	

Transport	mode:	

Original	

IP	header	
ESP	

trlr	

ESP	

auth	

Encryption	scope	

MAC	scope	

ESP	

auth	

33	

Authenticated	Encryption	with	Associated	Data	(AEAD)	

An	AEAD	scheme	consists	of	a	triple	of	algorithms:	(KGen,Enc,Dec).	

KGen:	key	generation,	selects	a	key	K	uniformly	at	random	from	{0,1}k.	

Enc:	encryption,	takes	as	input	key	K,	associated	data	AD	∈	{0,	1}∗,	plaintext	
	m	∈	{0,	1}∗,	and	produces	output	c∈	{0,	1}∗.	

Dec:	decryption,	takes	as	input	key	K,	associated	data	AD	∈	{0,	1}∗,	
	ciphertext	c	∈	{0,	1}∗,	and	produces	output	m	∈	{0,	1}∗	or	an	error	
	message,	denoted	┴.	

Correctness:	we	require	that	for	all	keys	K,	for	all	associated	data	strings	AD,	
and	for	all	plaintexts	m:	

DecK(AD,EncK(AD,m))	=	m.	

AEAD	security	(informal):	

	IND-CPA	security	for	messages	m,	integrity	for	combination	of	
	associated	data	AD	and	ciphertext	c.		

	

Nonce-based	AEAD	

Nonce-based	AEAD	

Nonce-based	AEAD	=	AEAD	with	nonces!	

	

Motivation:		

•  AEAD	schemes	as	we	have	described	them	so	far	must	consume	
randomness	in	Enc	algorithm	to	achieve	AE	security		

•  (IND-CPA	security	requires	randomised	encyption	–	why?)	

•  Guaranteeing	good	sources	of	randomness	is	hard.	

•  It’s	dangerous	to	hand	this	responsibility	to	the	programmer,	by	asking	him	
to	supply	the	required	randomness	(e.g.	IV	for	CBC	mode).	

•  It	is	arguably	easier	to	ensure	that	the	programmer	always	passes	a	new	
nonce	value	as	one	of	the	inputs	to	the	Enc	algorithm	(along	with	message	
m	and	associated	data	AD).	

35	

36	

Nonce-based	AEAD	

A	nonce-based	AEAD	scheme	consists	of	a	triple	of	algorithms:	
(KGen,Enc,Dec).	

KGen:	key	generation,	selects	a	key	K	uniformly	at	random	from	{0,1}k.	

Enc:	encryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	 	
	AD	∈	{0,	1}∗,	plaintext	m	∈	{0,	1}∗,	and	produces	output	c∈	{0,	1}∗.	

Dec:	decryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	 	
	AD	∈	{0,	1}∗,	ciphertext	c	∈	{0,	1}∗,	and	produces	output	m	∈	{0,	1}∗	or	
	an	error	message,	denoted	┴.	

Correctness:	we	require	that	for	all	keys	K,	for	all	nonces	N,	for	all	associated	
data	strings	AD,	and	for	all	plaintexts	m:	

DecK(N,AD,EncK(N,AD,m))	=	m.	

	

37	

Security	for	nonce-based	AEAD	

Nonce-based	AEAD	security	(informal):	

	IND-CPA	security	for	messages	m,	integrity	for	combination	of	
	associated	data	AD	and	ciphertext	c,	for	adversaries	that	never	repeat	the	

nonce	in	encryption	queries.	

	

•  In	the	IND-CPA	security	game,	the	adversary	now	gets	to	specify	a	pair	
(m0,m1),	along	with	AD	and	N	in	encryption	queries.		

•  Adversary	never	repeats	N.	

•  In	the	INT-CTXT	game,	adversary	now	gets	to	specify	m,	AD	and	N	in	
encryption	queries.		

•  Adversary	never	repeats	N.	

•  Idea	of	nonce	restriction:	application	will	ensure	an	adversary	can	never	
access	encryption/decryption	functionalities	with	a	repeated	nonce.	

	

38	

Using	nonce-based	AEAD	

Enc:	encryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	AD	∈	{0,	
1}∗,	plaintext	m	∈	{0,	1}∗,	and	produces	output	c∈	{0,	1}∗.	
Dec:	decryption,	takes	as	input	key	K,	nonce	N∈	{0,	1}n,	associated	data	AD	∈	{0,	
1}∗,	ciphertext	c	∈	{0,	1}∗,	and	produces	output	m	∈	{0,	1}∗	or	an	error	message,	
denoted	┴.	
	
Notes:	
•  For	decryption	to	“undo”	encryption,	the	same	value	of	the	associated	data	AD	

needs	to	be	used.	
•  But	the	ciphertext	c	does	not	“contain”	AD.	
•  In	applications,	AD	may	need	to	be	sent	along	with	c,	or	be	reconstructed	at	the	

receiver.	
•  For	decryption	to	“undo”	encryption,	the	same	nonce	value	N	needs	to	be	used.	
•  Again,	N	is	not	included	in	the	ciphertext	c.	
•  In	applications,	then,	sender	and	receiver	typically	maintain	a	synchronized	

counter	to	ensure	they	both	use	the	same	N	when	encrypting	and	decrypting.	

39	

Using	nonce-based	AEAD	

•  A	sends	B	a	sequence	of	messages	m0,	m1,	m2,…	using	nonce-based	AEAD.	

•  A	uses	an	incrementing	counter	for	the	nonces;	B	uses	the	same	counter	values	when	
decrypting.	

•  What	happens	if	the	adversary	deletes	a	ciphertext?	

•  What	happens	if	the	adversary	reorders	the	ciphertexts,	delivering	c2	before	c1,	say?	

•  In	both	cases,	receiver	will	use	the	wrong	counter	during	decryption,	so	decryption	will	
fail,	producing	an	error	message;	adversary	learns	nothing,	and	so	can’t	arrange	
undetectable	deletion	or	force	a	message	to	be	delivered	“out	of	order”.		

c0	=	EncK(N=0,	AD0,	m0)	

c1	=	EncK(N=1,	AD1,	m1)	

c2	

c2	=	EncK(N=2,	AD2,	m2)	

c1	

c0	

m0	=	DecK(N=0,	AD0,	c0)	

m1	=	DecK(N=1,	AD1,	c1)	

m2	=	DecK(N=2,	AD2,	c2)	

Further	Constructions	

41	

AEAD	constructions	

So	far	we	have	only	seen	generic	constructions	for	AE	schemes.		

•  EtM	is	the	only	one	that	is	safe	to	use.	

•  EtM	extends	to	the	AEAD	setting:	

	 	c’	←EncKE(m);	τ’	←TagKM(AD	||	c’)	and	c	=(c’,τ’).		

•  NB	this	is	only	secure	if	the	length	of	AD	is	fixed	or	otherwise	known	to	both	Enc	and	
Dec	algorithms.	

•  EtM	also	extends	to	the	nonce-based	setting	if	“E”	is	a	nonce-based	encryption	
scheme.	

•  Example:	CBC-mode	with	IV	=	EK(N)		-	use	key	to	derive	“random”	IV	block	from	nonce.	

•  Many	other	AEAD	schemes	are	available;	we	will	look	at	just	two,	CCM	and	GCM.	

CCM	

CCM	=	Counter	with	CBC	MAC.	

•  Basically,	an	instantiation	of	MtE	with	M	=	CBC-MAC	and	E	=	CTR	mode,	using	a	128-bit	
block	cipher,	e.g.	AES.	

Modifications:		

•  Use	same	key	for	“M”	and	“E”	components.	(Bad	idea	in	general,	OK	here.)	

•  Apply	CBC-MAC	to	the	string:	h	=	N	||	len(m)64	||	m	||	len(AD)64	||	AD	||	padding.		

•  Here,	“||”	means	concatenate,	len(X)64	means	the	64-bit	encoding	of	the	length	of	string	
X.		

•  Initial	counter	value	for	CTR	mode	is	t	=	N	||	064,	where	N	is	the	(64-bit)	nonce.			

	

42	

CTR	mode	
encryption	

CBC	MAC	

CCM	

CCM	=	Counter	with	CBC	MAC.	

•  CCM	is	quite	slow:	it	needs	one	pass	over	associated	data	AD	in	CBC-MAC	and	two	
passes	over	the	message	m,	one	in	CBC-MAC	and	one	in	CTR-mode	encryption.	

•  CCM	only	uses	block	cipher	in	“forward	direction”,	i.e.	only	“E”	and	no	“D”.	

•  CCM	is	patent-free.	

•  CCM	is	used	in	WPA2,	the	successor	to	WEP	and	WPA/TKIP.	

•  CCM	is	standardised	for	use	in	IPsec	and	TLS	1.2.	

•  CCM	is	specified	in	full	in	RFC	3610	(https://tools.ietf.org/html/rfc3610).	

•  CCM	has	as	a	security	proof	based	on	block	cipher	being	a	pseudo-random	
permutation.	

•  No	known	attacks	(when	implemented	properly!)	

	

43	

GCM	

GCM	=	Galois	Counter	Mode.	

•  Basically,	an	instantiation	of	EtM	with	E	=	CTR	mode	using	a	128-bit	block	cipher,	e.g.	
AES,	and	M	=	a	Wegman-Carter	MAC.	

•  Nonces	N	can	be	of	arbitrary	length,	special	processing	for	96-bit	case	for	speed.	

•  Faster	than	CCM:	speed	up	comes	from	use	of	fast	MAC	algorithm	built	from	universal	
hash	function	family	called	GHASH.	

•  GCM	only	uses		block	cipher	in	“forward	direction”,	i.e.	only	“E”	and	no	“D”.	

•  AD	and	m	can	be	processed	in	block-wise	fashion,	no	buffering	required.	

•  GCM	is	patent-free.	

•  GCM	is	standardised	for	use	in	IPsec	and	TLS	1.2,	now	widely	used	in	TLS.	

•  GCM	is	specified	in	full	in	NIST	Special	Publication	SP800-38D	(2007).	

•  GCM	has	a	security	proof	based	on	block	cipher	being	a	pseudo-random	permutation.	

•  No	known	attacks	of	significance	(when	implemented	properly!)	

	
44	

GCM	(for	96-bit	nonces)	

45	

AD	

N	||	1031	

Encryption	
mask	for	
universal	
hash	

CTR	mode	
encryption	

Universal	hash	function	on		
AD	||	c	||	len(AD)64	||	len(c)64.	

Other	things	you	should	probably	know	about	AE	

•  Other	modes	are	seeing	growing	adoption,	e.g.	OCB.	

•  Recent	SHA-3	winner	KECCAK	can	be	adapted	to	produce	an	AE	scheme!	

•  The	whole	area	was	mired	in	patents	on	early	algorithm	designs	but	the	
situation	is	gradually	improving.	

•  Don’t	rely	on	wikipedia	for	discussion	of	the	security	of	generic	composition	
(it	says	MtE	is	OK;	it’s	not	in	general)!	

•  CAESAR	competition	on-going	(http://competitions.cr.yp.to/caesar.html),	
generating	lots	of	new	research	activity	and	some	controversy.	

•  See	also	the	AE	zoo	https://aezoo.compute.dtu.dk/doku.php	

46	

Going	Still	Further	

AEAD	≠	secure	channel	

•  Think	about	the	application	developer:	
•  She/he	wants	a	drop-in	replacement	for	TCP	that’s	secure.	

•  Actually,	she/he	might	just	want	to	send	and	receive	some	
atomic	messages	and	not	a	TCP-like	stream.	

•  To	what	extent	does	AEAD	meet	this	requirement?	

•  It	doesn’t…	

48	

AEAD	≠	secure	channel	

There’s	a	significant	semantic	gap	between	AEAD’s	functionality	
and	raw	security	guarantees,	and	all	the	things	a	developer	
expects	a	secure	channel	to	provide.	

49	

m1	

m2	

Ch	Enc(.,.,.)	

Dec(.,.,.)	

+	

Example:	cookie	cutters	

Bhargavan,	Delignat-Lavaud,	Fournet,	Pironti,	Strub	2014:	cookie	
cutter	attack	on	“HTTP	over	SSL/TLS”.	

•  Attacker	forces	part	of	the	HTTP	header	(e.g.,	cookie)	to	be	cut	
off.	

•  Partial	message/header	arrives	and	might	be	misinterpreted.	

50	

c=	Enc(Set-Cookie: SID=[AuthenticationToken]; secure)	
Ch	

Set-Cookie: SID=[AuthenticationToken] 	

Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation

The record layer fragments information blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved in the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced into
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records).

RFC	5246	TLS	v1.2	
51	

Cookie	cutters	

Why	doesn’t	this	violate	the	proven	integrity	of	SSL/TLS	
encryption?	

6.2.1. Fragmentation

The record layer fragments information blocks
into TLSPlaintext records [...]. Client
message boundaries are not preserved in the
record layer (i.e., multiple client messages
of the same ContentType MAY be coalesced into
a single TLSPlaintext record, or a single
message MAY be fragmented across several
records).

RFC	5246	TLS	v1.2	
52	

Cookie	cutters	

•  So	SSL/TLS	can	(and	will)	fragment	when	sending.	

•  Compare	to	SSH	that	has	to	deal	with	fragments	when	
receiving.	

•  Both	protocols	provide	a	streaming	interface	to	
applications,	not	a	message-oriented	one.	

53	

Set-Cookie:
SID=[AuthToken];
secure	

Ch	
Set-
Cookie:
SID = …

Set-Cookie:
SID=[AuthToken]

2	TLS	records	

Cookie	cutters	

•  It’s	up	to	the	calling	application	to	deal	with	message	boundaries	if	it	
wants	to	use	SSL/TLS	for	atomic	message	delivery.	

•  Cookie	cutter	attack	relies	on	a	buggy	browser	that	does	not	check	
for	correct	HTTP	message	termination.	

•  This	happens	in	practice,	presumably	because	developers	do	not	
understand	the	interface	provided	by	SSL/TLS.	

54	

Set-Cookie:
SID=[AuthToken];
secure	

Ch	
Set-
Cookie:
SID = …

Set-Cookie:
SID=[AuthToken]

From	AEAD	to	secure	channels	

From	AEAD	to		secure	channels	

•  SSL/TLS	is	not	alone	in	presenting	a	streaming	interface	
to	applications.	

•  Also	SSH	“tunnel	mode”,	QUIC.	
•  What	security	can	we	hope	for	from	such	a	channel?	
•  Boldyreva-Degabriele-Paterson-Stam	(2012)	already	
treated	the	case	where	the	receiver	handles	fragmented	
ciphertexts	(but	the	sender	does	not	produce	them).	

•  Model	tuned	to	treatment	of	SSH	encryption.	

•  In	Fischlin-Günther-Marson-Paterson	(2015),	we	provided	
a	systematic	study	of	the	case	where	both	sender	and	
receiver	may	fragment,	as	in	TLS.	

56	

Streaming		secure	channels	(FGMP15)	

•  Defining	CCA	and	integrity	notions	in	the	full	
streaming	setting	is	non-trivial!	

•  Hard	part	is	to	define	when	adversary’s	decryption	queries	
deviate	from	sent	stream,	and	from	which	point	on	to	
suppress	decryption	oracle	outputs.	

• We	develop	streaming	analogues	of	IND-CPA,	IND-
CCA,	INT-PTXT	and	INT-CTXT.	

• We	recover	an	analogue	of	the	classic	relation:	

	 	 	IND-CPA	+	INT-CTXT	è	IND-CCA	

	
57	

Closing	remarks	

Closing	remarks	

• We’ve	seen	the	evolution	from	simple	security	models	
for	symmetric	encryption	to	more	sophisticated	
security	notions	for	secure	channels.	

•  Yet	the	relevant	part	of	the	cryptography	community	
is	mostly	focussed	on	AEAD	and	CAESER.	

•  Key	take-away:	think	top-down,	not	bottom-up	(from	
API	to	crypto,	not	the	reverse).	

•  You’ve	almost	arrived	at	the	research	frontier!	

•  And	there	are	lots	of	interesting	problems	left	to	
solve!	

59	

Closing	remarks	

60	

