
CS 526 Information Security Project #4, Fall 2018

Cryptographic Attacks1

This project is due on Sunday, December 2nd at 11:59 p.m.. You may work in teams of THREE
if you would like and submit one project per team.

The code and other answers you submit must be entirely your own work. You may consult with
other students about the conceptualization of the project and the meaning of the questions, but
you may not look at any part of someone else’s solution or collaborate with anyone else. You
may consult published references, provided that you appropriately cite them (e.g., with program
comments), as you would in an academic paper.

Solutions must be submitted electronically via Blackboard, following the submission checklist at
the end of this file.

Introduction

In this project, you will investigate vulnerabilities in widely used cryptographic hash functions,
including length-extension attacks and collision vulnerabilities, and an implementation vulnerability
in a popular digital signature scheme. In Part 1, we will guide you through attacking the authentica-
tion capability of an imaginary server API. The attack will exploit the length-extension vulnerability
of hash functions in the MD5 and SHA family. In Part 2, you will use a cryptanalysis tool to
generate different messages with the same MD5 hash value (collisions). You’ll then investigate how
that capability can be exploited to conceal malicious behavior in software.

Objectives:

• Understand how to apply basic cryptographic integrity and authentication primitives.

• Investigate how cryptographic failures can compromise the security of applications.

• Appreciate why you should use HMAC-SHA256 as a substitute for common hash functions.

Part 1. Length Extension

In most applications, you should use MACs such as HMAC-SHA256 instead of plain cryptographic
hash functions (e.g. MD5, SHA-1, or SHA-256), because hashes, also known as digests, fail to
match our intuitive security expectations. What we really want is something that behaves like a
pseudorandom function, which HMACs seem to approximate and hash functions do not.

1This project is taken from a project designed by Nadia Heninger for her CIS 331 course at UPenn, and I am very
grateful to her for letting me borrow it.

1 of 7

CS 526 Information Security Project #4, Fall 2018

One difference between hash functions and pseudorandom functions is that many hashes are subject
to length extension. Many common hash functions use a design called the Merkle-Damgård
construction. Each is built around a compression function f and maintains an internal state s, which
is initialized to a fixed constant. Messages are processed in fixed-sized blocks by applying the
compression function to the current state and current block to compute an updated internal state,
i.e. si+1 = f (si,bi). The result of the final application of the compression function becomes the
output of the hash function.

A consequence of this design is that if we know the hash of an n-block message, we can find the
hash of longer messages by applying the compression function for each block bn+1,bn+2, . . . that we
want to add. This process is called length extension, and it can be used to attack many applications
of hash functions.

1.1 Experiment with Length Extension in Python

To experiment with this idea, we’ll use a Python implementation of the MD5 hash function, though
SHA-1 and SHA-256 are vulnerable to length extension in the same way. You can download the
pymd5 module at https://www.cs.purdue.edu/homes/clg/CS526/projects/pymd5.py and learn how to
use it by running $ pydoc pymd5. To follow along with these examples, run Python in interactive
mode ($ python -i) and run the command from pymd5 import md5, padding.

Consider the string “Use HMAC, not hashes”. We can compute its MD5 hash by running:

m = "Use HMAC, not hashes"

h = md5()

h.update(m)

print h.hexdigest()

or, more compactly, print md5(m).hexdigest(). The output should be:

3ecc68efa1871751ea9b0b1a5b25004d

MD5 processes messages in 512-bit blocks, so, internally, the hash function pads m to a multiple of
that length. The padding consists of the bit 1, followed by as many 0 bits as necessary, followed
by a 64-bit count of the number of bits in the unpadded message. (If the 1 and count won’t fit in
the current block, an additional block is added.) You can use the function padding(count) in the
pymd5 module to compute the padding that will be added to a count -bit message.

Even if we didn’t know m, we could compute the hash of longer messages of the general form
m + padding(len(m)*8) + suffix by setting the initial internal state of our MD5 function to
MD5(m), instead of the default initialization value, and setting the function’s message length counter
to the size of m plus the padding (a multiple of the block size). To find the padded message length,
guess the length of m and run bits = (length_of_m + len(padding(length_of_m *8)))*8.

The pymd5 module lets you specify these parameters as additional arguments to the md5 object:

2 of 7

https://www.cs.purdue.edu/homes/clg/CS526/projects/pymd5.py

CS 526 Information Security Project #4, Fall 2018

h = md5(state="3ecc68efa1871751ea9b0b1a5b25004d".decode("hex"), count=512)

Now you can use length extension to find the hash of a longer string that appends the suffix “Good
advice". Simply run:

x = "Good advice"

h.update(x)

print h.hexdigest()

to execute the compression function over x and output the resulting hash. Verify that it equals the
MD5 hash of m + padding(len(m)*8) + x. Notice that, due to the length-extension property
of MD5, we didn’t need to know the value of m to compute the hash of the longer string—all we
needed to know was m’s length and its MD5 hash.

This component is intended to introduce length extension and familiarize you with the Python MD5
module we will be using; you will not need to submit anything for it.

1.2 Conduct a Length Extension Attack

Length extension attacks can cause serious vulnerabilities when people mistakenly try to construct
something like an HMAC by using hash(secret ‖ message). The National Bank of CS 526, which
is not up-to-date on its security practices, hosts an API that allows its client-side applications to
perform actions on behalf of a user by loading URLs of the form:

:http://cs526-s18.cs.purdue.edu/project4/api?token=d6613c382dbb78b5592091e08f6f41fe&user=
nadiah&command1=ListSquirrels&command2=NoOp

where token is MD5(user’s 8-character password ‖ user= . . . [the rest of the URL starting from
user= and ending with the last command]).

Using the techniques that you learned in the previous section and without guessing the password,
apply length extension to create a URL ending with &command3=UnlockAllSafes that is treated
as valid by the server API. You have permission to use our server to check whether your command
is accepted.

Hint: You might want to use the quote() function from Python’s urllib module to encode
non-ASCII characters in the URL.

Historical fact: In 2009, security researchers found that the API used by the photo-sharing site
Flickr suffered from a length-extension vulnerability almost exactly like the one in this exercise.

3 of 7

: http://cs526-s18.cs.purdue.edu/project4/api?token=d6613c382dbb78b5592091e08f6f41fe&user=nadiah&command1=ListSquirrels&command2=NoOp
: http://cs526-s18.cs.purdue.edu/project4/api?token=d6613c382dbb78b5592091e08f6f41fe&user=nadiah&command1=ListSquirrels&command2=NoOp

CS 526 Information Security Project #4, Fall 2018

What to submit A Python 2.x script named len_ext_attack.py that:

1. Accepts a valid URL in the same form as the one above as a command line argument.

2. Modifies the URL so that it will execute the UnlockAllSafes command as the user.

3. Successfully performs the command on the server and prints the server’s response.

You should make the following assumptions:

• The input URL will have the same form as the sample above, but we may change the server
hostname and the values of token, user, command1, and command2. These values may be of
substantially different lengths than in the sample.

• The input URL may be for a user with a different password, but the length of the password
will be unchanged.

• The server’s output might not exactly match what you see during testing.

You can base your code on the following example:

import httplib, urlparse, sys

url = sys.argv[1]

Your code to modify url goes here

parsedUrl = urlparse.urlparse(url)

conn = httplib.HTTPConnection(parsedUrl.hostname,parsedUrl.port)

conn.request("GET", parsedUrl.path + "?" + parsedUrl.query)

print conn.getresponse().read()

Part 2. MD5 Collisions

MD5 was once the most widely used cryptographic hash function, but today it is considered
dangerously insecure. This is because cryptanalysts have discovered efficient algorithms for finding
collisions—pairs of messages with the same MD5 hash value.

The first known collisions were announced on August 17, 2004 by Xiaoyun Wang, Dengguo Feng,
Xuejia Lai, and Hongbo Yu. Here’s one pair of colliding messages they published:

Message 1:

d131dd02c5e6eec4693d9a0698aff95c 2fcab58712467eab4004583eb8fb7f89

55ad340609f4b30283e488832571415a 085125e8f7cdc99fd91dbdf280373c5b

d8823e3156348f5bae6dacd436c919c6 dd53e2b487da03fd02396306d248cda0

e99f33420f577ee8ce54b67080a80d1e c69821bcb6a8839396f9652b6ff72a70

4 of 7

CS 526 Information Security Project #4, Fall 2018

Message 2:

d131dd02c5e6eec4693d9a0698aff95c 2fcab50712467eab4004583eb8fb7f89

55ad340609f4b30283e4888325f1415a 085125e8f7cdc99fd91dbd7280373c5b

d8823e3156348f5bae6dacd436c919c6 dd53e23487da03fd02396306d248cda0

e99f33420f577ee8ce54b67080280d1e c69821bcb6a8839396f965ab6ff72a70

Convert each group of hex strings into a binary file.
(On Linux, run $ xxd -r -p file.hex > file.)

1. What are the MD5 hashes of the two binary files? Verify that they’re the same.
($ openssl dgst -md5 file1 file2)

2. What are their SHA-256 hashes? Verify that they’re different.
($ openssl dgst -sha256 file1 file2)

This component is intended to introduce you to MD5 collisions; you will not submit anything for it.

2.1 Generating Collisions Yourself

In 2004, Wang’s method took more than 5 hours to find a collision on a desktop PC. Since then,
researchers have introduced vastly more efficient collision finding algorithms. You can compute
your own MD5 collisions using a tool written by Marc Stevens that uses a more advanced technique.

You can download the fastcoll tool here:
http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5.exe.zip (Windows executable) or http://www.win.
tue.nl/hashclash/fastcoll_v1.0.0.5-1_source.zip (source code) or https://www.cs.purdue.edu/homes/
clg/CS526/projects/fastcoll_v1.0.0.5-1_source.zip (source code) or https://www.cs.purdue.edu/
homes/clg/CS526/projects/fastcoll_v1.0.0.5.exe.zip (Windows executable)

If you are compiling fastcoll from source, you can compile using this makefile:
https://www.cs.purdue.edu/homes/clg/CS526/projects/Makefile. You will also need to have installed
the Boost libraries. These should already be installed on Eniac. On Ubuntu, you can install
using apt-get install libboost-all-dev. On OS X, you can install Boost via the Homebrew
package manager using brew install boost.

1. Generate your own collision with this tool. How long did it take?
($ time ./fastcoll -o file1 file2)

2. What are your files? To get a hex dump, run $ xxd -p file.

3. What are their MD5 hashes? Verify that they’re the same.

4. What are their SHA-256 hashes? Verify that they’re different.

What to submit A text file named generating_collisions.txt containing your answers.

5 of 7

http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5.exe.zip
http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5-1_source.zip
http://www.win.tue.nl/hashclash/fastcoll_v1.0.0.5-1_source.zip
https://www.cs.purdue.edu/homes/clg/CS526/projects/fastcoll_v1.0.0.5-1_source.zip
https://www.cs.purdue.edu/homes/clg/CS526/projects/fastcoll_v1.0.0.5-1_source.zip
https://www.cs.purdue.edu/homes/clg/CS526/projects/fastcoll_v1.0.0.5.exe.zip
https://www.cs.purdue.edu/homes/clg/CS526/projects/fastcoll_v1.0.0.5.exe.zip
https://www.cs.purdue.edu/homes/clg/CS526/projects/Makefile
http://brew.sh
http://brew.sh

CS 526 Information Security Project #4, Fall 2018

2.2 A Hash Collision Attack

The collision attack lets us generate two messages with the same MD5 hash and any chosen
(identical) prefix. Due to MD5’s length-extension behavior, we can append any suffix to both
messages and know that the longer messages will also collide. This lets us construct files that differ
only in a binary “blob” in the middle and have the same MD5 hash, i.e. pre f ix ‖ blobA ‖ su f f ix
and pre f ix ‖ blobB ‖ su f f ix.

We can leverage this to create two programs that have identical MD5 hashes but wildly different
behaviors. We’ll use Python, but almost any language would do. Put the following three lines into a
file called prefix:

#!/usr/bin/python

-*- coding: utf-8 -*-

blob = """

and put these three lines into a file called suffix:

"""

from hashlib import sha256

print sha256(blob).hexdigest()

Now use fastcoll to generate two files with the same MD5 hash that both begin with prefix.
($ fastcoll -p prefix -o col1 col2). Then append the suffix to both ($ cat col1 suffix

> file1.py; cat col2 suffix > file2.py). Verify that file1.py and file2.py have the
same MD5 hash but generate different output.

Extend this technique to produce another pair of programs, good and evil, that also share the
same MD5 hash. One program should execute a benign payload: print "I mean no harm."

The second should execute a pretend malicious payload: print "You are doomed!"

What to submit Two Python 2.x scripts named good.py and evil.py that have the same MD5
hash, have different SHA-256 hashes, and print the specified messages.

6 of 7

CS 526 Information Security Project #4, Fall 2018

Submission Checklist

Upload to Blackboard a gzipped tarball (.tar.gz) named
project4.purdueid1.purdueid2.purdueid3.tar.gz. The tarball should contain only the fol-
lowing files. Do not make your files dependent on local files or esoteric libraries.

Section 1.2

len_ext_attack.py: A Python script which accepts a URL as input, performs the specified attack
on the web application, and outputs the server’s response.

Section 2.1

generating_collisions.txt: A text file with your answers to the four short questions.

Section 2.2

good.py and evil.py: Two Python scripts that share an MD5 hash, have different SHA-256
hashes, and print the specified messages.

7 of 7

