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Iterative stencil loops are used in scientific programs to implement relaxation methods for nu-

merical simulation and signal processing. Such loops iteratively modify the same array elements

over different time steps, which presents opportunities for the compiler to improve the temporal

data locality through loop tiling. This paper presents a compiler framework for automatic tiling

of iterative stencil loops, with the objective of improving the cache performance. The paper first

presents a technique which allows loop tiling to satisfy data dependences in spite of the difficulty

created by imperfectly-nested inner loops. It does so by skewing the inner loops over the time

steps and by applying a uniform skew factor to all loops at the same nesting level. Based on a

memory cost analysis, the paper shows that the skew factor must be minimized at every loop

level in order to minimize cache misses. A graph-theoretical algorithm, which takes polynomial
time, is presented to determine the minimum skew factor. Furthermore, the memory-cost analysis
derives the tile size which minimizes capacity misses. Given the tile size, an efficient and general
array-padding scheme is applied to remove conflict misses. Experiments are conducted on sixteen
test programs and preliminary results show an average speedup of 1.58 and a maximum speedup
of 5.06 across those test programs.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization

General Terms: Languages, Performance

Additional Key Words and Phrases: Caches, loop transformations, optimizing compilers

1. INTRODUCTION

Due to the widening gap between the processor speed and the memory bandwidth,
the importance of efficient use of caches is widely recognized [Burger et al. 1996;
Ding and Kennedy 2001]. Loop tiling , which is also known as loop blocking, is a
well-known loop transformation to improve the temporal locality, and hence the
cache utilization, of a loop nest [Wolfe 1995]. Extensive work has been published
previously on how to tile a class of loops often known as linear algebra loops, which
include familiar examples such as matrix multiplication and Gausian elimination.
Unfortunately, the methods developed previously cannot be effectively applied to
another important class of loops, which we call iterative stencil loops, due to their
different data-dependence characteristics.

In this paper, we investigate how to automatically tile iterative stencil loops. This
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DO T = 1, ITMAX
L1: DO J1 = 2, N − 1

DO I1 = 2, N − 1
temp(I1, J1) = (A(I1 + 1, J1)

+ A(I1 − 1, J1) + A(I1, J1 + 1)
+ A(I1, J1 − 1))/4

END DO
END DO

L2: DO J2 = 2, N − 1
DO I2 = 2, N − 1
A(I2, J2) = temp(I2, J2)

END DO
END DO

END DO
(a) Jocobi kernel code

A(I,J-1) A(I,J+1)A(I,J)

A(I-1,J)

A(I+1,J)

(b) Stencil illustration of Jacobi code

Fig. 1. The example of Jacobi

class of loops is used to implement relaxation methods in scientific applications such
as numerical simulations and signal processing. In relaxation methods, each matrix
element is updated based on the values of its neighboring elements, with the updates
repeated over a number of time steps. Thus, there exists a high potential to reuse
cached data.

If, however, the total size of the data exceeds the cache size, then executing the
stencil loops in the original iteration order will result in repeated cache misses in
every time step. Take the Jacobi program kernel (Figure 1(a)) as an example.1

The outermost loop iterates over the time steps. In every time step T , each A(I, J)
element is updated based on the old values of its four neighbors. The computation
stencil is shown in Figure 1(b). The spatial loops, indexed by J1, I1, J2 and I2,
sweep through nearly 2× (N − 1)2 distinct array elements in each time step. With
sufficiently largeN , the cache will overflow, causing cache misses in every T iteration
when the arrays A and temp are referenced.

To apply the idea of loop tiling, the iteration space of the spatial loops is par-
titioned into loop tiles, or simply tiles, such that a tile is executed repeatedly over
different time steps before the next tile is executed. The tile size can be chosen so
that its array footprint, also known as the array tile, fits in the cache. If a given
iterative stencil loop is perfectly nested, then previous work has shown how to tile
it [Wolf 1992]. One can first use skewing to transform it into a fully permutable
loop nest, which can then be safely tiled without additional transformations.

A perfect loop nest has a unique innermost loop which contains all the assign-
ment statements in the loop nest. Unfortunately, iterative stencil loops are usually
imperfectly nested. For example, the Jacobi program kernel shown in Figure 1(a)
has two separate inner loop subnests, labeled L1 and L2, within the time-step loop.
Due to the data dependences between L1 and L2, one cannot skew those two sub-
nests independently. How to deal with these difficulties remained elusive until we
presented a method to tile imperfectly-nested iterative stencil loops [Song and Li
1999].

Since then, several authors have published new contributions to the solution

1The convergence test is temporarily removed from this example for simplicity of the initial

discussion. All code examples in this paper are written in a Fortran-like style, assuming column-

major array allocation.
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of similar problems. A scheme called time skewing performs a value-based flow
analysis to optimize for memory locality [Wonnacott 2002]. This scheme, like our
previous work, applies to one-dimensional tiles only. Methods such as loop em-
bedding [Ahmed et al. 2000] and iteration space slicing [Pugh and Rosser 1999] use
various heuristics to find legal fusions which, when combined with loop skewing, can
improve data reuse in iterative stencil loops. All methods proposed so far require
certain re-alignment between different spatial loop subnests. However, the interac-
tion between the loop alignment and loop skewing has not been studied. Hence,
how to optimally align spatial loops in order to minimize cache misses is poorly
understood. Furthermore, the impact of loop skewing on the optimal selection of
tile sizes has not been studied.

In this paper, we develop a theoretical foundation to address those unsolved issues
in a comprehensive way. We also present a more extensive set of experimental
results to evaluate the effectiveness of applying skewed tiling to iterative stencil
loops. The theoretical foundation will be developed in several steps. We first define
the general construct of iterative stencil loops before and after tiling. We allow
multi-dimensional tiles, and we determine the exact shape of the loop construct after
tiling based on parameters such as the skew factors and the tile sizes at different
loop levels. We develop a number of formulas to estimate the memory reference
cost as a function of these parameters. These formulas will show that, in order to
minimize the memory reference cost, the skew factors must be minimized at all loop
levels. We then present an algorithm to determine the minimum permissible skew
factors. The cost formulas also give the optimal tile size, assuming the absence of
conflict misses in the cache. We then present an efficient array padding scheme to
eliminate such conflict misses, given a multidimensional tile.

In this paper, we also discuss a number of techniques to reduce skew factors,
including array duplication, compatible-loop recognition, and circular loop skewing.
Finally, we devise a method to apply tiling to loops with premature exits. This is
done by speculatively executing a number of iterations of the time-step loop, with
roll-back statements inserted to insure correct program results in case of misspec-
ulation.

The rest of the paper is organized as follows. In Section 2, we present an overview
of the tiling mechanism for iterative stencil loops and define the loop construct
before and after tiling. This is followed by a presentation of the memory-cost
estimation formulas (Section 3), an algorithm to determine the minimum skew
factors (Section 4), and an array padding scheme to eliminate reference interferences
(Section 5). In Section 6, we discuss enhancements to the main tiling scheme. We
then present experimental results in Section 7. Related work is discussed in Section
8, which is followed by a conclusion in Section 9.

2. OVERVIEW AND PRELIMINARIES

In this section, we present an overview of our skewed-tiling scheme and define
several basic concepts. We describe the loop construct before and after tiling.

2.1 Overview

Iterative stencil loops which implement relaxation methods for scientific computing
generally take the form shown in Figure 2(a). (Although the loops may contain
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multiple arrays, only a representative array A is listed. Expressions ei may read
or write A elements.) The outermost T -loop iterates over the time steps, and the
T -loop body contains a number of inner loops indexed by Li,k. These are called
spatial loops and they are arbitrarily nested. The second subscript k indicates the
nesting level of Li,k among all the spatial loops, and the first subscript i assigns a
sequence number among all spatial loops at level k. The total number of spatial
loops at the level k is denoted by m[k].

We consider tiling the spatial loops at the top n levels, where n is to be de-
termined by the memory-reference cost analysis (c.f. Section 3) and by any other
considerations which the compiler writer may have. Thus, Figure 2(a) omits spatial
loops that are nested deeper than n. The lower and upper limits of any loop Li,k
can be arbitrary expressions. Without loss of generality, all index steps are assumed
to be 1. Any dangling statements between two neighboring loop subnests can be
moved into one of the two neighbors. Conditional branches are inserted to insure
that the dangling statements are executed at the correct moment. Alternatively,
one may artificially create a loop subnest, which has iteration counts of one at all
loop levels, to enclose such dangling statements.

For the loop nest described above, tiling can be performed with or without first
fusing the spatial loops into a single perfect nest. To legally fuse the spatial loops,
certain loop bounds must be realigned and array subscripts must be modified in
order to satisfy the data dependences between the statements which previously
existed in the different loop subnests [Pugh and Rosser 1999; Ahmed et al. 2000;
Song et al. 2001; Ding and Kennedy 2001]. Fusing the loops before tiling has several
drawbacks. The changes to the array indices tend to make it more difficult for
the back-end compiler to perform optimizations such as software pipelining on the
tiled loops. Furthermore, the increased innermost loop body may cause problems in
register allocation. Alternatively, one can choose to tile the loops directly, without
fusion, by transforming the given loop nest into the form shown in Figure 2(b).
The loop bounds will also need to be realigned (c. f. Section 2.3), using the same
alignment offsets as in the fusion approach. However, the innermost loop body
and the array indices remain essentially unchanged. From the cache-access point of
view, both approaches, with and without fusion, are equivalent. Hence, we present
our work based on the code template shown in Figure 2(b) without loop fusion,
although the main analysis remains valid even if the inner loops are fused before
tiling.

After tiling, the T -loop becomes the T ′-loop in Figure 2(b). The new limits of
the T ′-loop and the loops within will be determined by formulas presented later in
this section. We first define several terms concerning this new loop nest.

Definition 2.1. We call the L′′i,k loops inside the T ′-loop tile-defining loops. These
loops are nested in the exact order as the Li,k loops prior to tiling. The iteration
subspace of the L′′i,k loops form a loop tile.

In effect, each of the original spatial loops is strip-mined, with a strip size Bk
uniformly applied to all loops at level k, 1 ≤ k ≤ n. Different loop levels, however,
may use different strip sizes.

Definition 2.2. We call the trip count, Bk, of loop L′′i,k the tile size at loop level
k. (Note that Bk is equal for all i.) Collectively, we call (B1, B2, . . . , Bn) the tile
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DO T = 1, ITMAX
DO L1,1 = l1,1, u1,1

. . .
DO L1,n = l1,n, u1,n

. . .
e1(A(. . .))
. . .

END DO /* L1,n */
DO L2,n = l2,n, u2,n

. . .
e2(A(. . .))
. . .

END DO /* L2,n */
END DO /* L1,1 */
. . .

DO Lm[1],1 = lm[1],1, um[1],1

. . .
DO Lm[n]−1,n = lm[n]−1,n, um[n]−1,n

. . .
e3(A(. . .))
. . .

END DO /* Lm[n]−1,n */
DO Lm[n],n = lm[n],n, um[n],n

. . .
e4(A(. . .))
. . .

END DO /* Lm[n],n */
END DO /* Lm[1],1 */
. . .

END DO

(a) Before tiling

DO L′

1 = l′1, u
′

1, B1

. . .
DO L′

n = l′n, u
′

n, Bn

DO T ′ = T ′

low, T
′

high

DO L′′

1,1 = l′′1,1, u
′′

1,1
. . .
DO L′′

1,n = l′′1,n, u
′′

1,n

. . .
e1(A(. . .))
. . .

END DO /* L′′

1,n */

DO L′′

2,n = l′′2,n, u
′′

2,n

. . .
e2(A(. . .))
. . .

END DO /* L′′

2,n */

END DO /* L′′

1,1 */
. . .

DO L′′

m[1],1 = l′′
m[1],1, u

′′

m[1],1
. . .

DO L′′

m[n]−1,n
= l′′

m[n]−1,n
, u′′

m[n]−1,n
. . .
e3(A(. . .))
. . .

END DO /* L′′

m[n]−1,n
*/

DO L′′

m[n],n = l′′
m[n],n, u

′′

m[n],n
. . .
e4(A(. . .))
. . .

END DO /* L′′

m[n],n */

END DO /* L′′

m[1],1 */
. . .

END DO /* T ′ */
END DO /* L′

n */
. . .

END DO /* L′

1 */

(b) After tiling

Fig. 2. Iterative stencil loops before and after tiling
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size vector, or simply the tile size if no confusion results.

Definition 2.3. As T ′ increases from T ′low to T ′high, we say it completes a tile
traversal . Two tiles are said to be consecutive within a tile traversal if the difference
between the corresponding T ′ values is 1.

Definition 2.4. The T ′-loop is enclosed in an n-deep perfect nest of loops, L′1
through L′n. We follow the terms in previous work [Wolf 1992] and call them
the tile-controlling loops. These outer loops control the computation from one tile
traversal to the next.

To illustrate the correspondence between the iteration spaces before and after
tiling, take the example of the Jacobi kernel shown in Figure 1(a). To make the
illustration simpler, we assume for the moment that the stencil loops are tiled at
the J-level only. For the original stencil loops, we plot the product space of the T -
iterations and the J-iterations (including both J1 and J2) as shown in Figure 3(a).
Each dot represents either a pair (T, J1) or a pair (T, J2). Before tiling, the execu-
tion proceeds row by row. Within each row, the execution proceeds from the left
to the right.

After tiling, a tile traversal covers the area of the iteration space between two
stair-case lines in Figure 3(a), and a tile covers the shaded polygon. When the
execution proceeds from one tile to the next in the same tile traversal, the tile
boundaries for the J-loop are shifted to the left in order to satisfy data depen-
dences. The single-level tile-controlling loop controls the computation from one
tile-traversal to the next, in the direction from the top-left to the right-bottom.
Notice that, unless ITMAX = 1, there exist more than (N − 2)/B tile traversals in
the Jacobi example, where B is the width of the tile, i.e. the tile size. Also notice
that the tile traversals are not necessarily of the same heights, due to skewing.

2.2 Data Dependences and the Skew Vector

A reordered execution sequence is legal only if it satisfies the original data de-
pendences. We adopt a value-based definition of flow, anti- and output depen-
dences [Wolfe 1995].

Definition 2.5. A flow dependence exists from statement Stmt1 to statement
Stmt2 if the latter may use the value written by the former. An anti-dependence
exists from Stmt1 to Stmt2 if the former may read a value before it is overwritten
by the latter. An output dependence exists from Stmt1 to Stmt2 if Stmt2 may
overwrite a value written by Stmt1.

One can similarly define dependences between two variable references, two loop
iterations, two program segments and so on [Wolfe 1995]. For the Jacobi example,
Figure 3(c) shows the flow dependences between the iteration points for T = 1 and
2, and Figure 3(d) shows the anti-dependences. (Output dependences are omitted
from the figure.)

If a data dependence exists between two (T, J)-pairs, J being either J1 or J2,
such that the J value of the dependence source is greater than that of the depen-
dence sink, then we have a negative dependence distance. A dependence with a
negative distance may exist within the same time step or between two different
time steps. In Figures 3(c) and 3(d), the arrows pointing from right to left indicate
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J1 & J2
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(a) Tiling without array duplication
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(b) Tiling with array duplication

t = 1

t = 2

t = 3

J1

J2

J1

J2

J1

J2

T

J1 & J2

(c) Flow dependences

t = 1

t = 2

t = 3

J2

J1

J2

J1

T

J1 & J2

J1
6 75432

(d) Anti-dependences

Fig. 3. Dependences and tiling of Jacobi

dependences with negative distances. In this example, the flow dependences with
negative distances exist between consecutive time steps, and anti-dependences with
negative distances exist within the same time step. It is easy to see that, due to the
negative dependence distances, the tile traversals are not allowed to move straight
down. (Otherwise, we will have a dependence source executing after the dependence
sink.) Dependences with nonnegative distances do not impose this restriction on
the tile traversals.

If no negative dependence distance exists, then all tile-defining loops at the same
level can have identical loop limits. Consecutive tiles in the same tile traversal will
then access identical data. In the presence of negative dependence distances, the
loop limits need to be modified. First of all, the tile traversals must be skewed, as
in Figure 3(a), such that no arrows will point from a later tile traversal to an earlier
one. Suppose tiling is performed on n loop levels in the original loop nest, then the
degrees of skewing at those loop levels are defined by a skew vector ~S = (S1, . . . , Sn),
where Sk is called the skew factor at loop level k. In Figure 3(a), the tile traversal
is skewed at the J level with the skew factor of 2. We shall give a formal definition
for the skew vector. in the next subsection.

In the transformed loop nest, every time T ′ is increased by 1, the skew factor
Sk will cause each tile-defining loop (at level k) to decrement both their lower and



8 · Z. Li and Y. Song

upper limits by Sk. If dependences with negative distances exist between different
time steps only, then each tile can retain the cuboidal shape. Otherwise, the tile-
defining loop subnest which contains the sink of the dependence with a negative
distance must be “left-shifted”. That is, the lower and upper loop limits are both
decremented by a vector of alignment offsets, or offsets in short. (A formal definition
for the offsets is given in the next subsection.) As a result, the tile itself will also
be skewed, as in the case of Figure 3(a), where the alignment offset is 1 for loop J2
and is 0 for loop J1. The next subsection defines the loop limits in the transformed
loops (c. f. Figure 2(b)), given the skew factors, the offsets, and the tile sizes.

2.3 Determining the New Loop Limits

Tiling changes the loop structure, but it leaves the innermost loop body almost
unchanged. Wherever the loop indices Li,k appear in Figure 2(a), they are changed
to L′′i,k in Figure 2(b). Other than that, the innermost loop body is unchanged
after tiling. In the following, we present formulas to compute the loop limits in the
transformed loops, given the tile size Bk at loop level k (1 ≤ k ≤ n).

2.3.1 Formulas for the tile-defining loops

Definition 2.6. Let the lower and upper limits of Li,k be li,k and ui,k respectively.
The lower limit of the corresponding tile-defining loop L′′i,k equals max(li,k, L

′
k −

(T ′− 1) ∗Sk − oi,k), and the upper limit equals min(ui,k, L
′
k − (T ′− 1) ∗Sk +Bk −

1− oi,k). The constant oi,k is called the alignment offset, or the offset in short, for
each spatial loop Li,k. The constant Sk is called the skew factor at loop level k,
and (S1, S2, . . . , Sn) is called the skew vector.

There exist many legal choices for the skew vector and the offsets. An algorithm
to determine the optimal skew vector and the corresponding offsets will be given in
Section 4.

2.3.2 Formulas for the tile-controlling loops. In the original loop nest, the loop
limits li,k and ui,k for each inner loop Li,k may vary as the value of T varies. Also,
the loop limits for Li,k and Lj,k may not be the same even though they are at
the same loop level. Now, since the n-deep tile-controlling loops L′k contain the T ′

loop, their loop limits must be T ′-invariant. Furthermore, notice that each indexing
vector of those tile-controlling loops marks the starting point of a tile traversal. In
order to make sure that the tile traversals cover all iterations of the original spatial
loops, the lower limit of each tile-controlling loop at level k should equal the lowest
limit among all the spatial loops at level k. The upper limit should equal the highest
limit at level k, plus an allowance resulting from skewing. (Without this allowance,
the right-bottom corner of the original iteration space will not be fully covered,
because of the skewing to the left.) At loop level k, a conservative estimate of the
skewing allowance equals Sk × ITMAX − 1, assuming that Li,k (∀i,∀T ) gets the
highest upper limit when T = ITMAX.

Note that it is safe to overestimate the range of L′k, because we have made the
lower limits of the tile-defining loops no less than li,k and the upper limits no greater
than ui,k. If the L′k-loop index exceeds its proper range, then the tile-defining loops
will become zero-trip loops, since their lower limits will be greater than their upper
limits. Nonetheless, one can reduce the cost of loop-limit checking by tightening
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the value range of L′k. From the discussions above, we get a tight lower limit on L′k
equal to

min{li,k | ∀i ∈ [1,m[k]],∀T ∈ [1, ITMAX]}
and a tight upper limit equal to

max{ui,k | ∀i ∈ [1,m[k]],∀T ∈ [1, ITMAX]} + Sk × ITMAX − 1.

For most of the loop-limit expressions found in practice, the compiler can either
determine the min and max values based on the above formulas, or it can insert
operations into the program to compute these values efficiently at run time. We do
not cover these details in this paper.

2.3.3 Formula for the T ′ loop. Because of loop skewing, some of the tile traver-
sals may have heights that are less than ITMAX. (Take the Jacobi program as an
example. In Figure 3(a), the leftmost tile traversal runs only two time steps, and
its next tile traversal runs three time steps.) It is safe, however, to overestimate the
range of T ′ as [1, ITMAX]. It is possible that, at run time, some of the T ′ values
within this range will make the lower limit of a tile-defining loop greater than its
upper limit. For example, consider a tile-defining loop L′′i,k under T ′ = ITMAX,
L′k = li,k, Sk = 1 and oi,k = 0. Based on the formulas in Section 2.3.1, this
loop has the lower limit of li,k and the upper limit of li,k − ITMAX + Bk. For
ITMAX > Bk, the lower limit is clearly greater than the upper limit. In such
cases, the tile-defining loop will make zero trips.

As with the tile-defining loops, we wish to tighten the range of T ′ in order to
reduce the chances of executing zero trip tile-defining loops. For L′k ≤ max{ui,k |
∀i,∀T}, the T ′ loop has the lower limit of 1. For any index value of L′k which is
greater than max{ui,k | ∀i,∀T}, the tight lower limit on T ′ is equal to

min{bL
′
k − max{ui,k | ∀i,∀T}

Sk
c | ∀k}.

A general formula for the lower limit on T ′ can thus be written as

max{min{bL
′
k − max{ui,k | ∀i,∀T}

Sk
c | ∀k}, 1}.

To tighten the upper limit, notice that the height of a tile traversal can be no
greater than

max{dL
′
k +Bk − 1 − min{li,k | ∀i,∀T} − min{oi,k | ∀i}

Sk
e | ∀k}.

In fact, this upper limit is reached for some index vectors, (L′1, L
′
2, . . . , L

′
n), of the

tile controlling loops. For example, in the very first tile traversal, we have L′k =

min{li,k | ∀i,∀T}, and we have the upper limit on T ′ equal to max{dBk−1−min{oi,k|∀i}
Sk

e |
∀k}. If we let T ′ take on this upper-limit value, then for some k and some i, T ′

equals dBk−1−oi,k

Sk
e. For the same pair of k and i, the tile-defining loop L′′i,k will

have the upper limit of L′k − (T ′ − 1) ∗ Sk +Bk − 1 − oi,k which is greater than or
equal to the lower limit li,k. This shows that at least one tile-defining loop has one
or more iterations to execute under such a T ′. Based on the discussion so far, we
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derive a tight upper limit for T ′ as

min{max{dL
′
k +Bk − 1 − min{li,k | ∀i,∀T}

Sk
e | ∀k}, ITMAX}.

After tiling the Jacobi program, let the tile-defining loops be J ′′1 (corresponding
to J1), I

′′
1 (corresponding to I1), J

′′
2 (corresponding to J2), and I ′′2 (corresponding

to I2). Let the tile-controlling loops be J ′ (corresponding to J1 and J2) and I ′

(corresponding to I1 and I2). Recall that, in the original loop nest, the lower limits
are 2 for all loops inside the T -loop. Suppose the skew factors are equal to 2 at
both loop levels J and I, the offsets are equal to 0 for both J1 and I1, and the
offsets are equal to 1 for both J2 and I2. Let BI and BJ be the tile sizes yet to be
determined at the I and J level, respectively. Substituting these numbers into the
above formulas, we get the following loop limits after tiling.

—The lower limit of J ′′1 equals max(2, J ′− (T ′− 1)× 2) and the upper limit equals
min(N − 1, J ′ − (T ′ − 1) × 2 +BJ − 1).

—The lower limit of I ′′1 equals max(2, I ′− (T ′− 1)× 2) and the upper limit equals
min(N − 1, I ′ − (T ′ − 1) × 2 +BI − 1).

—The lower limit of J ′′2 equals max(2, J ′ − (T ′ − 1) × 2 − 1) and the upper limit
equals min(N − 1, J ′ − (T ′ − 1) × 2 +BJ − 2).

—The lower limit of I ′′2 equals max(2, I ′ − (T ′ − 1) × 2 − 1) and the upper limit
equals min(N − 1, I ′ − (T ′ − 1) × 2 +BI − 2).

—The lower limit of T ′ equals

max{min{bJ
′ −N + 1

2
c, bI

′ −N + 1

2
c}, 1}

and the upper limit equals

min{max{dJ
′ +BJ − 3

2
e, dI

′ +BI − 3

2
e}, ITMAX}.

—The lower and upper limits of J ′ (also I ′) are equal to 2 andN−1+2×ITMAX−1,
respectively.

3. AN ANALYSIS OF MEMORY-REFERENCE COST

Intuitively, Figure 3(a) suggests that the further the tile traversals are skewed,
the less overlap exists between the data referenced in consecutive tiles, and hence
the sooner some previously cached data gets replaced. In this section, we give
a memory-reference cost analysis which will show that the skew factors must be
minimized in order to minimize cache misses. This analysis will also give the tile
size which minimizes capacity misses. As in the rest of the paper, we focus on the
memory references to array data and ignore the memory-reference cost to access
instructions. For iterative stencil loops, the instruction references normally have
a very high hit rate. Hence, their cost is negligible when compared to the cost to
access the array data.

We consider a single processor which accesses caches at one or more levels. For
simplicity of presentation, we limit our discussions to two levels of caches, namely
the primary cache and the secondary cache. Generally speaking, the former is sub-
stantially smaller but faster than the latter. We assume both caches store data
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only. This assumption is true at the primary cache level, because instructions and
data normally have their own primary caches. A single secondary cache, however,
may store both instructions and data. However, due to the high hit rate of the
primary instruction cache when executing iterative stencil loops, the potential con-
flict between the instructions and the data in the secondary cache usually has little
effect on the memory-reference cost.

Since the secondary cache has a much higher latency than the primary cache,
the main objective of a tiling scheme is to minimize the primary-cache misses. It
is worth pointing out, however, that there exist loops for which no tile sizes can
make the array footprint fit in the primary cache 2. In such cases, the objective is
to minimize the secondary-cache misses. There is another factor which may force
us not to target the primary cache. If the loop tile accesses too many different
arrays, then the tile size will be very small due to the relatively small size of the
primary cache. As a result, the innermost loop will have a low iteration count,
making software pipelining ineffective. (Software pipelining is an important back-
end compiler technique to exploit instruction-level parallelism between different
loop iterations [Allan et al. 1995].) At the same time, little data reuse may be
achieved on the primary cache due to the small iteration count. The break-even
point for the tile size depends on the particular microprocessor and the particular
back-end compiler. However, given a microprocessor and a back-end compiler, a
general lower limit on the tile size can be easily obtained through experiments. We
will discuss the limits we have used in our experiments in Section 7. In this section,
we focus on analyzing the memory-reference cost.

3.1 Basic Terms and Assumptions

Let p1 be the penalty for a primary cache miss and p2 the penalty for a secondary
cache miss. The total memory reference cost is simply

p1 × (No. of primary cache misses) + p2 × (No. of secondary cache misses). (1)

For each cache, if the data size of the loop tile exceeds the cache size, then the
number of cache misses is greater than or equal to

DataSize × ITMAX

CacheLineSize
. (2)

In the rest of this section, we give an estimate for the number of cache misses when
the data size of the loop tile fits in the cache.

Cache misses can be divided into three classes, compulsory misses, capacity misses
and conflict misses [Hennessy and Patterson 1996]. Compulsory misses occur when
a memory block is referenced for the first time in a program’s execution. Conflict
misses are due to interferences between memory references whose addresses are
mapped to the same cache line. Self-interferences exist between references to the
same array (but different elements), and cross-interferences exist between references
to different arrays [Lam et al. 1991]. All other cache misses are capacity misses.

2For example, data dependences may prevent the innermost loops from being tiled. The array

footprint of such innermost loops, on the other hand, may exceed the primary cache size.
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We wish to develop formulas to accumulate the total number of cache misses
during the execution of the entire loop nest. Let the loop nest be tiled using the
loop-tile size Bk and the skew factor Sk for each loop level k. We define our notation
and state our assumptions below.

—All elements of an array which are referenced in a loop tile form an array tile
[Panda et al. 1999]. If multiple arrays are referenced in a loop tile, then multiple
array tiles exist. The total array footprint of the loop tile equals the union of its
array tiles.

To make the discussions simpler, for a given loop tile size, all array tiles are as-
sumed to have the same shape. This is usually true for the main arrays referenced
in iterative stencil loops.

—Furthermore, since the differences among the array tile sizes are generally very
small in iterative stencil loops, we assume the same size for the different array
tiles.

—We assume that the array subscripts take the form A(a1 ∗ I1 + C1, a2 ∗ I2 +
C2, . . . , am ∗Im+Cm), where Ik is the index variable of a spatial loop and ak 6= 0
is the scaling coefficient in the k-th dimension.

—We let f(k) be the loop level at which the index variable runs through the kth

array dimension, and we assume f(k) to be a one-to-one mapping. In the Jacobi
example, we have f(1) = 2 and f(2) = 1. In Section 6.2.1, we discuss how
to permute loops, according to compatible loop levels, such that spatial loops
at the same level will have the index variables running through the same array
dimension. Here, we assume that this loop permutation has been performed
successfully. Since the array tiles are of the same shape, the scaling coefficient
ak in the k-th array dimension will be the same among all array references. The
constant terms Ck, however, may be different for different array references.

—We let Dk be the extent of the array tile in the k-th array dimension. Clearly,
Dk is equal to |ak|Bf(k) plus a constant term.

—We assume a uniform stride, gk, between the neighboring elements in each dimen-
sion k of the array tile. Clearly, we have 1 ≤ gk ≤ ak. If gk = 1, then the array
tile is fully packed in the k-th dimension. For example, if A(2 ∗ I) is the unique
reference to array A in the iterative stencil loop, where I is the index variable of
a tile-defining loop, then the array tile of A has a stride of 2. If, however, that
same tile-defining loop contains yet another reference to array A, which is in the
form of A(2 ∗ I + 1), then the array tile of A has unit stride, even though the
scaling coefficient equals 2.

We assume g1 to be no greater than the cache line size measured in the number
of array elements which can be stored in a single cache line. Ideally, one wishes
that g1 = 1. If this condition is not met, then the given iterative stencil loop
has poor spatial locality and should be transformed by a combination of loop
permutation and array transpose [Kandemir et al. 1998] in order to minimize g1.
As a matter of fact, using a data transformation known as compression [O’Boyle
and Knijnenburg 1997], one can make gk equal to 1 for all k. For example, in the
stride-2 example mentioned above, we can compress the array A by converting
index 2∗I to I, which results in a unit stride. In this section, however, we do not
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Fig. 4. How many array tiles does a tile traversal cover?

assume unit stride when we develop formulas to estimate the memory reference
cost.

If we make sure that the array footprint of each loop tile does not exceed the
cache size, then no capacity misses will exist in any tile traversal. Furthermore,
using techniques presented in Section 5, we can eliminate interferences between
array references which occur within the same tile traversal. Thus, within each tile
traversal, only the first reference to a memory block will incur a cache miss. (Note
that the size of a memory block is equal to the size of a cache line.)

Conversely, we can reasonably assume that there exists no cache reuse between
different tile traversals. For nonskewed tile traversals, this is due to the absence
of data overlap between two different traversals. Some overlap may exist between
two skewed tile traversals. However, the number of time steps, ITMAX, is generally
large enough that, before the overlapping data can be reused in a later tile traversal,
it has already been replaced in the cache. In summary, under the assumptions made
above, the number of cache misses in each tile traversal is approximately equal to
the number of distinct memory blocks which are referenced.

To derive the formulas that count cache misses, we first count the number of
distinct memory blocks referenced in each full tile traversal. (In a full tile traversal,
no tile-defining loops make zero trips for any T ′ ∈ [1, ITMAX].) We then put all
tile traversals together and find out how many full tile traversals they are equivalent
to. We start with the simple case of one-dimensional array tiles. Afterwards, we
work towards the arbitrary n-dimensional case.
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3.2 The 1-D Case

Figure 4(a) illustrates the array tiles covered by a full tile traversal in the one-
dimensional case. Assuming the skew factor of S and the scaling coefficient of
a, each time T ′ increases by 1, the array tile shifts by |a|S (to the left if a > 0
and to the right if a < 0). If |a|S ≤ D, then a total of (ITMAX - 1)|a|S/D + 1
array tiles are covered by a full tile traversal. Suppose that there exist σ different
arrays and that the array-tile stride equals g. The total number of distinct array
elements referenced in a full tile traversal equals ((ITMAX - 1)|a|S/D + 1)σD/g.
Dividing this number by MemBlockSize/g, where MemBlockSize is the number of
array elements which can be stored in each memory block, we get the number of
distinct memory blocks referenced in each full tile traversal:

((ITMAX - 1)|a|S/D + 1)σD/MemBlockSize. (3)

If |a|S > D, then there exists no overlap between consecutive array tiles in the
same tile traversal. A full tile traversal covers ITMAX array tiles and the number
of distinct memory blocks referenced equals ITMAX · σD/MemBlockSize.

Notice that a partial tile traversal either skips a lower range T ′ ∈ [1, T̄ ] (for
some T̄ < ITMAX) or skips an upper range T ′ ∈ [T̄ , ITMAX] (for some T̄ > 1). If
ITMAX ≤ 1+ N−D

|a|S , then there exists at least one full tile traversal. In this case, for

each partial tile traversal which skips a lower T ′ range, [1, T̄ ], there exists a partial
tile traversal which skips the complementary upper T ′ range, [T̄ + 1, ITMAX], and
vice versa. Such a pair of complementary partial traversals cover exactly the same
number of array tiles as does a full tile traversal, as illustrated in Figure 4(b).

We add the number of full tile traversals to the number of partial tile traversals
that skip the upper ranges. This sum should equal N/D, where N is the extent of
the array accessed by the iterative stencil loops. Multiplying N/D by the number
in Formula (3), we get the total number of cache misses for the case of |a|S ≤ D:

((ITMAX - 1)|a|S/D + 1)
DataSize · g

MemBlockSize
, (4)

where DataSize = σN/g is the total number of distinct array elements referenced
during all tile traversals. In the case of |a|S > D, the total number of cache misses
in all tile traversals is equal to

ITMAX · DataSize · g
MemBlockSize

. (5)

We now consider the case in which ITMAX is greater than 1+ N−D
|a|S . In this case,

no full tile traversals exist, and the partial tile traversals can be divided into three
sets. The first set contains (ITMAX - 1)|a|S/D + 1 − N/D tile traversals, each
covering the full extent of the array. The second set contains N/D tile traversals,
each covering a lower range only. The third set contains N/D tile traversals, each
covering an upper range only. Putting the latter two sets of tile traversals together,
we obtain N/D pairs of tile traversals, each covering the full extent of the array.
Thus, the total number of cache misses in all tile traversals is still as shown in
Formula (4) (if |a|S ≤ D) or Formula (5) (if |a|S > D).
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3.3 The n-D Case (n ≥ 2)

Figure 4(c) illustrates how a tile traversal covers 2-D array tiles. The outermost box
represents a two-dimensional array. A tile traversal sweeps through a part of the
array in the direction determined by the signs of the scaling coefficients a1 and a2.
Each time T ′ increases by 1, the array tile shifts by |a1|S1 in one array dimension
and by |a2|S2 in another.

Let the array-tile size be D1 × D2. Figure 4(c) is drawn with the arbitrary
assumption that D2

|af(2)|Sf(2)
≤ D1

|af(1)|Sf(1)
. (If this inequality is reversed, the final

formula will stay the same, even though it may change how the array tiles are
aligned.) Recall that f(i) is the loop level whose corresponding index variable runs
through the array dimension i. After T ′ increases by D2

|af(2)|Sf(2)
, the array tile has

shifted from the starting position to the left by the entire tile-width, D2. Thus,
the tile traversal covers an entirely new array tile plus a pair of shaded triangles.
During this period of time, the array tile has also shifted vertically by the amount
of D2 · |af(1)| · Sf(1)/(|af(2)|Sf(2)). Therefore, the two shaded triangles have the
total size of D2D2|af(1)|Sf(1)/(|af(2)|Sf(2)). The sum of the array areas (not the
number of array tiles) covered by a full tile traversal is equal to

ITMAX - 1

D2/(|af(2)|Sf(2))

(

D1D2 +D2

|af(1)|Sf(1)D2

|a(f(2)|Sf(2)

)

+D1D2. (6)

This number multiplied by σ
g1g2

g1/MemBlockSize is the number of distinct memory
blocks referenced in a full tile traversal, which equals

(
ITMAX - 1

D2/(|af(2)|Sf(2))
(D1D2 +D2

|af(1)|Sf(1)D2

|a(f(2)|Sf(2)
) +D1D2)

σ

g2 · MemBlockSize
. (7)

As in the 1-D case, if there exists at least one full tile traversal in the 2-D case,
then we can pair two complementary partial tile traversals such that the array area
covered by the pair is of the same size as that covered by a full tile traversal. Let
the full extent of the covered array be N1 in one dimension and N2 in the other. All
partial and full tile traversals put together are equivalent to N1N2

D1D2
full tile traversals.

Multiplying this expression by Formula (7), we get the total number of cache misses
equal to

((ITMAX - 1)(
|af(1)|Sf(1)

D1
+

|af(2)|Sf(2)

D2
) + 1)

DataSize · g1
MemBlockSize

, (8)

where DataSize = σN1N2

g1g2
. As in the 1-D case, it is not difficult to verify that the

formula above applies even if there exist no full tile traversals. Finally, if D1 (or
D2) is so much smaller than |af(1)|Sf(1) (or |af(2)|Sf(2)) that there exist no overlap
between consecutive array tiles in the same tile traversal, then the total number of
cache misses in all tile traversals is determined by Formula (5), with g replaced by
g1.

Applying the same kind of reasoning to n-dimensional array tiles, we can write
the formula for counting the total number of cache misses in all tile traversals as

((Σnk=1

|af(k)|Sf(k)

Dk
) · (ITMAX - 1) + 1)

DataSize · g1
MemBlockSize

, (9)
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unless there exists no overlap between consecutive array tiles, in which case For-
mula (5) applies (with g replaced by g1). Here, DataSize equals to σΠn

j=1Nj/gj .
Note that, if for any reasons the loop level f(k) is not tiled, we should choose

Dk = Nk and Sf(k) = 0. From the loop construct shown in Figure 2, it is clear
that all loops at the level f(k) must be moved below the loop levels which are tiled.
Also, if the tile-size selection scheme chooses Dk = Nk, it is easy to see that we
can reduce cache misses by letting Sf(k) be 0. No data dependences will be broken.
This amounts to not tiling at loop level k.

From Formula (9) and Formula (5), we can immediately make the following
claims.

Claim 3.1 In order to minimize the memory reference cost, the skew factors must
be minimized at all loop levels. 2

Claim 3.2 Suppose that no interferences exist between array references within the
same tile traversal and that none of the skew factors equal zero. To minimize the
memory cost, the array-tile size Dk in each dimension k should be

Dk = |af(k)|Sf(k) · n

√

CacheSize Πn
j=2gj

Πn
j=1|af(j)|Sf(j)

. (10)

Proof: Notice that to minimize the number of cache misses, we must let the

product D1Π
n
j=2

Dj

gj
be equal to CacheSize. Hence, we have Πn

j=1
|af(j)|Sf(j)

Dj
=

Πn
j=1|af(j)|Sf(j)

CacheSize Πn
j=2

gj

. From Formula (9), clearly the number of cache misses is mini-

mized if we let |af(j)|Sf(j)/Dj be all equal (for all j), i.e.

(
|af(k)|Sf(k)

Dk
)n =

Πn
j=1|af(j)|Sf(j)

CacheSize Πn
j=2gj

.

Equation (10) immediately follows.
2

If we have any Sf(k) = 0, Formula (9) shows that the factor |af(k)|Sf(k)/Dk will
have no impact on the memory reference cost. For nonzero Sf(k), on the other
hand, increasing the corresponding tile size Dk will decrease the memory reference
cost. Therefore, for Sf(k) = 0, the corresponding tile size must be minimized so
that the tile sizes in other dimensions can be maximized. For k 6= 1 such that
Sf(k) = 0, we let Dk = 1. If Sf(1) = 0, we let D1 = CacheLineSize. Among all
nonzero Sf(k), we should choose Dk such that the ratios of |af(k)|Sf(k)/Dk are all
equal.

4. MINIMIZING THE SKEW FACTORS

Based on Claim 3.1 in the last section, we wish to minimize the skew factors when
we transform the given iterative stencil loops into the form in Figure 2(b). Data
dependences in the given loops impose constraints on the minimum skew factors.
Once the alignment offsets are fixed for the spatial loops, the minimum skew factors
are further constrained. Hence, the correct approach is to compute the minimum
skew factors allowed by the data dependences first, and to next find the correspond-
ing alignment offsets.
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In this section, we first give informal explanations for the constraints on the
minimum skew factors. We then define an integer linear programming framework
to determine the alignment offsets that minimize the skew factors. Finally, we
recast this particular integer linear programming problem to a graph-theoretical
one. Based on the minimum cost-to-time ratio cycle [Ahuja et al. 1993], we present a
polynomial-time algorithm to find the minimum skew factors and the corresponding
alignment offsets.

4.1 Effect of Data Dependence Distances

The minimum skew vector is constrained by data-dependence distances. In the
current literature, dependence distances are usually defined with respect to loops
which contain both of the dependent references. For our loop model (Figure 2(a)),
this would apply to the T -loop only. We slightly extend the definition so as to also
include the Li,k loops.

Definition 4.1. Given the nesting of loops shown in Figure 2(a), suppose two
statements, A and B, are each embedded in n loops, where the two n-deep loop nests
are not necessarily identical. Suppose there exists a dependence from statement A
executed in iteration ~i = (ti, Li,1, . . . , Li,n) to statement B executed in iteration
~j = (tj , Lj,1, . . . , Lj,n). We say the dependence has a distance vector of ~j −~i =
(tj − ti, Lj,1 − Li,1, . . . , Lj,n − Li,n).

If Lj,k−Li,k < 0, we say the dependence has a negative distance at the loop level
k. For convenience, we use the term backward distance, at loop level k, to mean the
absolute value of a negative distance, at loop level k. We call tj − ti the T -distance
of the dependence.

Allen and Kennedy proposed the terms of loop-independent versus loop-carried
data dependences [Allen and Kennedy 1984]. Applying these terms to the above
definition, a dependence is said to be T -independent if tj − ti = 0 and T -carried if
tj − ti > 0.

Researchers have studied extensively the problem of computing the dependence
distance between a pair of array references with respect to their common enclosing
loops [Wolfe 1995]. When the distance is not constant, symbolic analysis can be
performed to derive bounds on the distance values [Blume and Eigenmann 1998;
Pugh 1992; Haghighat 1990]. This existing work can readily be applied to depen-
dence distances as defined in Definition 4.1.

In Figure 3(c), the flow dependence edge from J1 = j1 to J2 = j1, where
2 ≤ j1 ≤ N − 1, is due to the write reference temp(I1, J1) and the read reference
temp(I2, J2) within the same T iteration (c.f. Figure 1). Therefore, the corre-
sponding dependence-distance vector is (0, 0, 0). The flow dependence edge from
J2 = j2 to J1 = j2−1, where 3 ≤ j2 ≤ N −1, is due to the write reference A(I2, J2)
and the read reference A(I1, J1 + 1) in two adjacent T iterations. Therefore, the
corresponding dependence-distance vector is (1,−1, 0). Similarly, we can compute
the dependence-distance vectors for the other dependence edges in Figures 3(c)
and 3(d).

In the following, we discuss the effect of data dependence distances on the align-
ment offsets and the skew factors.
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4.1.1 Alignment Offsets. Recall that the purpose of using alignment offsets is
to preserve the data dependences within the same time step. Therefore, the legality
of an alignment offset is constrained by the T -independent data dependences only.
Obviously, the alignment offsets at different loop levels are independent. On the
other hand, alignment offsets at the same loop level are mutually dependent. Con-
sider two distinct spatial loops i and j at level k and a T -independent dependence
(with negative distance) from loop i to loop j. Relative to loop i, the tile bound-
aries for loop j should be “left-shifted” (i.e. decremented) at least by the amount of
−dk, where dk is the dependence distance at level k. Hence, the alignment offset of
loop j should be at least equal to the offset of loop i minus dk. For a given nesting
of iterative stencil loops, there exist many legal ways to assign alignment offsets to
the loops at a given level k. In the following, we discuss the relationship between
the alignment offsets and the skew factor at the same loop level.

4.1.2 The Skew Factors. The existence of T -carried dependences with negative
distance affects the skewing of the tile traversals. The skew factors for different loop
levels are independent. To analyze the relationship between the alignment offsets
and the skew factor at the same loop level, we first examine an extreme case in
which the alignment offsets are fixed as 0 for all loops at level k. Recall that if the
skew factor, Sk, at loop level k is greater than zero, then every time T ′ is increased
by 1, all tile-defining loops at level k will have their loop limits decremented by
Sk. To satisfy a dependence whose distance is dk < 0 at level k and dt > 0 at the
T -loop level, Sk should be no less than −dk/dt.

Now, to generalize the case, suppose that the offsets of loop i and loop j are not
both 0 and that there exist a T -carried dependence from loop i to loop j with the
T -distance dt and the k-level distance dk. Let the skew factor at the level k be Sk
and the offsets of loops i and j be oi and oj , respectively. Within the time step
T = t, the tile boundaries for loop j will be “left-shifted”, relative to loop i, by
oj−oi. In the time step T = t+dt, the tile boundaries for loop j will be left-shifted
by oj − oi + dtSk, relative to loop i in time step T = t. In order to satisfy this
particular dependence, we should have oj − oi + dtSk ≥ −dk. Hence, the value of
(−dk + oi − oj)/dt is a lower bound on Sk.

Based on the discussion above, we can set up an integer linear programming
framework which defines the minimum skew factor at loop level k.

Claim 4.1 Given a nesting of iterative stencil loops (Figure 2(a)), consider all
spatial loops at the level k and all dependences among such loops. Let di,j denote
the dependence distance from loop i to loop j at level k, and ti,j denote the T -
distance. The minimum skew factor at loop level k should be equal to the minimum
integer S which satisfies

oj − oi + di,j ≥ 0, ∀T-independent dependences (i, j)
oj − oi + di,j + ti,jS ≥ 0, ∀T-carried dependences (i, j)
S ≥ 0

(11)

where integers oi and oj denote the alignment offsets of loops i and j respectively.
2

Since we have ti,j = 0 for T-independent dependences, the inequalities in Claim 4.1
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can be made more concise as in the following corollary.

Corollary 4.1 The inequalities in Claim 4.1 are equivalent to

oj − oi + di,j + ti,jS ≥ 0, ∀dependences (i, j)
S ≥ 0

(12)

2

The problem defined in Claim 4.1 can be transformed into a graph-theoretical one,
for which we can find a polynomial-time solution. For this purpose, we decompose
a loop dependence graph G = (V,E) [Wolfe 1995] by different loop levels.

Definition 4.2. The loop dependence graph (LDG) at level k is a graph (V,E) in
which each node in V represents a spatial loop at level k (see Figure 2(a)) and each
edge in E represents a dependence between two nodes in V . Multiple edges may
exist from one node to another. For each edge, its level-k distance subvector (t, d)
gives the T -distance t, and the distance d at the spatial loop level k.

For the Jacobi example, the symmetry between the loops at the I and the J levels
causes the LDGs to look the same at both levels. Figure 5 shows the LDG for
Jacobi.

The construction of the LDG requires information on array dataflow and depen-
dence distances, which, in the worst case, requires exponential time to compute.
However, in practice, such information can be obtained by efficiently implemented
schemes (see [Gu et al. 1997; Wolfe 1995] for a list of references). Based on the
LDG, we next develop a graph-theoretical solution for Ineq. (12).

4.2 A Graph-Theoretical Solution

Our graph-theoretical solution takes two steps. In the first step, we obtain a lower
bound on the minimum skew factor that is independent of the alignment offsets. We
prove that for such a lower bound S we can always find alignment offsets, oi, that
satisfy Ineq. (12). Thus, we find the minimum feasible solution of S for Ineq. (12).
We derive the proof constructively by presenting an algorithm that, given such S,
computes the alignment offsets oi.

In an LDG, a path from node i to node j defines a transitive dependence from
loop i to loop j. A simple cycle containing i defines a transitive dependence between
two successive instances of loop i. Let

∑

t be the sum of the T -distances in a simple
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Fig. 5. The loop dependence graph of Jacobi
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cycle and
∑

d be the sum of the k-distances. Clearly, the iteration x of loop i in the
time step T must be executed before the iteration x+

∑

d of loop i in the time step
T +

∑

t. Hence, the value of −∑ d/
∑

t places a lower bound on the skew factor
S at loop level k. Mathematically, this lower bound can be derived by summing up
the inequalities in Ineq. (12) over the simple cycle, which gives

∑

d+
∑

t · S ≥ 0.
Note that a simple cycle must contain at least one edge with t > 0.

Let us take the maximum ceiling, Smax, of all such lower bounds collected from
all simple cycles. Smax is obviously still a lower bound on the integer skew factor
S, and is independent of the alignment offsets. If there exists an assignment of oi
that satisfies Ineq. (12) with S = Smax, then Smax is the minimum skew factor.

Next, we discuss how to compute Smax in polynomial time and then present a
polynomial-time algorithm to compute the alignment offsets, given S = Smax.

4.2.1 Computing Smax. For each edge in E in the LDG whose level-k distance
subvector is (t, d), we can define d as the cost of the edge and t the time. Then µ∗ is
the minimum cost-to-time ratio among all simple cycles in the given directed graph
[Ahuja et al. 1993, §5.7], and Smax = d−µ∗e. In the Jacobi example (Figure 5),
there exist a simple cycle formed by two edges with dependence-distance subvectors
(1,−1) and (0,−1), respectively. This simple cycle has the minimum cost-to-time
ratio µ∗ = (−1 − 1)/(1 + 0) = −2. Thus Smax = 2 is the minimum skew factor at
both the I-loop and the J-loop levels.

Ahuja et al. [Ahuja et al. 1993, §5.7] present a binary search algorithm to find µ∗.
They start with a range [µ, µ] to bound µ∗ from below and from above, respectively.
In our case, this range can be initialized to [

∑

d<0 d,
∑

d>0 d]. The value of µ∗ is
initially predicted to be µ0 = (µ + µ)/2. Using a shortest-path finding algorithm

(in V 3 time), they show how to decide whether µ0 overestimates or underestimates
µ∗. If µ0 is an overestimate, then it becomes the new upper bound for µ∗. If it is an
underestimate, then it becomes the new lower bound for µ∗. If it is exactly equal to
µ∗, then the minimum cost-to-time ratio and the simple cycle that produces it are
both found. They prove that the exact µ∗, and the accompanying simple cycle, can
be found by successively halving the range [µ, µ]. The number of iterations taken
to terminate such a binary search is in the order of O(log(V ∗ tmax ∗Cmax)) where,
in our case, tmax is the maximum value of t and Cmax is the maximum value of
−d. Since the size of the problem is in the order of O(E ∗ (log(E) + log(Cmax) +
log(tmax))), which is the number of bits needed to represent the LDG, the algorithm
to find µ∗ has a polynomial time complexity, which is the problem size multiplied
by V 3/E.

4.2.2 Computing Alignment Offsets, given Smax = d−µ∗e. We start by assum-
ing that the LDG has a single strongly connected component (SCC). We define the
length of each edge (i, j) to be di,j+ ti,jS, where S = d−µ∗e and µ∗ is the minimum
cost-to-time ratio of the LDG.

Lemma 4.1 The LDG contains no negative length cycles.
Proof:

Otherwise we would find a cycle over which we have Σd+S ·Σt < 0. This derives
Σd/Σt < −S. Since S = d−µ∗e, we can write S = −µ∗ + ε, where ε ≥ 0. We then
have
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µ∗ = −S + ε ≥ −S > Σd/Σt,

which contradicts the fact that µ∗ is the minimum cost-to-time ratio.
2

We pick an arbitrary node, say x, as the source of the given LDG and then define
the distance, δi, of a node i to be the length of the shortest path from x to i. Using
a label-correcting algorithm [Ahuja et al. 1993], we can determine δi for all i in
O(V · E) time. We then assign the alignment offset oi = −δi to each node i.

Lemma 4.2 Let oi = −δi for all i in the LDG, Ineq. (12) is satisfied.
Proof:

For each edge (i, j), since δj is the shortest length of any path from x to j, we
have δj ≤ δi + di,j + ti,jS, which immediately derives oj − oi + di,j + ti,jS ≥ 0,
2

For the Jacobi example (Figure 5), the LDG consists of a single SCC at both
the I-loop and the J-loop levels. We arbitrarily pick the node L1 as the source. By
definition, both the distance and the alignment offset of L1 are equal to 0. The
shortest edge from L1 to L2 has length d + t · S = −1 + 0 × 2 = −1. Hence, we
have δL2 = −1 and the alignment offset oL2 = 1 for node L2. It is easy to verify
that Ineq. (12) is satisfied by all edges.

We now consider an arbitrary LDG which may contain more than one SCC. In
Θ(V +E) time, we can construct the component graph, GSCC , of the LDG [Cormen
et al. 1990]. The graph GSCC has one node for each SCC in the LDG. Suppose a
and b in GSCC represent two different SCCs, A and B, respectively. We draw an
edge from a to b if there exist any edge in the LDG from a node in A to another
node in B. We assign a slack to the edge (a, b) which is equal to

w(a, b) = max(−di,j − ti,jS | ∀(i, j) such that i ∈ A, j ∈ B).

We first treat the SCCs independently and compute the alignment offsets as if each
SCC is the only one in the LDG. Next, we use the slacks in GSCC to adjust the
alignment offsets between different SCCs. To do this, we recursively define a slack
for each node in the acyclic directed graph GSCC .

Definition 4.3. Suppose we have independently computed the alignment offsets
for each SCC. For an SCC which is represented by a in GSCC , let oa denote the
maximum alignment offset among all nodes in that SCC. We define a slack Wa

according to the following rules:

(1) If a has no predecessors, then Wa = 0.

(2) Otherwise, we let Wa = max(Wi + oi + w(i, a) | ∀(i, a)).

Obviously, we can determine the slacks of all nodes in GSCC in linear time by
following a topological sort. For each node a in GSCC , we find all nodes in the
LDG which belong to the SCC represented by a, and we increment the alignment
offsets of all such nodes by the slack Wa. Thus, Ineq. (12) is satisfied.
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5. REMOVING CACHE-SET CONFLICTS

In Section 3, we gave the optimal array tile size Dk at each loop level k (c.f.
Claim 3.2). This result was obtained under the assumption that there exist no
cache-set conflicts during each loop-tile traversal. In this section, we discuss how
to perform minimum array padding to remove cache-set conflicts, given the array
tile size. We first review address mapping between cache and memory then present
the main results.

5.1 Set Conflicts

Set conflicts occur when different memory blocks are mapped to the same set in
the cache. If the number of competing memory blocks exceed the set associativity,
some blocks get replaced from the cache.

Suppose the cache has size C (in the number of cache lines) and associativity
k. The cache is divided into C/k sets with indices from 0 to C/k − 1. Each
cache set contains k cache lines. Virtual memory can be viewed as consisting of
MemorySize/λ memory blocks, where λ is the cache line size. A data word, x, at
memory address MEMx, has memory block index BI = bMEMx/λc and is mapped
to the cache set with the set index BI mod C/k.

For the Jacobi example, consider an extreme case in which each column of the
arrays takes up storage equal to the cache size. Let the base address of array A
be MEMA and the word size be w. Under the column-major allocation scheme,
assuming all arrays are aligned at cache line boundaries, array element A(I2, J2)
will have the memory address

MEMA + (J2 − 1) · C · λ+ (I2 − 1) · w,

and its set index in the cache will be

b(MEMA + (I2 − 1)w)/λc (mod C/k).

It is easy to see that no matter what the column size, D1, of the array tile is, all
the elements of array A in the same tile row will be mapped to the same set in the
cache. Self interferences will occur unless D2 is no greater than k. If D2 exceeds k
by any integer value, d, there will be D1 ×d conflict misses due to self interferences
within each tile of A. The same phenomenon can happen to the array temp.

There may also exist cross interferences between different arrays. In the Jacobi
example, if the distaince between A and temp in the memory is a multiple of C,
then the A elements and the temp elements which have the same row number will
be mapped to the same cache set.

In less extreme cases, the choice of the array tile size affects how the array
elements are mapped to the cache sets. For example, suppose the array column
size in Jacobi equals C+λ. If the tile column size is chosen to be D1 = λ, then two
consecutive tile columns will be mapped to two consecutive cache sets without any
conflicts. On the other hand, if the tile column size is chosen to be D1 = 2λ, then
two consecutive tile columns will have an overlap of one cache set. For a direct-
mapped cache, this means that half of the array elements accessed in each tile
column will be evicted from the cache before they get reused. Previous research
efforts have attempted to select conflict-free array tile sizes. However, without
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changing the array sizes, the conflict-free tile sizes generally do not agree with the
optimum size determined in Claim 3.2. Therefore, a better approach is to keep the
tile size at the computed optimum. At the same time, the cache set mapping can
be altered by changing the extent of the array dimensions. This technique is known
as array padding.

5.2 Our Array-Padding Scheme

Two kinds of array padding have been proposed to date [Bacon et al. 1994; Panda
et al. 1999; Rivera and Tseng 1999]. Intra-array padding increases the extent of
certain array dimensions to reposition the beginning address of each column (and
each plane, and so on, for arrays of higher dimensions). Inter-array padding in-
creases the distance between two different arrays in memory. For multilevel tiling
in general, previous methods mainly rely on exhaustive search to find the correct
pad size. In the following, we discuss how to find the pad size analytically, and
therefore more efficiently, for tiled iterative stencil loops.

Our approach is to first analyze the conditions under which an m-dimensional
array tile is free of self interferences and yet can fully utilize the cache. Given the
tile size and the cache size, we determine the conditions which should be satisfied
by the extent of each array dimension. We then find the minimum pad size to
satisfy such conditions. Next, in order to minimize cross interferences between tiles
from different arrays, we divide the cache among different arrays such that each
array tile receives a sufficient number of cache sets. The starting addresses of these
arrays are then adjusted, by inter-array padding, to minimize cross interferences.

We begin by assuming that the tiled loop accesses a single array, so that we have
the whole cache for the single array tile. We will later handle multiple array tiles.
We also assume that the uniform array-tile stride gk equals 1 in each dimension
k. How to handle gk > 1 will become clear after we present the main theorem
(Theorem 5.1). We consider an array of m dimensions, where m > 1. (Note that
m = 1 is a trivial case, since a one-dimensional array tile consists of consecutive
words. As long as the array tile fits in the cache, there will be no self interferences.)

Under the column-major allocation scheme, we number the array dimensions in
the lexical order. The first dimension is the one that runs through consecutive
words in the memory. Let Ni denote the size of the array in the i-th dimension,
measured in words. The index in the i-th dimension (i > 1) runs through the
memory in a stride of Πi−1

j=1Nj .

For convenience, in the rest of the text, unless stated otherwise, array tile sizes
and the cache size C will be measured in words. This is because only the first di-
mension of the tile is required to be a multiple of cache lines.

Let Di be the size of the array tile in the i-th dimension. A maximum array
section in the first dimension of the tile is called a tile column. A maximum two-
dimensional section in the first two dimensions is called a tile plane. A maximum
three-dimensional section in the first three dimensions is called a tile cube. A
maximum d-dimensional section in the the first d dimensions is called a tile d-cube.
Before continuing with the main discussion, we establish a few facts as follows.
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Claim 5.1 To fully utilize the cache and yet remain free of self interferences, the
tile column size D1 must divide C.

Proof:. This claim is true because an array tile consists of Πm
j=2Dj tile columns,

each of size D1. 2

Lemma 5.1 Suppose a two-dimensional array tile has column size D1 and row size
D2 such that D1 is a multiple of the cache line size, D1 divides C, and D1 ·D2 = C.
This array tile can fully utilize the cache and remain free of self interferences if and
only if D1 divides N1 and GCD(N1, C) = D1.

Proof. The “if” part. Since D1 ×D2 = C, what remains to be shown is that
no two distinct tile columns will ever share the same cache line. Let MEMx be the
starting memory address of the first tile column, and let two distinct tile columns
have the beginning addresses MEMx + aN1 and MEMx +bN1, respectively, such
that 0 ≤ a ≤ D2 − 1, 0 ≤ b ≤ D2 − 1, and a 6= b. Since D1 divides both N1 and C,
bN1 − aN1(mod C) should be a multiple of D1. We only need to prove that

bN1 − aN1 6= 0 (mod C). (13)

If this inequality did not hold, then C/D1 must divide bN1/D1 − aN1/D1. But
GCD(N1, C) = D1, so C/D1 = D2 must divide b − a, which is impossible unless
b = a, because |b− a| < D2. Hence Ineq. (13) must hold.

The “only-if” part. The starting addresses of two adjacent tile columns are
N1 words apart in the memory. Therefore they are N1 (mod C) words apart in the
cache. Hypothetically suppose D1 does not divide N1. Then D1 does not divide
N1 mod C either, which leaves a gap between two tile columns in the cache and
the gap is not a multiple of D1. But from Claim 5.1, D1 must divide C. Therefore,
it is impossible to fully utilize the cache without creating self interferences. This
shows that D1 must divide N1.

Next, we prove GCD(N1, C) = D1, or equivalently, GCD(N1/D1, C/D1) = 1.
We prove this by contradiction. Suppose

GCD(N1/D1, C/D1) = σ > 1.

Let N1/D1 = p σ and D2 = C/D1 = q σ. For any integer a, let b = a+ q. We have
|b−a| = q < D2, but N1(b−a)/D1 = 0 (mod C/D1), i.e. N1(b−a) = 0 (mod C),
which is a contradiction.

2

Based on Lemma 5.1, we have the following array-padding algorithm for m = 2,
where D1 divides C. (Later, we discuss the case where D1 does not divide C.)
In all algorithms, we assume the cache size C is a power of two, as is the case in
practice.

Algorithm 5.1 (Intra-array padding for a single two-dimensional array tile)

Let N ′ = dN/D1e. If N ′ is an odd number, then increase the array column size to
N ′D1. If N ′ is an even number, then increase the array column size to (N ′+1)D1.
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Since C/D1 should remain a power of two, from Lemma 5.1, the cache will be fully
utilized without self interferences.
2.
As an example, consider a single array with column size N = 210. Suppose we
have the skew factors S1 = S2 = 2 and the loop index mappings f(1) = 2 and
f(2) = 1. Formula 10 gives us D1 = D2 =

√
C. For C = 214 words, we have

D1 = D2 = 27 = 128 words. N ′ = dN/D1e = 8 is an even number, so we increase
the array column size to (N ′ + 1)D1 = 1152.

We now consider array tiles of dimensions higher than two. To develop an intu-
ition, consider m = 3 first, where D1 ×D2 ×D3 = C. We first use Algorithm 5.1
to choose a new column size N1 for the array, such that GCD(C,N1) = D1. Next,
we want to choose a new N2.

We can view the cache as being divided into C/D1 chunks, each of size D1. We
number these chunks from 0 to C/D1−1 and call these numbers the chunk indices.
Each tile plane (of size D1 ×D2) is mapped to D2 chunks. Although these chunks
are not necessarily adjacent in the cache, their chunk indices will be a consecutive
subsequence of {0, 1, 2, . . ., C/D1 − 1}. Thus, just as a tile column is mapped to
a series of consecutive cache sets in the case of m = 2, a tile plane is mapped to
a series of consecutive chunk indices in the case of m = 3. What we want to find
is a new N2 such that, for any pair of distinct tile planes, the corresponding pair
of chunk-index subsequences will have no overlap. Following the same steps in the
proof of Lemma 5.1, we easily get the following lemma.

Lemma 5.2 Suppose a three-dimensional array tile has the size of D1, D2 and D3

in respective dimensions, such that D1 × D2 × D3 = C. This array tile can fully
utilize the cache and remain free of self interferences if and only if the following
conditions are met: (1) D1 divides N1; (2) GCD(N1, C) = D1; (3) D2 divides N2;
and (4) GCD(N2, C/D1) = D2.
2

We can apply the same idea inductively to the general case of m > 2. This leads
to the following theorem.

Theorem 5.1 Suppose an m-dimensional array tile has the size of Di in the i-th
dimension, such that D1 ×D2 × . . .×Dm = C. This array tile can fully utilize the
cache and remain free of self interferences if and only if the following conditions
are met:

(1 ) Di divides Ni;

(2 ) GCD(N1, C) = D1; and

(3 ) GCD(Ni, C/(D1 ×D2 × . . .×Di−1)) = Di.

2

Based on the theorem above, Algorithm 5.1 can be extended, in a straightforward
manner, to the general m > 2 case.

We now discuss how to deal with the case of the array-tile stride gk > 1. Recall
that we assume k1 to be no greater than the cache line size λ (c. f. Section 3.1). In
order to utilize all the cache lines, we should have C = D1Π

n
j=2Dj/gj . Hence, both

D1 and Dk/gk, for all k > 1, should divide C. We can still use Algorithm 5.1 to
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Fig. 6. Partial overlap of consecutive tiles

compute the new array size in the first dimension. For dimensions k > 1, however,
we can view the “effective” array-tile size in the k-th dimension as Dk/gk and
modify Lemma 5.2 as follows.

Notice that there exists a gap of N2 × g2 between the starting memory addresses
of two neighboring tile columns. We need to modify condition (3) in Lemma 5.2
to “D2/g2 divides N2 g2” and condition (4) to “GCD(N2 g2, C/D1) = D2/g2”. The
latter condition implies

GCD(N2,
C

D1 ψ
) =

D2

g2 ψ
,

where ψ = GCD(g2, C/D1). To compute the new array size in the second dimen-
sion, therefore, we compute N ′2 = dN2/(

D2

g2 ψ
)e which equals dN2 g2 ψ/D2e. If N ′2

is an odd number, then the new array size in the second dimension should equal
N ′2D2/(g2 ψ). Otherwise, the new array size should equal (N ′2 + 1)D2/(g2 ψ). The-
orem 5.1 should be modified in a similar way to compute the new array size in
higher dimensions.

Next, we discuss three remaining issues: how to remove self interferences between
the overlapping tiles (belonging to the same array) which are covered in the same
tile traversal, how to remove cross interferences between tiles belonging to different
arrays, and how to treat tile sizes which do not divide the cache size.

5.2.1 Interferences due to Skewing. Previous tile-size selection schemes target
nonskewed tiling. For skewed tiling, we need to deal with a special kind of conflict
miss that was not discussed before. Here, the loop limits of a tile-defining loop
decrease as the time step increases. Thus, two consecutive loop tiles (and the
corresponding array tiles) overlap only partially. Figure 6 shows two consecutive
array A tiles t1 (for T ′ = t) and t2 (for T ′ = t+ 1). Each tile consists of sections of
four array columns. Suppose the array footprint of t1 covers the whole cache, and
the tile size has been chosen to remove self interferences from each tile. Without
loss of generality, suppose each tile is swept through from left to right when the loop
iterations are executed. The rightmost array section (marked as A4) will be the
most recently referenced immediately before array tile t2 is swept through. If the
cache is two-way set-associative, then A2 and A4 will map to the same cache sets,
A4 being the least recently referenced. The left-most array section in t2 (marked
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as A0) will then replace A2. However, a large part of A2 could have been reused.
The interferences between consecutive tiles as illustrated above can occur on set-

associative caches, but not on direct-mapped caches. To remove such interferences,
we can view a pair of consecutive tiles as a single tile and try to eliminate self
interferences from the combined tile. Thus, after deriving a tile size which is free
of self interferences within a single tile, we simply strip off |af(j)|Sf(j) columns (or
rows) in each dimension j of the array tile. The reduced tile size will guarantee
that there exist no interferences between two consecutive tiles.

5.2.2 Multiple Arrays. Next, we consider multiple arrays. We assume the array
tiles for different arrays to be of the same shape and size, as is often the case in
iterative stencil loops. Suppose we have n array tiles, each of size D = D1 ×D2 ×
. . .×Dm such that n×D equals the cache size. We divide the cache into n equal
parts and assign one part to each array tile. (If n is not a power of two, we round
it up to the next power of two.)

We first perform intra-array padding on each array. In the cache, we want to
leave a gap between two consecutive tile columns (from the same array) which has
just enough cache locations for n−1 tile columns, each from a distinct array. Thus,
when we apply Algorithm 5.1 and its higher-dimensional extensions to perform
intra-array padding, we do so as if the tile column size is nD1, instead of D1.
Furthermore, the cache size used in the algorithm remains C, which allows each
array tile to be mapped to C/n different words in the cache.

After intra-array padding is performed on all of the n arrays, we number them
from 1 to n. We then perform inter-array padding such that the starting memory
addresses of the i-th and the i+ 1-th arrays are D1 words apart, modulo C.

5.2.3 Applying These Techniques to the Jacobi Example. We can now illustrate
the process of tile-size selection and array padding using the Jacobi example, per-
forming tiling without array duplication. Assume the cache size is C = 215 words,
the cache line size is λ = 8 words, and the array size is N × N = 1200 × 1200
words. Dividing C between the two arrays A and temp gives each array 214 words
in the cache. Plugging Cachesize = 214, S1 = S2 = 2, f(1) = 2 and f(2) = 1
into Formula 10, we get D1 = D2 = 128 words for each array tile. Since we have
two arrays here, we pretend that the tile column size is 2D1 = 256 words when we
apply Algorithm 5.1. We get N ′ = dN/256e = 5 in return. Since N ′ is an odd
number, we increase the array column size to N ′ × 256 = 1280. If A and temp are
allocated immediately adjacent to each other in memory, their starting addresses
will be 1280 × 1200 = 153600 words apart, which equals 22528 (modulo C). To
make their starting addresses D1 = 128 words apart (modulo C) instead, We insert
between A and temp a padding array of size equal to C − 22528 + D1 = 10368
words. Finally, in order to remove interferences between two consecutive tiles in
the same tile traversal, we remove two columns and two rows from each array tile,
reducing the array tile size to D1 = D2 = 126 words. The loop tile size at both
loop levels should be BJ ×BI = 124 × 124, because each loop tile accesses BI + 2
tile rows and BJ + 2 tile columns in array A.

5.2.4 Treating Tile Sizes Which Do Not Divide C. Algorithm 5.1 and its higher-
dimensional extensions require that the tile size in each dimension divides C. (In
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the case of gk > 1, for k > 1, the “effective” tile size Dk/gk is required to divide C.)
For the test programs we have experimented with so far, the tile sizes computed
using Algorithm 5.1 often do divide C. However, for some test programs, the
computed tile sizes do not divide C. In such cases, we round the tile size (or the
“effective” tile size) in each dimension to the nearest power of two, making sure
that Πn

j=1Dj = C (or D1Π
n
j=2Dj/gj = C). Algorithm 5.1 and its extensions can

then be applied.

6. ENHANCEMENTS

In this section, we describe several enhancements to the main tiling algorithm
presented in Section 4. We first present three techniques to reduce the minimum
skew factors. One is based on array duplication and the other two are based on
loop transformations. We also present a scheme to tile iterative stencil loops which
may terminate before the T -loop executes all of the ITMAX iterations. Such early
termination is normally due to the existence of a convergence condition which may
be met before T reaches ITMAX.

6.1 Array Duplication

The analysis in Section 3 shows that the memory reference cost of iterative stencil
loops is proportional to the skew factors. From the discussion in Section 4, we
know that the minimum skew factor at any loop level is equal to the negation of the
minimum cost-to-time ratio, Σd/Σt, among simple cycles in the loop dependence
graph at that loop level. One way to increase the cost-to-time ratio is to reduce
the negative dependence distances between the spatial loops. The other way is
to increase the time, i.e. the T -distance. In this subsection, we discuss array
duplication as a method to increase the T -distance of anti-dependences and output
dependences.

It is known that T -independent output dependences can be removed by static ar-
ray renaming [Wolfe 1995], because the dependent references write different values.
If two array references do not have any flow dependences, then any anti-dependences
between them can also be completely removed by static array renaming. This is
because two such references share the same addresses, but not the same data val-
ues. However, if two references have both flow and anti-dependences, then the
anti-dependences cannot be completely removed, since the two references share the
same values. The Jacobi program is a good example. The read references of A in
loop nest L1 and the write references of A in loop nest L2 share values. Thus, the
anti-dependences from L1 to L2 on array A cannot be completely removed.

For array references that share the same values, we use a special kind of array
renaming, called array duplication, to change T -independent anti-dependences into
T -carried ones. A special case of array duplication is odd-even duplication, in which
only one duplicate is created. The duplicated array has two versions, one storing the
values written in the odd T -iterations, and the other storing the values written in
the even iterations. In this way, the T -distance, i.e. the time, of these dependence
edges is increased from 0 to 1. Creating m duplicates for the same array will
increase the T -distance to m, and the values will be written to the m+ 1 versions
of the array in a round-robin manner. We should point out that array duplication
is feasible only if we can correctly reconstruct the data flow after duplication. If,
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for any reason we cannot reconstruct the data flow, e.g. if the flow dependence
distance is uncertain for the target array due to some IF conditions, then we do
not duplicate the array.

Since array duplication increases the working set of the loop nest, we need to
strike a balance between the benefit of reduced skewing and the potential penalty
of the increased working set. In general, suppose duplicating an array can increase
Σt by a factor of δt, where Σt is the denominator in the minimum cost-to-time ratio,
but at the expense of increasing the data size by a factor of δsize. The skew factor Sk
is then approximately reduced by a factor of δt. The reason this is an approximate
estimate is because the skew factor should be rounded to the nearest integer. For
example, if 0 < Σd/Σt < 1, the skew factor becomes 1 and can no longer be
decreased any further by increasing t. According to Formula (9) in Section 3, the
memory-reference cost becomes δsize/δt times the previous memory-reference cost.
Clearly, array duplication is beneficial only if δsize < δt.

Take the Jacobi program (Figure 1(a)) for example. Under odd-even duplication,
the Jacobi program can be transformed as shown in Figure 7(a), where a duplicate
A′ is made for the array A. (Note that the resulting code is shown under the
assumption that ITMAX is an even number. If ITMAX is an odd number, then
A′ will be written in the even T ′-iterations, so that at the end of the execution,
the original array A will store the live values.) The array duplication increases the
T -distance of the anti-dependence on array A from 0 to 1. As a result, the total
time of the simple cycle L1 ; L2 ; L1 is increased from 1 to 2, while the total
cost remains the same. Thus, the skew factor is decreased from 2 to 1 at both
levels of the spatial loops, I and J . On the other hand, the data size is increased
to 3/2 times the original data size. Referring to Formula 9, we can see that the
memory-reference cost is reduced to (3/2)/(2/1) = 3/4 times the previous cost.
Figures 3(b-d) illustrate the new tiling at the J-loop level. As we shall see below,
using the forward substitution technique [Wolfe 1995], we can reduce the data size
back to two arrays and thus reduce the memory-reference cost by a factor of 2.

6.1.1 Forward Substitution. The technique of forward substitution substitutes a
variable use by the right-hand side expression in the statement that defines its value.
Before array duplication, a right-hand side expression may contain array references
whose forward substitution is prevented by T -independent anti-dependences. If
such anti-dependences are removed by array duplication, forward substitution may
become legal. It is known that forward substitution often results in the substituted
variables being dead. Such dead variables can be removed from the iterative stencil
loops to reduce the working set.

In the Jacobi example, suppose that the array temp value is dead after the
iterative stencil loops terminate. Prior to array duplication, it is illegal to substitute
the right-hand side expression of statement “temp(.) = . . .” into the use of temp in
loop nest L2, because doing so would violate the T -independent anti-dependences
between the read references of array A in loop nest L1 and the write references
of A in loop nest L2. After the duplication of array A, the T -independent anti-
dependences disappear, which allows the forward substitution and the consequent
dead-code removal as shown in Figure 7(b). Since the data size is the same before
and after odd-even duplication followed by forward substitution, the memory cost is
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DO I = 1, N /* boundaries */
A′(I, 1) = A(I, 1)
A′(I,N) = A(I,N)

END DO
DO I = 2, N − 1
A′(1, I) = A(1, I)
A′(N, I) = A(N, I)

END DO
DO T = 1, ITMAX

L1 : DO J1 = 2, N − 1
DO I1 = 2, N − 1
IF (MOD(T, 2).EQ.1) THEN
temp(I1, J1) = (A(I1 + 1, J1)

+ A(I1 − 1, J1) + A(I1, J1 + 1)
+ A(I1, J1 − 1))/4

ELSE
temp(I1, J1) = (A′(I1 + 1, J1)

+A′(I1−1, J1)+A′(I1, J1 +1)
+ A′(I1, J1 − 1))/4

END IF
END DO

END DO
L2 : DO J2 = 2, N − 1

DO I2 = 2, N − 1
IF (MOD(T, 2).EQ.1) THEN
A′(I2, J2) = temp(I2, J2)

ELSE
A(I2, J2) = temp(I2, J2)

END IF
END DO

END DO
END DO

(a) Jocobi after array duplication

DO I = 1, N /* boundaries */
A′(I, 1) = A(I, 1)
A′(I,N) = A(I,N)

END DO
DO I = 2, N − 1
A′(1, I) = A(1, I)
A′(N, I) = A(N, I)

END DO
DO T = 1, ITMAX

L2 : DO J2 = 2, N − 1
DO I2 = 2, N − 1
IF (MOD(T, 2).EQ.1) THEN
A′(I2, J2) = (A(I2 + 1, J2)

+ A(I2 − 1, J2) + A(I2, J2 + 1)
+ A(I2, J2 − 1))/4

ELSE
A(I2, J2) = (A′(I2 + 1, J2)

+A′(I2−1, J2)+A′(I2, J2 +1)
+ A′(I2, J2 − 1))/4

END IF
END DO

END DO
END DO

(b) After forward substitution
and dead code removal

Fig. 7. Jacobi transformed by array duplication

thus reduced by a factor of 2. Introducing m additional duplicates would be useless,
as the memory cost will always be reduced by a factor of (2 +m)/((2 +m)/2) = 2.

After applying the transformations mentioned above, we have the following loop
limits for the tiled Jacobi, based on the formulas in Section 2.3.

—The lower limit of J ′′2 equals max(2, J ′ − (T ′ − 1)) and the upper limit equals
min(N − 1, J ′ − (T ′ − 1) +BJ − 1).

—The lower limit of I ′′2 equals max(2, I ′ − (T ′ − 1)) and the upper limit equals
min(N − 1, I ′ − (T ′ − 1) +BI − 1).

—The lower limit of T ′ equals max{min{J ′ −N + 1, I ′ −N + 1}, 1} and the upper
limit equals min{max{J ′ +BJ − 3, I ′ +BI − 3}, ITMAX}.

6.1.2 Identifying Array Duplication Candidates. As discussed in Section 4, the
binary search algorithm to find the minimum cost-to-time ratio also finds the simple
cycle which produces the minimum ratio. For each anti-dependence, if any, in
the cycle, we evaluate the memory-cost reduction factor δt/δsize as the result of
duplicating the referenced array. Only if the reduction factor is greater than one
do we mark the anti-dependence as a candidate. The LDG is modified by revising
the T -distances of all the marked anti-dependences.

We then recompute the minimum cost-to-time ratio, µ∗. If that ratio increases,
we confirm the decision to remove those previously marked anti-dependences by
array duplication. Otherwise, we have found another simple cycle which produces
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DO T = 1, ITMAX
DO J1 = 1, N
DO I1 = 1, N
. . .← A(I1, J1)

END DO
END DO
DO J2 = 1, N
DO I2 = 1, N
A(J2, I2)← . . .

END DO
END DO

END DO

DO T = 1, ITMAX
DO J1 = 1, N
DO I1 = 1, N
. . .← A(I1, J1)

END DO
END DO
DOI2 = 1, N
DOJ2 = 1, N
A(J2, I2)← . . .

END DO
END DO

END DO

DO T = 1, ITMAX
DO I1 = 1, N
DO J1 = 1, N
. . .← A(I1, J1)

END DO
END DO
DO J2 = 1, N
DO I2 = 1, N
A(J2, I2)← . . .

END DO
END DO

END DO

(a) (b) (c)

Fig. 8. Examples of loop compatibility

a µ∗ value equal to the old one. Regardless of whether µ∗ gets increased or not,
we traverse the newly discovered simple cycle which has the minimum cost-to-time
ratio in an attempt to find new candidates for array duplication. This continues
until the newly discovered simple cycle (which has the minimum cost-to-time ratio)
contains no duplication candidates. Since each traversal will mark at least one
anti-dependence, it takes E traversals until the search terminates.

6.2 Reducing Backward Dependence Distances

In this subsection, we explore opportunities to reduce the minimum skew factors
through loop transformations. We use such transformations to shorten backward
dependence distances between spatial loops. We examine two methods for this
purpose. One is called compatible loop-level recognition, and the other is called
circular loop skewing.

6.2.1 Compatible Loop-Level Recognition. In Section 3.1, we made the assump-
tion that the array subscripts take the form A(a1 ∗ I1 + C1, a2 ∗ I2 + C2, . . . , am ∗
Im + Cm), where Ik is the index variable of one of the spatial loops and ak is
the scaling coefficient in the k-th dimension. In a given nesting of iterative stencil
loops, if the index variables at some loop level run through different dimensions of
the same array, cache-miss estimation formulas in that section will be inaccurate.
More importantly, the mismatched index may result in a long backward dependence
distance.

Take the example in Figure 8(a). There exists a flow dependence from J2 to J1

with a distance vector (1, 1−N,N − 1), which yields a large skew factor, N − 1, at
the J level. This large skew factor results from the incompatibility between loops
J1 and J2, in the sense that their index variables appear in different dimensions of
array A. On the other hand, we say that loops J1 and I2 are compatible because
their index variables appear in the same dimension of array A. Similarly, loop I1
is said to be compatible with loop J2.

If we permute loops J2 and I2 as shown in Figure 8(b), then the flow dependence
from I2 to J1 has the distance vector (1, 0, 0), making it more profitable to tile
the loop nest. Similarly, loops I1 and J1 can be permuted as shown in Figure 8(c)
to make loops compatible. However, assuming column-major allocation, spatial
locality will suffer in this permuted loop nest. To restore the spatial locality, array
A needs to be transposed [Anderson et al. 1995; Kandemir et al. 1998].
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J1

I1

J2

I2

A1

A2
b2

b1

Fig. 9. An orientation graph

It is important to verify that all loop levels being considered for tiling are compat-
ible. If they are found to be incompatible, the loop nesting order can be permuted,
making them compatible. For this purpose, we build an interference graph in which
each node represents an individual loop embedded in the T -loop. If two loops are
incompatible, then an edge is drawn between the corresponding pair of nodes. Our
task is to color the interference graph so that no adjacent nodes have the same
color. Nodes of the same color will be given the same loop nesting level. If one
spatial loop is embedded in another, they are required to have two different colors,
and an edge should be drawn between the pair of loops.

The construction process of the interference graph is quite simple. We first
build a graph called the orientation graph to associate loops with array dimensions.
(Previously orientation graphs have been used for parallel loop scheduling and data
allocation [Nguyen and Li 1998].) The orientation graph is a bipartite graph. The
nodes on one side represent the individual loops, and the nodes on the other side
represent the array dimensions. An edge is drawn between a loop node and an array-
dimension node if the corresponding loop-index variable appears in the particular
array dimension. Under the assumptions in Section 3.1, each loop node has one
connecting edge only.

Figure 9 shows the orientation graph for the code example listed in Figure 8(a).
In that graph, the nodes A1 and A2 represent the first and the second dimensions,
respectively, of the array A. The loop nodes within each dashed-line box (b1 or
b2) belong to the same perfect loop subnest. The construction of the orientation
graph takes linear time in the size of the T -loop body. To build the interference
graph, we go through each loop node L in the orientation graph: for each edge that
connects L to an array-dimension node, we declare all loop nodes which connect to
other dimensions of the same array to be interfering with L. As mentioned above,
if one spatial loop is embedded in another, they interfere with each other. The time
to construct the interference graph is proportional to its size, which, in the worst
case, is the square of the number of loop nodes.

Figure 10(a) shows the interference graph for the code example shown in Fig-
ure 8(a). It is easy to see that J1 and I2 will have the same color and that J2 and
I1 will have the same color. To take advantage of cache-line spatial locality, J2 and
I1 are assigned to the innermost loop level. Figure 10(b) shows the interference
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J1

I1

b1 b2

I2

J2 J1

I1

b1 b2

I2

J2

(a) (b)

Fig. 10. Interference graphs

graph for the Jacobi code. It is clear that the original loop nesting order is good.
The problem of deciding whether a graph is n-colorable, n ≥ 3, is known to

be NP-complete [Gary and Johnson 1979]. However, there exist good heuristic
methods which take time linear in the size of the interference graph. We use a
method which sequentially removes the nodes from the graph and places them in a
coloring stack. In each step, the node with the fewest neighbors is removed [Briggs
et al. 1989; Matula and Beck 1981]. When the graph becomes empty, the nodes are
popped off the stack for coloring. Take the graphs in Figure 10 as an example. For
each graph, every node initially has two neighbors. We first remove an arbitrary
node, say J1, then remove I1, J2 and finally I2. In the coloring phase, we find the
graph is 2-colorable. Such a heuristic method is approximate in the sense that it
may declare a graph to be not n-colorable when it actually is. For loop tiling, such
cases should be quite rare.

6.2.2 Improving Colorability. In case the heuristic method fails to prevent neigh-
boring nodes from having the same color, we can improve colorability by node split-
ting. A nest of spatial loops can be split into two or more nests, as long as it does
not break any T -independent data-dependence cycle. This is done by using a loop
transformation known as loop distribution, or loop fission [Wolfe 1995].

Take the example in Figure 11(a). Its interference graph, shown in Figure 11(b),
is not 2-colorable. However, if we distribute the spatial loops as shown in Fig-
ure 11(c), then the interference graph, shown in Figure 11(d), becomes 2-colorable.
A detailed discussion of loop distribution is beyond the scope of this paper.

6.2.3 Circular Loop Skewing. Figure 12 shows an example of applying circular
loop skewing [Wolfe 1995] to reduce backward dependence distances. The code
skeleton in Figure 12(a) has a wrap-around stencil which is typical of PDEs with
boundary conditions defined over a cylinder. Its iteration subspace is shown in
Figure 12(b). Suppose that all Ji loops are free of loop-carried dependences and
that the flow dependence from J2 to J1 has the distance vector (1, 0). Within the
same time step T , we make the following assumptions.

(1) The jth iteration of loop J2 is flow-dependent on the (j−1)th, jth and (j+1)th
iterations of J1 for 2 ≤ j ≤ N − 1;

(2) the first iteration of loop J2 is flow-dependent on the first, the second and the
last iterations of J1; and

(3) the last iteration of loop J2 is flow-dependent on the (N − 1)th, the Nth and
the first iterations of J1.
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DO T = 1, ITMAX
DO J1 = . . .
DO I1 = . . .
. . .← A(I1, J1)
. . .← B(I1, J1)

END DO
END DO
DO J2 = . . .
DO I2 = . . .
A(I2, J2)← . . .
B(J2, I2)← . . .

END DO
END DO

END DO

(a)

DO T = 1, ITMAX
DO J1 = . . .
DO I1 = . . .
. . .← A(I1, J1)
. . .← B(I1, J1)

END DO
END DO
DO J2 = . . .
DO I2 = . . .
A(I2, J2)← . . .

END DO
END DO
DO J ′

2 = . . .
DO I′2 = . . .
B(J ′

2, I
′

2)← . . .
END DO
END DO

END DO

(c)

�
J1�

J2� I2�

I1�

(b)

�
J1�

J2� I2�

I1�

I’2�J’2�

(d)

Fig. 11. Loop distribution

Following the algorithms in Section 4, we will get the minimum skew factor
S = N − 1. However, we can reduce the backward dependence distances, and thus
reduce the minimum skew factor, as follows. We change the iteration order of loop
J2 from (1, 2, 3, . . . , N) to the following. For T = 1, the order is (2, 3, . . . , N, 1).
For T = 2, the order is (3, . . . , N, 1, 2). The rotation of the order continues with
the increasing T -values. Similarly, we change the iteration order of loop J1 from
(1, 2, 3, . . . , N) to the following. For T = 2, the order is (2, 3, . . . , N, 1). For T = 3,
the order is (3, . . . , N, 1, 2). The rotation of the order also continues with increas-
ing T -values. Such a transformation will eliminate all of the dependences whose
backward distances are d = 1 − N , resulting in a new skew factor S = 1. In a
previous paper [Song and Li 1999], we presented an algorithm to formalize the idea
illustrated above. We omit the details here.

6.3 Tiling with Speculative Execution

Iterative stencil loops may contain an IF statement which is executed at the end
of each T -iteration. Such an IF statement often checks to see whether the iterative
computation has converged. The T -loop may terminate before the iteration count
has reached its maximum, ITMAX, if the convergence condition is already met.
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DO T = 1, ITMAX
DO J1 = 1, N
< BODYJ1

>
END DO
DO J2 = 1, N
< BODYJ2

>
END DO

END DO

1 2 3 4 5 N-2 N-1 N

J1

J2

J1

J2

T=1

T=2

(a) (b)

DO T = 1, ITMAX
DO J ′1 = T, T +N − 1
J1 = MOD(J ′1 − 1, N) + 1
< BODYJ1

>
END DO
DO J ′2 = T + 1, T +N
J2 = MOD(J ′2 − 1, N) + 1
< BODYJ2

>
END DO

END DO

1 2 3 4 5 N-2 N-1 N

J1

J2

J1

J2

T=1

T=2

1 2 3

(c) (d)

Fig. 12. An example of circular loop skewing: (a) the original loop nest skeleton,
(b) a part of the iteration-space graph before transformation, (c) the transformed
loop nest skeleton, (d) a part of the iteration-space graph after transformation

The existence of such a convergence test in the T -loop defeats the loop tiling
scheme which we have presented so far. This is because the control dependence
imposed by the IF statement prevents the T -loop from being interchanged with
inner loops. To overcome this difficulty, in this section we present an extension to
our tiling method. The idea of the extension is as follows. We partition the ITMAX
iterations of the T -loop into a number of T-chunks such that the exit condition is
tested only at the end of each T -chunk, instead of the end of each T -iteration. We
then tile the individual T -chunks using the scheme presented in previous sections.

If the size of a T -chunk is smaller than ∆min ≡ max{dBk

Sk
e | 1 ≤ k ≤ n, Sk 6= 0},

no data elements will get fully reused within a tile traversal. Therefore, we let
the minimum size of a T -chunk be ∆min. The initial T -chunk size is set to ∆0 =
ITMAX/2. If the exit condition tests false at the end of the initial T -chunk, the

size of the next T -chunk is set to ∆i = ∆i−1

2 (i ≥ 1). If the exit condition tests true,
then the execution has overshot by a number of T -iterations. We then roll back the
execution to the latest checkpoint and re-execute the loops with the T -chunk size
further halved. As soon as the T -chunk size is equal to or smaller than ∆min, the
T -chunk is executed sequentially.

Since the T -chunk size is successively reduced by half until reaching ∆min the
maximum number of T -chunks to be executed is O(log(ITMAX)). The number of
checkpoints inserted is therefore at most O(log(ITMAX)). The worst-case overhead



36 · Z. Li and Y. Song

DO T = 1, ITMAX
DO L1,1 = l1,1, u1,1

. . .

DO L1,n = l2,n, u2,n
. . .

END DO /* L1,n */
DO L2,n = l2,n, u2,n

. . .

END DO /* L2,n */
. . .

END DO /* L1,1 */
. . .

DO Lm[1],1 = lm[1],1, um[1],1
. . .

DO Lm[n]−1,n = lm[n]−1,n, um[n]−1,n
. . .

END DO /* Lm[n]−1,n */

DO Lm[n],n = lm[n],n, um[n],n
. . .

END DO /* Lm[n],n */

END DO /* Lm[1],1 */
. . .

IF (exit condition = TRUE) THEN
GOTO next

END IF
END DO
next:

ACCUM = 0
∆ = ITMAX

2
Initialize B to A.
DO CTRL = 1, ITMAX

Execute the tiled T -chunk from T = (ACCUM + 1)
to T = (ACCUM + ∆) .

ECOND = exit condition for T = (ACCUM + ∆)
IF (ECOND.EQ.TRUE) THEN

Restore A from backup copy B.
IF (∆.LE.∆min THEN

GOTO rollback
ELSE

∆ = ∆
2

IF (∆ < ∆min) ∆ = ∆min
END IF

ELSE
ACCUM = ACCUM + ∆
IF (ACCUM.EQ.ITMAX) GOTO next
Copy A(or its odd copy C) to backup copy B.

∆ = ∆
2

IF (∆ < ∆min) ∆ = ∆min
IF ((ACCUM + ∆).GT.ITMAX) THEN

∆ = ITMAX − ACCUM
END IF

END IF
END DO
GOTO next
roolback:

Execute the original loop nest (Figure 13(a))

from T = (ACCUM + 1).
next:

(a) An extended program model (b) The tiled code with speculative execution

Fig. 13. Tiling with speculative execution

of checkpointing, on the other hand, is O(ITMAX) in terms of the number of time
steps. The worst case takes place when the program turns out to converge in few
time steps. Since in reality the number of executed iterations is generally near
ITMAX, the rollback cost tends to be small. In Section 7 we shall see that the
gain from the increased temporal reuse of the cache outweighs the loss due to
checkpointing and over-shooting.

The transformed loops speculatively execute certain T -iterations. Thus, IF state-
ments must be inserted to guard against potential exceptions such as overflow and
divided-by-zero. If the possibility of exceptions is detected at run time, the execu-
tion rolls back to the latest checkpoint.

Formally, we extend the loop model defined previously in Figure 2(a) by including
a loop exit test, as shown in Figure 13(a). The exit condition can only reference
the variables defined either within the same T -iteration or outside the T -loop, and
it should not be the source of any T -carried flow dependences. The exit condition
should be monotonic. With monotonicity in the exit condition, we need to examine
only the boundary of the chunk in order to decide whether rollback is necessary.
We check for monotonicity using methods similar to those presented by Pugh [Pugh
et al. 1996]. The following algorithm formalizes the idea discussed above.

Algorithm 6.1 Tiling with Speculative Execution
Input: A loop nest which conforms to the program model shown in Figure 13(a).
Output: A tiled loop nest.
Procedure:

—Transform the T -loop nest in Figure 13(a) into the code shown in Figure 13(b).
Each T -chunk is tiled by applying the algorithms in Section 4. The arrays refer-
enced in the exit condition are renamed in a way similar to array duplication.



Automatic Tiling of Iterative Stencil Loops · 37

2

In the transformed code, for every array A which is a source of T -carried flow
dependences, we create a backup copy, B, which initially has the same values as A.
The code uses a variable ACCUM to accumulate the total T -iterations executed
so far. In every iteration of the outermost DO loop, after executing ∆ steps of the
tiled program, the rollback condition is checked. If the execution must rollback, the
values stored in B are restored and the computation resumes from the beginning of
the T -iteration for T = (ACCUM + 1), which is the latest checkpoint. Otherwise,
A is copied to the backup copy B. If the execution reaches the last T -iteration, the
outermost DO loop terminates.

7. EXPERIMENTAL EVALUATION

We have implemented the tiling techniques presented above in the Panorama com-
piler [Gu et al. 1997]. In our experiments so far, we have applied the technique to
the following test programs which contain iterative stencil loops:

—Jacobi, which is a small kernel often used as an example of relaxation methods.

—Loop No. 18 (LL18) from the famous set of Livermore Loops.

—Two signal processing kernels, called acoustic2d and acoustic3d respectively,
from the BLITZ++ benchmark suite [Object-Oriented Scientific Computing ].
The acoustic2d program contains two levels of spatial loops, and acoustic3d

contains three levels.

—Ten programs from a PDE solver package called MUDPACK from the University
Corporation for Atmospheric Research [Admas ]. Five of them contain two levels
of spatial loops and the rest contain three levels.

—A program, tomcatv, from the industrial SPEC95 benchmarks.

—A program, swim, which has two versions, namely swim95 from SPEC95 bench-
marks and swim2000 from SPEC2000 benchmarks. The main difference between
these two versions is in the data size. In swim2000, each array contains 1335×1335
double-precision floating point numbers. In swim95, each array contains 513×513
single-precision floating point numbers.

We run the test programs on a SUN Ultra I uniprocessor workstation and on
a single MIPS R10K processor of an SGI Origin 2000 multiprocessor machine.
We compared the codes tiled by our scheme with the original codes optimized by
the native compilers. To highlight the benefit of temporal locality achieved across
different time steps by our method, we also compare with a method called shift-and-
peel [Manjikian and Abdelrahman 1997] which combines loop peeling, loop fusion
and cache partitioning to aggressively exploit data locality at inner loop levels.

On the R10K, all codes are compiled using the native MIPSpro compiler to gen-
erate the machine code, with the highest optimization level “-O3”. The MIPSpro
compiler has certain loop tiling capability at the “-O3” level, but it is unable to
deal with iterative stencil loops as our scheme does. When the codes tiled by shift-
and-peel and by our scheme are compiled by the native compiler, we switch off the
native compiler’s own loop-tiling option. On the Ultra I, all codes are compiled
using the native compiler, with the “-xO4” optimization switch turned on. This is
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Table I. Hardware Parameters

Ultra I R10K
Primary cache secondary cache TLB Primary cache secondary cache TLB

Size 2K 64K 64 4K 512K 64
Line size 2 8 1K 4 16 4K

Associativity 1 1 2 2
Miss penalty 6 45 9 68

Notes: The TLB size is in the number of entries. All other sizes are in the number of data elements.

Each data element takes eight bytes. Miss penalties are in the number of CPU cycles.
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Fig. 14. Execution time (in seconds) of Jacobi on the Ultra I and the R10K with various matrix

sizes

the highest optimization level without feedback from profiling. The SUN compiler
on our machine does not perform loop tiling at any optimization level.

Table I lists the hardware parameters on the Ultra I and the R10K. On both ma-
chines, the secondary cache stores both instructions and data. We use the hardware
counters on the R10K and the Ultra I to measure the cache miss rate.

We applied the speculation technique (in Section 6.3) to Jacobi and tomcatv.
(The rest of the test programs do not contain exit conditions in the time-step
loop.) Circular loop skewing does not have any effect except for swim. In the rest
of this section, we provide further experimentation details for the individual test
programs.

7.1 Execution Time Improvement

The Jacobi Kernel. We arbitrarily fix ITMAX to 100 and vary the input ma-
trix size arbitrarily from 800 to 1100, in increments of 20. The skew factors are
~S = (1, 1) for tiling with array duplication and ~S = (2, 2) for tiling without ar-
ray duplication. For all test cases, Jacobi always runs to the maximum time step,
i.e., 100. Figures 14(a) and (b) show the performance result for different versions
of Jacobi code on the Ultra I and the R10K respectively. Our scheme chooses to
tile with array duplication for all the test cases on both machines. (In all figures
and tables in this subsection, the label “Original” stands for the original codes,
“Shift-and-peel” for the shift-and-peel codes, “Tile w/ Dup” for our codes tiled
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Fig. 15. Execution time (in seconds) of Jacobi on the Ultra I and the R10K with small matrix
sizes

with duplication and “Tile w/o Dup” for our codes tiled without duplication.)
Figure 14 shows that, when compared with the other three schemes, tiling with

array duplication performs equally well or better in all cases on both machines. On
the Ultra I, our tiled codes achieve a speedup of 1.00 to 2.46 over the original codes.
Our tiled codes achieve a speedup of 1.16 to 1.73 over shift-and-peel codes. On the
R10K, our tiled codes achieve a speedup of 1.75 to 4.00 over the original codes and
achieve a speedup of 1.50 to 4.00 over shift-and-peel codes.

Loop tiling incurs a certain execution overhead. The most prominent potential
overhead may be the potential degradation of software pipelining. The relatively
complex loop construct after loop tiling may reduce the effectiveness of the back-
end compiler to generate efficient software pipelining code for the innermost loops.
For large data sizes, i.e. for higher loop iteration counts, the benefit of increased
data locality in the tiled loops tends to overwhelm the penalty. However, for small
data sizes which fit in the secondary cache, the penalty for primary-cache misses is
significantly lowered. Hence, the benefit of increased locality may be insufficient to
offset the penalty. Such a possibility is highlighted by the results shown in Figure 15
which are collected by choosing several array sizes which allow the total data size
to fit in the secondary cache. (To make the test program run long enough time,
we increased ITMAX to 10000.) In this figure, we observe that the tiling overhead
indeed causes degraded performance on the Ultra I, although it does less so on the
R10K. The array-size cutoff for the tiling decision seems to depend on how the
native compiler performs scalar and instruction-level parallelism optimizations. In
practice, one can find these cutoff numbers by experimenting with sample loops on
the target machine. Two versions of code can then be produced, one with tiling
(for large data sets) and one without tiling (for small data sets).

The LL18 Kernel. We fix ITMAX to 400 and choose the input matrix sizes from
200 to 400, in increments of 20. We choose smaller matrix sizes than those in
Jacobi because LL18 has nine arrays instead of two. Using the same array sizes
as in Jacobi would result in extremely small tile sizes. Our scheme duplicates two
arrays, ZR and ZZ, and gets ~S = (1, 1). Array duplication increases the memory
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Fig. 16. Execution time (in seconds) of LL18 on the Ultra I and on the R10K with various matrix
sizes

requirement by 18%. Without array duplication, we would have ~S = (2, 2).
Figure 16 shows the performance result for various versions of LL18 on the Ultra

I and the R10K respectively. On the Ultra I, our tiled codes achieve a speedup of
1.25 to 4.10 over the original codes and a speedup of 1.08 to 1.27 over the shift-and-
peel codes. On the R10K, our tiled codes achieve a speedup of 1.00 to 1.71 over
the original codes and a speedup of 1.00 to 1.75 over the peel-and-fusion codes. We
observe that, in most cases, the execution speed of codes tiled with and without
array duplication is very similar. Array duplication enjoys a slight advantage on
the Ultra I.

Array duplication may increase the program data size. If such an increase causes
the data to exceed the memory capacity, then the arrays should not be duplicated.
For LL18, we did an experiment with N = 1250. The original program can be
executed in-core on our Ultra I machine. However, the tiled program with array
duplication has to be executed out-of-core and, as a result, it does not finish in a
reasonable time. Of course, one can apply multi-level tiling to the loops, so that the
tile size at the higher level is chosen to fit the page size. Within the page size, one
can then tile for the caches. Even so, however, the code with array duplication is
still expected to generate more page faults than the code without array duplication.
Therefore, duplication should be avoided when it causes the program to execute
out-of-core. We do not perform further experiments on this effect for this paper.

Table II. Execution time (in seconds) of tomactv

Test Program R10K Ultra I
Exec. Time Speedup Exec. Time Speedup

Original 155.1 1.00 405 1.00
Shift-and-peel 136 1.14 356 1.14
Tile w/ Dup 73.8 2.10 310 1.31
Tile w/o Dup 73.9 2.10 328 1.23
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Table III. Execution time of tomcatv on the R10K with various convergence tests

Org. Iter. Org. Time Tiled Iter. Tiled Time Speedup
11 7.3 717 71.2 0.10
38 12.7 744 79.7 0.16
105 23.6 717 74.9 0.32
359 76.6 787 74.9 1.02
513 109.3 751 69.8 1.52
620 123.6 764 77.2 1.60
731 157.1 773 77.5 2.03
750 155.1 750 73.8 2.10

The tomcatv Program. The program tomcatv has seven N -by-N arrays in its
iterative stencil loops. Among these, two arrays, X and Y , are duplicated when we
tile the loops with array duplication. The duplication increases the memory usage
by 29%. Loop interchange and array transpose are applied before tiling to remove
incompatibility between several loops at the same level. Due to long backward
dependence distances at the higher levels of spatial loops, tiling can be applied
profitably only to the highest level of spatial loops. The skew factor is S1 = 1 with
array duplication and S1 = 2 without duplication. On the R10K, the tile size B1 is
computed as 51 with array duplication and as 66 without duplication. On the Ultra
I, the tile size B1 equals 11 and 14, respectively, for loops tiled with and without
duplication. On both machines, our compiler chooses tiling with duplication. Using
the reference input data, tomcatv always runs to the maximum time step, i.e., 750.
The tiled code with speculative execution executes five checkpoints on the R10K
both with and without array duplication. It executes seven checkpoints on the
Ultra I. The performance data is shown in Table II.

We have also studied the effect of rolling back T -iterations in case of misspec-
ulation by changing the convergence test condition in tomcatv. Table III shows
the results. The “Org. Iter.” column lists the number of iterations executed in
the original code before the computation converges according to the new condi-
tion. The “Org. Time” column lists the execution time corresponding to the “Org.
Iter.” column. The “Tiled Iter.” column lists the number of iterations executed in
total by the tiled code before the computation converges. The “Tiled Time” is the
execution time corresponding to the “Tiled Iter.” column. The “Speedup” column
lists the speedup of the tiled code over the original codes. It can be seen that if
the convergence happens in the very beginning, the tiled code is slower than the
original code. Otherwise, the tiled code is faster.

The swim Program. For swim, no arrays need to be duplicated. Long backward
dependence distances exist at two levels of the spatial loops. We reduce the dis-
tances at the highest level using circular loop skewing, but we cannot do so at the
lower level. Hence, only the highest level of the spatial loops are tiled. The skew
factors are computed as S1 = 2. For the swim95 version, the tile sizes are computed
as B1 = 34 on the R10K and B1 = 5 on the Ultra I. For swim2000, we get B1 = 25
on the R10K and B1 = 3 on the Ultra I. (The tile sizes differ because of the different
iteration counts of the innermost spatial loops which are not tiled.) Table IV shows
the performance results, where the row labeled by “our tiled” shows the results of
the program transformed by our tiling techniques. Shift-and-peel does not apply
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Table IV. Execution time (in seconds) of swim

Test Program R10K Ultra I
Exec. Time Speedup Exec. Time Speedup

swim95 (original) 92 1.00 241 1.00
swim95 (our tiled) 58 1.59 127 1.90
swim2000 (original) 619.5 1.00 2286 1.00
swim2000 (our tiled) 380 1.63 1700 1.34
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Fig. 17. Execution time (in seconds) of swim95 on the Ultra I and the R10K with different tile

sizes

directly to swim due to the long backward dependence distances.
To assess how good our tile-size selection algorithm is, we run swim95 with dif-

ferent tile sizes ranging from 2 to twice of what our algorithm chooses. Figure 17
shows the results. The performance is not very sensitive to the tile size and our
chosen tile sizes are very close to the best ones shown by the experiments.

Acoustic and MUDPACK programs. For acoustic2d and acoustic3d, we use
the reference input from the benchmark provider. MUDPACK contains a set of
subroutines for elliptic partial differential equations [Admas ]. It also contains test
drivers which we can use to measure the performance. Combining the test drivers
with various subroutines, we obtain ten sample test programs. Five of them, namely
cud2, cud2sp, cuh2, mud2 and mud2sp, contain two levels of spatial loops. The rest,
cud3, cut3cr, cuh3, mud3, and mud3sa, contain three levels of spatial loops. We
increase the test data size for these programs so that the execution time will last
at least several seconds. Procedure cloning and loop embedding [Wolfe 1995] are
applied before the iterative stencil loops are tiled. Shift-and-peel is not applied to
these six programs because its cache-partitioning step cannot be applied in order
to compute the tile size. Figure 18 shows the performance result, where the tiled
code achieves a speedup between 1.00 and 5.06.

7.2 Memory Reference Characteristics

On the R10K, in addition to the execution time, we have also collected data that
show the memory reference characteristics of different versions of programs. These
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Table V. Cache misses in Jacobi, LL18, acoustic2d, mud2, tomcatv and swim95

(LS, PM and SM are counted in millions)

Test Program Original Shift-and-peel
LS PM SM PMR LS PM SM PMR

Jacobi (N = 1000) 553.5 106.3 24.7 0.19 638.8 100.1 12.2 0.16
LL18 (N = 300) 1205.5 201.4 15.7 0.17 1182.6 216.5 13.2 0.18

acoustic2d 2034.3 177.9 28.1 0.09 - - - -
mud2 4197.8 721.9 75.5 0.17 - - - -

tomcatv 10826 1523 177 0.14 10033 1312 138 0.13
swim95 11706 871 166 0.07 - - - -

Test Program Duplication Non-duplication
LS PM SM PMR LS PM SM PMR

Jacobi (N = 1000) 712.4 8.9 1.2 0.012 806.0 13.9 1.4 0.017
LL18 (N = 300) 1234.0 257.0 0.8 0.21 1199.9 162.4 0.4 0.14

acoustic2d - - - - 2285.7 172.2 1.3 0.08
mud2 - - - - 4232.6 757.7 47.5 0.18

tomcatv 9210 1150 3.5 0.12 9032 1067 3.6 0.12
swim95 - - - - 9305 819 5.8 0.088

data are collected using the perfex library based on R10K performance counters. We
show this data for Jacobi, LL18, tomcatv, swim95, one Acoustic program, namely
acoustic2d, and one program from MUDPACK, namely mud2. In this table, the
‘LS’ column lists the number of load-store instructions executed at run time. The
‘PM’ column lists the number of primary cache misses. The ‘SM’ column lists
the number of secondary cache misses, and the ‘PMR’ column lists the primary
cache miss ratio. The data for Jacobi and LL18 are collected with the array size
N arbitrarily chosen to be 1000 and 300 respectively. For Jacobi, we see that
the primary cache miss rate is reduced by an order of magnitude. For all six
test programs, the number of secondary cache misses is dramatically reduced by
our tiling scheme. The gain in temporal locality across T iterations as the result
of array duplication clearly outweights the penalty due to the increased memory
requirement.

7.3 Effect of Array Padding

The array padding scheme described in Section 5 is applied when we perform tiling
on the test programs. For inter-array padding, we place the arrays which need
this padding in the same Fortran common block and then insert an artificial array,
whose size is determined by the padding scheme, between each pair of arrays to
be padded. In order to examine the effect of array padding, we run the programs
listed in Table V on the Ultra I with and without array padding. The results are
shown in Table VI. The label “Original” means the original programs before tiling.
The label “w/o pad” means the tiled programs before array padding. Lastly, the
label “w/ pad” means the tiled programs after array padding. We note that the
degree of improvement by padding depends on how poorly the original array sizes
match the cache. None of the test cases we listed here are extremely pathological,
yet, the improvement by array padding is still noticeable.

7.4 Discussion

It is also possible to tile the time-step loop. Tiling in this way can potentially
increase the data reuse between different tile traversals. However, this also increases
the total number of tile traversals. Since the memory references in the initial tile
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Table VI. Effect of Array Padding
Test Program Execution Time (Seconds) Speedup by Padding

Original w/o pad w/ pad
Jacobi (N = 1000) 20 15 14 7.1%
LL18 (N = 300) 49 40 37 8.1%

acoustic2d 129 122 118 3.4%
mud2 667 134 130 3.0%

tomcatv 405 344 310 11%
swim95 241 152 127 20%
swim2000 2286 1761 1700 4%
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Fig. 19. Execution time of Jacobi on the R10K with different T-loop block sizes

in each tile traversal likely incur cache misses, creating more tile traversals tends
to result in a net increase in cache misses. The execution time when both the
spatial loops and the time-step T -loop are tiled with different T -loop block sizes,
where N = 1000 and ITMAX = 100, are shown for the Jacobi example (with the
convergence test removed) in Figure 19. The block size 100 amounts to no blocking
for the T -loop. One can see that blocking the T -loop is not beneficial in the case of
Jacobi. We do not perform further experiments with the idea of tiling the T -loop
for this paper.

In this paper, loop fusion and forward substitution are applied to Jacobi to elim-
inate the temporary array temp, which reduces the memory overhead introduced by
array duplication. A more general technique of array contraction [Song et al. 2001]
may be applied to a broader class of programs to reduce the sizes of temporary
arrays. Array contraction reduces array sizes from a higher dimension to a lower
dimension, sometimes even to scalars. For example, several local arrays in tomcatv

can be contracted from two dimensions to one dimension after tiling. We do not
explore such opportunities for this paper, as it requires an additional mathematical
framework and a number of additional compiler schemes [Song et al. 2001].

8. RELATED WORK

Loop tiling has been used in two important contexts for high performance comput-
ing. On multiprocessors, it can be used to reduce inter-processor communication
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[Xue 2000; Boulet et al. 1999]. For machines which employ cache memories, it can
be used to improve the cache hit ratio both in sequential programs [Wolfe 1995]
and in parallel programs [Sarkar 1998]. Our paper is aimed at cache performance
improvement for sequential programs. We use loop tiling to reorder loop iterations
and partition them into tiles such that the data accessed in each tile can fit in the
cache and be reused multiple times.

Previous publications that are closely related to this paper can be divided into two
categories. One category concerns loop transformations and data transformations.
The other concerns the removal of set conflicts in the tiled loops. We discuss
closely-related work in these two categories separately.

8.1 Loop Transformations

There exists an interesting relationship between loop tiling and loop fusion. Loop
fusion is commonly performed to exploit data reuses between adjacent loops which
appear at the same loop level [Manjikian and Abdelrahman 1997; Kennedy and
McKinley ; Kennedy 2000; Ding and Kennedy 2001]. When performed this way,
unlike the tile scheme presented in this paper, loop fusion does not exploit temporal
data locality across different time steps in iterative stencil loops.

On the other hand, it is possible to fuse entire nested loops into a perfect nest.
After that, one may be able to use a previously proposed loop skewing method
[Wolf 1992] to make the fused loop nest fully permutable at certain outer levels.
Loop tiling can then be applied to those outer loop levels. Hence, as we mentioned
in Section 2.1, tiling can be performed with or without first fusing the spatial
loops into a single perfect nest. Recently proposed methods such as loop embedding
[Ahmed et al. 2000] and iteration space slicing [Pugh and Rosser 1999] use various
heuristics to find legal fusions which can improve data reuse. We have shown in this
paper that, for iterative stencil loops, the spatial loops generally must be skewed
over the time steps before they can be tiled. Previous publications have separated
the issue of loop fusion from loop skewing and loop tiling. Thus, they do not
analyze the effect of loop alignment (during loop fusion) on the later step of skewed
tiling. In this paper, however, we have shown that loop alignment and loop skewing
must be considered simultaneously in order to maximize the benefit of tiling. We
have presented a polynomial-time algorithm to tile iterative stencil loops directly
with minimum skew factors. We also have also presented a number of techniques
to reduce the skew factors. Among those, the array duplication technique can be
optimally performed, based on the same algorithm which finds the minimum skew
factors.

For a special class of memory-constrained loops (which are not iterative sten-
cil loops), Cociorva et al. have shown that there exists a tradeoff between loop
fusion and loop tiling [Cociorva et al. 2001]. This class of loops originates from
multidimensional integration in computational chemistry. On one hand, loop fu-
sion can reduce the total number of arithmetic operations in these loops. On the
other hand, the kind of loop fusion performed may disable loop tiling and thus may
reduce temporal data locality. They present a method to make the tradeoff.

There exist numerous publications on the tiling of a class of loops often known as
linear algebra loops, which include familiar examples such as matrix multiplication
and Gausian elimination. This class of loops has data-dependence characteristics
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that are distinctly different from iterative stencil loops. The most prominent dif-
ference is that they normally do not require loop skewing. To an extent, our array
padding analysis can also be applied to this class of loops. However, the rest of the
techniques discussed in this paper mainly target iterative stencil loops only.

After the publication of our initial work on tiling iterative stencil loops [Song
and Li 1999], several authors have published new contributions to similar prob-
lems. Wonnacott develops a scheme called time skewing which adopts a value-based
flow analysis to optimize for memory locality [Wonnacott 2002]. His method first
performs full array expansion and forward substitution, and then it recompresses
the expanded array while preserving data dependences. His method focuses on
1-D tiles. Jin et al. have manually applied recursive blocking, in conjunction with
skewing, to two numerical kernels (SOR and Jacobi) and a supercomputing appli-
cation (SMG98) [Jin et al. 2001]. Recursive blocking uses recursive calls to produce
recursively-embedded multi-level tiles. It is still unclear how this method affects
conflict misses in iterative stencil loops. If this problem is solved, one can use the
recursive blocking method in our automatic tiling framework.

There exist techniques which use program transformations other than loop tiling
to improve data locality in imperfectly nested loops. Kodukula and Pingali pro-
pose a matrix-based framework to represent transformations of imperfectly-nested
loops [Kodukula and Pingali 1996] including permutation, reversal, skewing, scal-
ing, alignment, distribution and jamming. Such techniques seem to work quite well
on loops which are not iterative stencil loops, although they do not seem to exploit
temporal locality in iterative stencil loops. Kodukula et al. have also proposed a
data-centric technique, called data shackling [Kodukula et al. 1997], which blocks
the arrays based on data flow analysis and then forms new loop nests to compute
the array values block-by-block. Although it can handle certain imperfectly-nested
loops, their method does not apply to the stencil computations handled in our
work, because updating one block will destroy the boundary data necessary for
its adjacent blocks. Pugh and Rosser present a technique called iteration space
slicing to find the set of computations which affect the value of a given array ele-
ment [Pugh and Rosser 1999; Rosser 1998]. By reordering the computation based
on such slicing cache locality may be improved. This technique can expose many
opportunities to improve data locality. However, how to optimally choose among
all possible opportunities remains a challenging issue. Collard proposes a method
to speculatively execute while-loops on parallel machines [Collard 1994]. His ob-
jective is to increase parallel processor utilization while ours is to tile loops for
better memory performance on uniprocessors. We use quite different algorithms.
Pugh et al. present a method to handle exit conditions for iterative application in
parallel environment [Pugh et al. 1996]. Our method to verify monotonicity of exit
conditions is similar to that of Pugh et al. Both works by Collard and by Pugh et
al. present additional interesting ideas to handle loop exit conditions, which may
be incorporated in our future work.

A number of authors have worked on memory-cost analysis for loop transforma-
tions, including tiling. Such analysis can be quite useful in many cases, although
the techniques proposed so far have not dealt with imperfectly-nested loops such
as those covered in this paper. Among these, Strout et al. discuss the minimum
storage requirement to allow flexible loop scheduling such as tiling [Strout et al.
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1998]. Ferrante et al. provide closed-form formulas that bound the number of ar-
ray accesses and the number of cache lines within a loop nest, thus providing an
estimate of the number of cache misses in a loop nest [Ferrante et al. 1991]. Temam
et al. present an algorithm to estimate the number of cache misses, especially in-
terference misses [Temam et al. 1994]. Ghosh et al. present cache miss equations
(CME) to count the number of cache misses in order to guide optimization [Ghosh
et al. 1998]. Mitchell et al. use matrix multiplication as an example to show that
both the TLB misses and the cache misses must be considered simultaneously in
order to achieve the best performance [Mitchell et al. 1998]. However, they provide
no formal algorithms to select tile sizes.

8.2 Interference-Removal Techniques

For the removal of interferences between variable references in the cache, the main
differences between the approach presented in this paper and the previous ap-
proaches are two-fold. First, our approach removes self interferences for general
m-dimensional array tiles, where m > 1, while previous methods mostly target one
or two-dimensional arrays. Second, our approach is aimed at minimizing capacity
misses and conflict misses simultaneously, while previous methods generally cannot
do so. In the rest of this section, we give additional detailed accounts of related
methods. Minor differences between our approach and the previous methods are
pointed out along the way.

LRW. The LRW tile-selection scheme by Lam, Rothberg and Wolf [Lam et al.
1991] has led to a number of follow-up schemes in recent years. LRW considers
two-dimensional array tiles and it uses an algorithm to compute the largest square
tile without self interferences, i.e., set conflicts that are confined within a single
tile. The algorithm sequentially increases the size of the square tile, checking to see
whether different array elements will conflict at the same cache line. The algorithm
runs in O(N/

√
C) time. The experimental results in the LRW paper show that

the cache is often under-utilized when the conflict-free tile is required to be square.
Therefore, the theoretical minimum cache misses often cannot be achieved. The
paper states that their algorithm can be easily extended to find the largest rect-
angular block. Indeed, several follow-up schemes try to extend LRW by allowing
rectangular tiles.

TSS. The TSS scheme by Coleman and McKinley [Coleman and McKinley 1995]
is the first to use Euclidean remainders to study the mapping of rectangular tiles to
the cache. The TSS scheme selects a number of candidate tile sizes which guarantee
the absence of self interferences. The scheme then uses a probabilistic model to
estimate cross interferences. It chooses the tile size for which the estimated conflict
misses are minimum.

The TSS scheme is limited to two-dimensional tiles and it is possible for TSS to
choose a narrow tile which incurs minimal conflict misses at the expense of heavy
capacity misses. Another difference, although a minor one, between TSS and our
approach is that TSS requires the declared length of the array column to be no
greater than the cache size. This is because TSS begins by initializing the tile-
column size to the array-column length. In practice, it is quite possible for the
array-column length to exceed the cache size. For example, the primary cache size
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is 1024 cache blocks on both Sun Microsystem’s Ultra I microprocessor and SGI’s
R10K microprocessor. To take the advantage of the spatial locality, the column size
of the array tile is preferred to be a multiple of the cache-block size. Thus, in order
for TSS to work, the array-column length cannot be greater than 1024 divided by
the number of arrays referenced in the given loop nest.

TLI. In order to improve TSS, one can extend it by enumerating all array-tile
sizes allowed by the cache size. The TLI scheme is such an extension to TSS [Chame
and Moon 1999]. For each tentative tile size, TLI sequentially “stamps” the tiles
on the cache in order to find out whether self interferences occur. This can be
viewed as a way to simulate how the array data will be mapped to cache locations.
Suppose the extent of each array dimension is no less than the cache size. The cost
of such an extended scheme can be estimated as follows. For one-dimensional array
tiles, the tile size is simply chosen such that its total footprint covers the cache as
much as possible. This can be done in constant time. For two-dimensional array
tiles, the complexity of the extended scheme is O(C · Hc), where C is the cache
size in the number of array elements and Hc ≡ 1 + 1

2 + 1
3 + . . . + 1

C is a harmonic
number. Recall that limC→∞(Hc − lnC) = α, where α is the Euler’s constant.
Hence the complexity can also be written as O(C · ln(C)). For m-dimensional array
tiles, m > 2, the complexity is O(C2lnm−2(C)). The resulting tile still does not
minimize the capacity misses and the conflict misses simultaneously.

Array Padding. The methods mentioned above adjust the tile size in order to
remove conflict misses. This is at the expense of increased capacity misses. Bacon
et al. [Bacon et al. 1994] propose array padding as a new approach to removing
conflict misses. Within the scope of the innermost loop in a given loop nest, they
study how to use both intra-array padding (called dimension padding in their work)
and inter-array padding to remove conflicts between two static references. These
can be references to the same array or to different arrays. Although their method
does not directly target a tiled loop nest, it shows the general idea of how the array
declarations can be changed in order to alter the mapping between the array data
and the cache sets.

Panda et al. are the first to use array padding to remove self interferences in
array tiles [Panda et al. 1999]. Their method, called DAT, first tries to find a tile
size to maximize the cache capacity and then tries intra-variable and inter-variable
padding to eliminate self interference and minimize cross interference conflicts. The
DAT method, however, exhaustively enumerates pad sizes and essentially simulates
the cache to see whether self interferences occur under a given tile size and a pad
size. The compile-time cost of such an exhaustive approach is proportional to Cm

for m-dimensional array tiles, where C is the cache size measured by the number
of array elements.

3D Padding by Rivera and Tseng. All previous methods mentioned above remove
self interferences for two-dimensional array tiles only, although array tiles of higher
dimensions have seen increased use in numerical computing due to the increased
processor speed and cache size. Rivera and Tseng have conducted a number of
experiments on array padding for 3-D array tiles [Rivera and Tseng 2000]. (There is
a statement in their paper claiming that a 3-D array tile is free of self interferences
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if GCD(Ni, C) = Di in each tile dimension i. This statement should be revised
according to our Lemma 5.2.)

Blocked Array Layouts. A number of authors have investigated the impact of
nonlinear array layouts on hierarchical memory systems [Chatterjee et al. 1999;
Chatterjee et al. 1999; Wise et al. 2001; Park et al. 2002; Andersen et al. 1999]. Such
nonlinear array layouts go beyond the conventional column-major and row-major
linear array layouts. Nonlinear layouts are very attractive as a way to eliminate self
interferences, because they allocate the elements in the same array tile consecutively
in the memory. On the other hand, nonlinear layouts can make array indexing
substantially more complex. In addition to the increased overhead in memory-
address computation, complex indexing can potentially degrade the effectiveness of
software pipelining performed by the back-end compiler. This interesting technique
needs to be studied carefully in our future work.

9. CONCLUSION AND FUTURE WORK

In this paper, we have presented a scheme to tile a class of iterative stencil loops.
Central to this scheme is a systematic way to skew tiles and tile traversals so that
data dependences are satisfied despite the fact that the given loops may be imper-
fectly nested. We present a graph-theoretical algorithm, which takes polynomial
time, to determine the minimum skew factor at each loop level. A number of tech-
niques are also presented to reduce the minimum skew factors in the given loop nest.
We use a memory-cost analysis to derive the optimal tile size. Given the tile size,
an efficient multidimensional array-padding scheme is applied to eliminate refer-
ence interferences. Experiments performed on sixteen test programs show that the
overall tiling scheme can improve the program execution speed quite significantly.

We should emphasize that the work presented in this paper mainly targets iter-
ative loops which implement relaxation methods in numerical computing. Other
recent publications have discussed loop tiling for different kinds of imperfectly-
nested loops. It remains an intriguing challenge to develop a unified scheme to tile
arbitrary loops which are imperfectly nested.
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