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Abstract— Sensor networks are being increasingly de-
ployed for collecting critical data in various applications.
Once deployed, a sensor network may experience faults at
the individual node level or at an aggregate network level
due to design errors in the protocol, implementation errors,
or deployment conditions that are significantly different
from the target environment. In many applications, the
deployed system may fail to collect data in an accurate,
complete, and timely manner due to such errors. If the
network produces incorrect data, the resulting decisions on
the data may be incorrect, and negatively impact the appli-
cation. Hence, it is important to detect and diagnose these
faults through run-time observation. Existing technologies
face difficulty with wireless sensor networks due to the large
scale of the networks, the resource constraints of bandwidth
and energy on the sensing nodes, and the unreliability of
the observation channels for recording the behavior. This
paper presents a semi-automatic approach named H-SEND
(Hierarchical SEnsor Network Debugging) to observe the
health of a sensor network and to remotely repair errors
by reprogramming through the wireless network. In H-
SEND, a programmer specifies correctness properties of
the protocol (“invariants”). These invariants are associated
with conditions (the “observed variables”) of individual
nodes or the network. The compiler automatically inserts
checking code to ensure that the observed variables sat-
isfy the invariants. The checking can be done locally or
remotely, depending on the nature of the invariant. In
the latter case, messages are generated automatically. If
an error is detected at run-time, the logs of the observed
variables are examined to analyze and correct the error.
After errors are corrected, new programs or patches can
be uploaded to the nodes through the wireless network.
We construct a prototype to demonstrate the benefit of
run-time detection and correction.

I. INTRODUCTION

Sensor networks enable continuous data collection or
rare event detection in large, hazardous or remote areas.
The data being collected can be critical. Detecting forest
fire or tracking tank movement are two examples from
civilian and military domains. Sensor network protocols
are distributed protocols designed to be scalable in terms
of the number of nodes and the sensor field sizes.
Distributed protocols are widely recognized as being dif-
ficult to design [36]. Sensor network protocols are even
harder due to the additional constraints and requirements:
scarce resources, large scale, intermittent connectivity,
event-driven environment, heterogeneous nodes in the
network, and likelihood of failures. Even with a correct
design, errors may still occur in implementation. Sensor
networks present unique challenges because of the lack

of sophisticated debugging tools and the difficulty of
testing after deployment. Even after extensive testing,
errors may still occur due to environment conditions,
such as high temperatures. Implementations that have
been certified correct in a developer’s test environment
may be deployed in a condition drastically different.
While this is true of many systems, this is especially
true with sensor networks as they are in situ in physical
environments that may be changing over the period
of deployment. A “fault” is defined as the underlying
defect in the software or the hardware (for example
a bug). If the fault is exercised (i.e. the line of the
program is executed), the fault becomes an “error”. If the
error causes some manifestation that makes the program
behavior differ from the specification, a “failure” has
occurred.

Run-time techniques are required to detect errors in
order to maintain high-fidelity data in the presence
of possible errors from design, implementation, or a
hostile environment. The H-SEND approach observes
node conditions and network traffic to detect symptoms
of errors. Earlier work for run-time observation in wired
networks [5], [15], [40] does not directly apply to sensor
networks. The detection algorithms may execute at a
location far away from nodes where data is collected.
For example, the network’s base station may use com-
putationally intensive algorithms to detect whether a
sensor malfunctions by comparing one sensor’s data with
the data from surrounding sensors. Sensor networks are
resource-limited; hence, it is essential to minimize the
overhead in observation and detection. There are three
types of overhead: storage, computation, and network.
Additional storage is needed because the program size
increases after inserting additional checking code. Ob-
served variables also require storage space. Executing
the checking code incur computation overhead. Finally,
some detection must be conducted by aggregating in-
formation from multiple nodes; this creates additional
network traffic. H-SEND differs from existing work in
that it is specialized for large scale sensor networks. H-
SEND has four key features:

(a) During program development, a programmer can
specify important properties as “invariants” that
should never be violated in the network’s operation.
An invariant may be associated with a particular
execution state and is checked only during this state.



(b) When the program is compiled, the code for check-
ing invariants is automatically inserted. As ex-
plained earlier, an invariant may be checked locally
or remotely. Consequently, the compiler may also
generate code to send messages to a remote location
to detect errors that cannot be determined by a
single sensor node.

(c) After deployment, the inserted code is used to detect
abnormal behavior of the network. If an anomaly
is detected, several actions may be triggered, such
as increasing logging details or reporting errors to
the base station. The errors will be analyzed at the
base station by a human programmer to determine
the faulty nodes and create fixes to the problem.

(d) After a failure is detected, a new program is up-
loaded to the relevant nodes through multi-hop
wireless reprogramming. The mechanism dissemi-
nates the code update to the required nodes without
needing physical access to the nodes in a scalable
fashion.

When implementing this approach, special considera-
tion of certain details is important.
(a) The solution should have small overhead in storage,

computation, and network. H-SEND has very small
overhead; we present the analysis of the overhead
in Section IV-D.

(b) The solution should not add substantial burden
to programmers. H-SEND assists programmers by
(semi-)automatically determining where to insert
invariant checking code and when to send messages
that include observed variables.

(c) In some sensor networks, sensing activities involve
multiple nodes working together. A desirable solu-
tion needs to handle such an environments for error
detection.

(d) Sensor networks frequently include heterogeneous
nodes and are organized as hierarchies. Error detec-
tion must be able to operate in these configurations.

H-SEND addresses all four important issues as fol-
lows. (a) It checks invariants through a hierarchy. H-
SEND does not send all observed variables to a central
location for detection. Instead, invariants are checked
at the closest nodes where the requisite information is
available. (b) H-SEND uses a compiler to determine
the locations to insert code to check invariants and
send observed information. A programmer only needs to
specify the invariants and the variables to be observed.
Thus, the programmer’s burden is minimal. (c) H-SEND
collects information from multiple nodes and invariants
are verified at the collection point. (d) H-SEND naturally
handles heterogeneity by allowing different nodes to
check different types of invariants and also by per-
forming remote checking when observed information is
aggregated.

We present a prototype to demonstrate H-SEND
through a data gathering protocol in a hierarchical con-
figuration with a leader election algorithm. This is a
hierarchy of three levels — sensing nodes, cluster head
(one for each cluster), and the base station. Leader
election serves as a fundamental building block and

involves many exemplary invariants. Some invariants are
local to a node but others are collective to a cluster or
the entire network. We choose a representative leader
election protocol called LEACH (Low-Energy Adaptive
Clustering Hierarchy) [8], [9]. LEACH assigns cluster
heads in a “near round-robin manner” to evenly distribute
energy drain. A set of invariants is inserted into the
application code. We use simulations to measure the
overhead of the augmented code in our approach.

II. RELATED WORK
The main contribution of this paper is a framework

for the detection of software errors in distributed sensor
networks. Our work is built upon the progress in recent
years on sensor network prototyping, error detection,
and recovery. This paper presents a new approach for
efficient, prompt, and accurate detection of errors in
sensor networks without specialized nodes. H-SEND
inserts code at appropriate granularity to detect erro-
neous behavior and verifies the invariants in a resource-
conserving manner.
A. Distributed Algorithms for Organization

Sensor networks are distributed systems. Many dis-
tributed algorithms have been studied [21]. Sensor net-
works have stringent resource constraints, including en-
ergy, storage, and computation capability. To conserve
energy, some routing protocols use hierarchies among
sensor nodes [34], [39]. Sensor nodes are divided into
clusters and a special node in each cluster relays mes-
sages between clusters. This special node, called the
cluster head, can be chosen in several ways. If sensor
nodes are heterogeneous, the nodes that have more
resources (battery capacity, faster processor, long-range
antenna, etc) are selected as cluster heads. If all nodes
are the same, they take turns playing the role of a leader
through a leader election protocol [6], [25], [32].
B. Error Detection and Recovery

Error detection in sensor networks has been studied
by many researchers. The predominant technique is
local observation whereby nodes oversee traffic passing
through the neighbor nodes [26], [29], [22], [4], [2].
Existing work does not separate the network into a
payload and an observation system. Each node can
potentially play a role in both systems. Previous work
uses local observation to build trust relationships among
nodes [4], [29], detect attacks [22], [2], or discover
routes with certain properties, such as a node becoming
disconnected [26]. In our previous work [14], we analyze
the capabilities and the limitations of local observation as
a primitive in sensor networks. The paper also presents
a method to enable neighbor observation in resource-
constrained environments and to lay out the fundamental
structures and the state to be maintained at each node.

Local observation detects deviations from correct
behavior at a local level. Correlation-based detection
systems have been proposed for wired networks [27],
[37], [38], without considering the resource constraints.
Some studies provide solutions for detecting problems
in specific ad-hoc network protocols [33]. H-SEND is
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Fig. 1. Overview of the framework for error detection, propagation,
diagnosis, and repair.

more flexible and efficient because it uses a hierarchical
approach. If an invariant can be checked by an individual
node, this node checks the invariant without sending any
network messages. Some invariants are checked within a
group of nodes (or cluster), or at the base station, where
a global view of the whole system is available.

III. TECHNIQUES FOR ERROR DETECTION,
DIAGNOSIS, AND REPAIR

A. Overview
Our system determines the health of sensor networks

by detecting software errors, propagating the information
to the base station, assisting a programmer to diagnose
the errors, and then distributing correct software after
the programmer fixes the errors. Our approach addresses
five issues: “Who performs the observation?”, “What is
observed?”, “How is a failure detected?”, and “What
actions are taken when an error is detected?”

1) Who performs observation?: There has been sub-
stantial work on observing run-time behavior in software
and in hardware in the wired domain [5], [15], [40].
In most cases, the observed node and the observer
form separate sub-systems. The observer has several
advantageous characteristics: it may be a monolithic
entity with perfect knowledge of the observed, it may
be failure proof or may only fail in constrained ways,
such as fail-silence, or it may not have any resource
constraints.

Our target environment contains no central authority to
perform observation. Rather, as much behavior as possi-
ble is observed locally. Hence, in H-SEND observation
is performed in a distributed manner across all nodes.
Nodes in the network play a dual role of observer and
observee concurrently.

It is feasible to design an observation framework in
stages of increasing complexity. The first option sends all
incoming and outgoing events to the base station. This
has the entire rule base for the network and verifies the
events according to the rule base. The communication

path as well as the base station are failure free. This
design is not attractive due to large overhead. In the next
stage, the observer system is placed in the vicinity of the
observed system, such as a configuration where nearby
nodes form a group, called a cluster. Each cluster has
an observer performing the detection according to a rule
base for the cluster. This assumes that the observers are
specialized, failure free and the communication between
the observed system and the observer is also failure free.
To relieve the individual nodes in the observed system
from the responsibility of pro-actively forwarding pack-
ets to the observer system, the observer passively listens
to the messages on the wireless channels. However, this
interferes with sleep protocols that are designed to put
nodes in a low power mode when they are not actively
transmitting or receiving packets.

In H-SEND, the end points of communication are
the only possible entities that may verify a behavior
manifested through the communication. A cluster head
may learn through a message received from a node in its
cluster that the node’s network distance from the head
is too far. The conditions to be observed are classified
as (a) local conditions and (b) remote conditions. Local
conditions are based on program variables, which are
available at the same node. Remote conditions are based
on variables collected from remote nodes (henceforth
referred to as remote variables), corresponding to vari-
ables at the end point of the communication, either
directly or transitively. Thus, if communication takes
place from node A to B and from node B to C, a
behavior of node A may be checked at node A (local
condition checking) or at nodes B or C (remote condition
checking). This points to an architecture for each node
having a local observation component and a global
observation component. The former is responsible for
observing the internal state changes within the node in
response to different events, the latter is responsible for
observing behavior communicated through a network
message.

2) What is observed and when?: Two types of invari-
ants are checked: local invariants and remote invariants.
The first is formed from variables resident on the same
node (henceforth referred to as local variables, not to be
confused with local variables within a function) only and
the second from a mix of local and non-local variables.
The local invariants can be checked at any point where
the constituent variables are in scope, while the remote
invariants can be checked when the set of network
messages carrying all the non-local variables have been
successfully received and the local variables are in scope.

There exists another dimension to classify invariants:
stateless invariants and stateful invariants. For the invari-
ants on a single node, stateless invariants are always true
for the node, irrespective of the node’s operation states.
In contrast, stateful invariants are true only when the
node is in a particular execution state. Naturally stateful
invariants put a further constraint when the invariants
can be verified. An example of stateless invariants is “A
node belongs to at most one cluster at any moment.”
A stateful invariant is “A node can send a message to
its cluster head only after a head has acknowledged the
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node’s join message.” A third dimension of invariants
is single node invariants and multi-node invariants. The
former includes invariants which involve variables from a
single node. The latter combines variables from multiple
nodes before the invariants can be verified. An example
of single-node invariants is that a node must be within a
threshold h hops away from its cluster head. An exam-
ple of multi-node invariants is that the received signal
strengths at a cluster head must not have a variance
greater than another threshold.

3) How is a failure detected?: A failure is detected
when one or multiple invariants are violated. The veri-
fication of a local invariant involves some computation
without additional communication. The verification of
a remote invariant involves additional communication.
An optimization is to piggyback the variables required
for remote checking with a payload message. Sensor
networks are energy bound so nodes are often put to
sleep for conserving energy. After a period of sleeping,
nodes wake up, sense data, forward the data to the cluster
head, and then return to sleep. Furthermore, some nodes
may have only portions of hardware awake, such as
their wireless receivers. Thus, sending debug informa-
tion separately can be costly in terms of energy. An
alternative is to piggy-back debugging information onto
data messages that contain sensed data. This reduces the
cost of communication — the fixed cost is amortized.
Additionally, this removes interference with any existing
node sleep-awake protocol. However, this implies that
the error can be detected only when a data message is
generated. Such delay, fortunately, is bounded and an
analysis is presented in Section IV-D.

4) What actions are taken when an error is detected?:
Errors can be classified into multiple degrees of severity.
The most severe errors, once detected, will be sent to
the base station through the cluster heads immediately.
Less severe errors are sent to cluster heads for future
diagnosis. The least severe errors may be stored in a
local buffer of the node and sent to the cluster head or
the base station upon request. In the current design of H-
SEND, the errors are examined by a human programmer
to diagnose the cause. In the future, diagnosis may be
be partially automated, for example, through a diagnosis
system for distributed systems suggested in [16].
B. Example

In this section, we describe how to write invariants,
specify observed variables, and detect errors in H-SEND.
We explore two widely used distributed protocols as
examples. The first is cluster formation and the second is
cluster head election. Table I shows the messages among
the nodes. Table II are the invariants used for the two
protocols. Some invariants are detected at the node level
(“N-level”); some others are at cluster level (“C-level”).
Some of the invariants are single node and some are
multi-node.

Once an error is detected and diagnosed, repair actions
are taken. The repair actions are of two types - uploading
a new version of the program or changing the parameters
of the currently executing program, thereby making
it execute correctly for the deployed environment. A

Message Function
M1: Election Initiate the election process for a CH
M2: Data Send sensed data from a node to a CH
M3: Aggregate Data Aggregate data in a CH and send to

base station
M4: I’m a new CH Inform the nodes that the sender

is a new CH
M5: I’m a CH Send periodic “keep-alive” to

nodes in the cluster
M6: My CH is Realize my CH is unreachable and
unavailable send to the base station
M7: Relieve CH Inform the other nodes that the CH

intends to relinquish its role due
to, for example, impending energy
exhaustion

TABLE I
MESSAGES USED FOR CLUSTER FORMATION AND CLUSTER HEAD

(CH) ELECTION

Correct Behavior Error Detection
Cluster formation:
A node is no more than M2 to the CH has hop count in
α hops away from the header and is > (C-level,
a cluster head. α. single node detection)
Cluster head election: M5 from more than one node.
There should be a single CH (C-level, multi-node detection)
at any point in time.

M5 from multiple CH incoming
into a node. (N-level, single
node detection)

A cluster head wishing to M7 from the CH followed by M4
relinquish it’s role should coming out the same node after
be able to do this β time units. (C-level,
within β time units. single node detection)
A cluster head election M1 generated more often than
should not happen more once every γ time units
often than once every in the entire cluster.
γ time units. (C-level, multi-node detection)

TABLE II
INVARIANTS AND DETECTION METHODS FOR CLUSTERING AND

ELECTION PROTOCOLS

new program can be uploaded onto the node through
the wireless network. Several protocols exist to provide
remote code uploading, for example [11] [17]. Currently
this process is not automated in H-SEND.

C. Automatic Insertion of Code for Invariant Verification
This section explains how insertion can be automated.

The programmer specifies invariants as predicates de-
fined over the observed program variables. In this paper,
we use a C like language to explain such predicates.
The underlying principles, however, also apply to other
commonly-used programming languages.

An invariant may be specified for a function, a set
of functions, a block of statements, or a single state-
ment only. If an invariant is specified for a single
statement, then the specification is placed immediately
after that statement. For example, immediately after
the statement a = message hops;, the programmer
may add a invariant /*( a < MAX HOPS )*/. It
requires the inequality to hold immediately after this
particular assignment. If an invariant is specified for an
entire function, then the specification can be placed at
the beginning of the function body. In this case, a <
MAX HOPS, should hold throughout the entire function.
If an invariant must be satisfied no matter what function
is being executed, then the specification must be placed
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either at the beginning of a program module (a source file
in C) or in a specification file that is accessible to the
invariant insertion tool. An invariant specification may
contain global variables, local variables, or both. In the
latter two cases, the specification may contain the local
variables from a single function or multiple functions.
We use a scope modifier to clarify the function which
contains a local variable. For example, the notation
f :: var refers to the variable var declared in function
f . An invariant applies to all sensor nodes unless a
node modifier is present. If the node modifier is present,
then the invariant applies to only a subset of nodes. For
example, n ID :: f :: nhops < 3 indicates that for
the sensor n ID the local variable nhops in function f
should be less than 3.

The “forall” quantifier ∀ can be applied to functions.
The entire set of functions is denoted by F. The predicate
∀f ∈ {f1, f2, . . . , fn}P (f) states that the predicate
P must be true on all sensor nodes whenever any of
the listed functions, f1, f2, . . . , fn, are executed. For
example, ∀f ∈ {f1, f2, . . . , fn}f :: current head =
f :: m.sender indicates that when executing any of
the listed functions, the local variable current head
should equal to the sender field in the message m.
This means that a node should expect to receive the
message m from the current cluster head only. Receiving
m from any other node indicates an error. When giving
examples of specifications, we identify the most recently
received message by the subscript in such as in min,
and the most recently sent message by the subscript out.
We distinguish several types of messages, including the
messages M1 through M7 which are listed in Table I.
The ∀ and “exist” ∃ quantifiers can be applied to both
messages and node IDs. For example, ∀min | m.type =
M5 reads “For all received messages of the M5 type”.
We denote the entire set of sensor nodes by N and the
entire set of messages by M.

The invariants listed in Table II can be specified in
the program using the format shown in Table III-C.
For example, to make sure that a node is no more
than α hops away from a cluster head, the programmer
encodes the first error-detection rule listed in Table II
and inserts the following specification in the C like
program: /*( ∀ n | n.ID == current head min.hops
≤ α )*/. We assume that the variable min stores a
message newly received by a current cluster head (whose
node ID matches the local variable current head). The
message has been propagated through a number of
network hops which is recorded in the field hops in
the message. The specification states that the number
of hops should not exceed the value α. The compiler-
based insertion tool analyzes the invariant specifications
and converts them into executable program statements.
The previous example can be converted to the fol-
lowing C statements: if ((ID == current head)
&& !(min.hops <= α)) { /* error handing
*/}. This approach uses the compiler to determine
which pieces of data are available locally (current head
in this example), and which pieces of data need to
be obtained from other nodes (hops in this example).
Source code is then inserted on remote nodes to send the

Correctness Behavior Invariant Specification
Cluster formation:
A node is no more than α ∀n | n.ID = current head
hops from a cluster head. min.hops ≤ α

Cluster head election:
A node belongs to one ∀ min | min.type = M5
and only one cluster. min.sender = current head
A cluster head wishing ∀mout | mout.type =M7
to relinquish its role ∃ min | min.type = M4
should be able to do this ∧ 0 < min.time−
within β time units. mout.time ≤ β
A cluster head election ∀(n1, n2) ∈ N × N

should not happen more ∀ (m
(1)
out

, m
(2)
out

)

often than once every | m
(1)
out

.type = M1
γ time units. ∧m

(2)
out

.type = M1
| m

(1)
out

.time − m
(2)
out

.time |> γ

Cluster head election:
If a node detects ∀ mout | mout.type =M6
unavailability of a cluster ∃ min | min.type = M4 ∧
head, a backup should take 0 < min.time − mout.time ≤ δ
over within δ time units.

TABLE III
EXAMPLES OF INVARIANT SPECIFICATIONS

data required to evaluate invariants over the network.
When all the observed variables in an invariant are

accessible from a single function f , then the verifica-
tion statements for the invariant are inserted in f . The
statements are inserted at every point where an observed
variable is modified. However, if the observed variables
are not accessible from a single function, then new
global variables are created to shadow the local variables,
allowing the predicate components to be evaluated. For
example v1 and v2 are accessible from f only, and v3 is
accessible from g only, then the invariant v1 + v2 < v3
is verified by writing v1 +v2 to a new global variable x,
allowing the verification statement x < v3 to be executed
in g. If the observed variables are not accessible from
a single sensor node, then additional messages must be
generated to forward information to an aggregation point
where the invariant can be checked, such as at a cluster
head.

IV. CASE-STUDY: DEBUGGING A DISTRIBUTED
LEAD ELECTION PROTOCOL

A. LEACH
We implemented the LEACH (Low-Energy Adaptive

Clustering Hierarchy) cluster based leader election proto-
col for wireless sensor networks [8], [9]. In LEACH, the
nodes organize themselves into clusters, with one node
acting as the head in each cluster. LEACH randomizes
which node is selected as the head in order to evenly
distribute the responsibility among nodes and to prevent
draining the battery of one node too quickly. A cluster
head compresses data (also called data fusion) before
sending the data to the base station. LEACH assumes
that all nodes are synchronized and divides election into
rounds. Nodes can be added or removed at the beginning
of each round. In each round, a node decides whether to
become a head using the following probability. Suppose
p is the desired percentage of cluster heads (5% is
suggested in [8]). If a node has not been a head in the
last 1

p
rounds, the node chooses to become a head with
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probability p

1−p×(r mod 1

p
)
, where r is the current round.

After 1
p

rounds, all nodes are eligible to become cluster
heads again. If a node decides to become a head, the
node broadcasts a message to the other nodes. The other
nodes joins a cluster whose leader’s broadcast message
has the greatest signal strength. In the case of a tie,
a random cluster is chosen. LEACH is used in many
other studies, such as [19], [23], [24] because LEACH
is efficient, simple to implement, and resilient to node
failures.

Figure 2 shows the states of the LEACH protocol.
Each solid arrow indicates an event that causes a state
change, and each dashed arrow indicates a communica-
tion message. Invariants can be easily created from this
state diagram. If a node is in a certain state, and any
event occurs for which the state diagram is not defined,
an error has occurred. Possible invariants for the LEACH
protocol include “only in the ’Wait for Join Message
State’ should a ’Join Message’ be received” or “A node
should only receive a ’TDMA schedule’ in the ’wait for
TDMA schedule state’ ”. The compiler can then insert
code to check the health of a node or the network.

B. Sensor Programming Environment and Simulation
A typical hierarchical sensor network is shown in

Figure 1. Once sensor network software is created by
a developer, it may be uploaded to individual sensors
by utilizing distributed propagation techniques over the
radio link [12] as illustrated in Figure 1. Berkeley
Mica Motes [10] are widely used sensor nodes for
experiments. Mica nodes use TinyOS as the run-time
environment. TinyOS provides an event-based simulator,
TOSSIM, that can be used to simulate a network of
varying node size [18]. TOSSIM compiles from the same
source code as the Mica platform, and simulates commu-
nication with bit-level granularity. Our experiments use
TOSSIM because it scales to large numbers of nodes
easily. TOSSIM provides deterministic results so it is
a better test bed in contrast to the non-deterministic
results provided by real-life execution. Finally, TOSSIM
allows us to separate instrumentation code from the
actual code running on each node so we can measure the
nodes’ behavior without perturbing the network’s normal
operations.

C. Examples of Invariant Violation
At present, all invariants are manually inserted but

insertion can be done by a compiler as explained in
Section III-C. While developing the H-SEND frame-
work, we originally intended to write “correct” code
first and then intentionally inject errors later. However,
we encountered unexpected behavior by the nodes and
decided to insert invariants first to help us isolate the
error (or errors). We observed that some nodes entered
the “Cluster Head Advertise” state at wrong time. The er-
ror was a state-transition violation. An invariant required
that “Restructuring State” be the previous state before the
“Send Cluster Head Advertise Message” state. This is a
binary example: there is only one correct previous state.
If the previous state is incorrect, the invariant is violated.
After this invariant was inserted, we discovered an error
in our LEACH implementation. When the invariant was
violated, an error was reported at the node level. Without
this distributed debugging system, a simple error would
have been difficult to diagnose. This shows that a binary
invariant can be very helpful. An invariant can also
include numeric quantities. For example, we can observe
the signal strength received by each node in order to
analyze the health of the network. An invariant can
be written to ensure that the signal strength from a
cluster head does not vary above 50%. If this invariant
is violated, an error is reported. This report can assist
the protocol designer to decide whether a more robust
(and higher overhead) protocol should be chosen.

D. Analysis
This section analyzes the overhead, time to detect

errors, and code size.
1) Network Traffic Scaling: Since sensor nodes have

limited energy, they should send as little information as
possible to conserve energy. LEACH uses data fusion to
reduce the amount of network traffic. We can analyze
the network overhead of H-SEND as follows. Let mc
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and mb represent the size of a message sent from a
node to its cluster head and the base station. Let f be
the fusion factor. For example, f is 10 if the cluster
head summarizes 10 samples and sends the average
to the base station. Let δ be the additional amount
of information sent by each node for failure detection.
The value of δ is zero if no information is transmitted
for detecting failures. The total amount of data sent
in the whole wireless network can be expressed as∑

∀x∈ nodes

∑

messages
from x

(mc+ mb

f
+δ). One goal of the H-SEND

approach is to minimize the communication overhead.
Suppose m1 is the total amount of information trans-
mitted in the network without any detection messages
(i.e. δ = 0). Let m2 be the amount of information
with detection messages. The overhead is defined as
m2−m1

m1

. In H-SEND, nodes only forward debugging
data to cluster heads, and cluster heads only forward
debugging data to the base station (i.e. upwards). No
debugging data is sent back down to nodes from higher
levels of the hierarchy. The rationale is that diagnosis
needs to aggregate information only. Therefore, adding
nodes results in a linear increase in network traffic. The
case study presented here observed three variables at
the cluster level, and six variables at the network level.
Figure 3 shows that the traffic grows linearly for network
sizes between 5 and 125 nodes. This figure shows three
lines: (a) no error detection. This has the same amount of
traffic as node-level detection. (b) cluster-level detection,
and (c) cluster and base-level detection. The vertical
axis shows the number of bytes transmitted. The actual
amount depends the duration of the simulated network.
Regardless of the duration, the ratio of (b)

(a) and (c)
(a)

is approximately 1.64 and 1.95, respectively. In other
words, the percentage of the network overhead is nearly
a constant. Detecting errors as close to the source as
possible allows H-SEND to reduce the amount of traffic
sent over the network. The worst case scenario is to send
all data to the base-station, and perform data-analysis at
the base station. Through simulation, it was found that
the H-SEND method resulted in a 7% message reduction
size vs. sending all data needed to evaluate invariants to
the base station.

2) Detection Time: To further reduce network traffic,
observed detection data is piggy-backed onto data mes-
sages through the network as part of normal operation.
This saves the fixed cost of communicating a new packet,
such as the cost of the header bytes accompanying each
packet (7 bytes out of 36 bytes for the Mica2 platform).
Piggy-backing data adds a bounded latency to detection,
as data is held at the node or cluster level until a
data message is sent to the next level. Due to bounded
detection time, all errors are reported, and there are no
losses. If piggy backing is not used, error propagation
delay is of the order of communication delay. If the error
is delay sensitive, an additional strategy that can be used
in addition to piggy-backing is generating an explicit
control message if the delay goes above a threshold.

Piggy-backing error messages causes bounded de-
lays. Detection time is defined as the time period be-

Components ROM Size RAM Size
LEACH without observation 11744 1466
LEACH with node level 12838 1470
observation
LEACH with node, and 12906 1530
cluster level observation
LEACH with node, cluster, and 13040 1639
base station level observation

TABLE IV
CODE SIZE OF H-SEND IN BYTES

tween when a node detects an error, and the base
station receives the message indicating an error. The
worst-case detection time occurs when a node trans-
mits data in the first transmit slot and detects an
error in the very next slot, and must wait for all
nodes in it’s cluster to transmit (n-1 slots). It must
then wait for the network to restructure, and then
the same node must be assigned to the last transmit
slot (n-1 slots). Analytically, we can define the worst
case detection time as: 2×(Number of Transmit Slots-
1)+Number of Slots to Restructure. This equation was
confirmed by simulation. The LEACH protocol has 4
slots of administrative overhead. In [9] it is found that
5% of nodes acting as Cluster Head is ideal, yielding
an average cluster size of 20 nodes, and therefore 20
time slots to broadcast results. Using these parameters,
the worst-case detection time is 42 time slots. The data
fusion factor will affect the detection time, as higher
fusion factors result in fewer messages. As a result,
detection time increases when the fusion factor increases.
Figure 4 (a) shows a histogram of node-level detection
time at fusion factors of 1 and 10. As the figure shows,
most errors can be detected within 4 time slots. When
the fusion factor is higher, the figure shows that detection
time increases. Figure 4 (b) shows the detection time
for cluster level error detection. The detection time is
significantly less than at the node level, because cluster
heads communicate with the base station much more
often.

3) Code Size: When implementing the LEACH pro-
tocol, all nodes except the base station must use the same
binary image because all nodes can be cluster heads at
some point. The data reported in Table IV was collected
with -O1 optimization, based on binary images for the
Mica2 platform. The column for ROM indicates the
code size written to the flash memory. The column for
RAM indicates the memory requirement at run-time. The
baseline includes the program that performs the basic
sensor functionality and LEACH leader election. Adding
node level observation increases the code size by 9%
( 12838
11744 − 1). Adding all levels of observation increases

the code size by 11% ( 13040
11744 − 1). The increased RAM

size comes from the additional bytes in the buffers for
each packet.

V. CONCLUSION AND FUTURE WORK
This paper presents a hierarchical approach for detect-

ing software errors for sensor networks. The detection
is divided into multiple levels: node, cluster, and base
station. Programmers specify the conditions (called in-
variants) that have to be satisfied. These invariants can
be inserted by a compiler automatically. Our method
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Fig. 4. Simulated Results for Detection Time. (a) Node-Level (b)
Cluster-Level

is distributed and has low overhead in code size and
network traffic. We use a leader election protocol as a
case study but our method applies to a wide range of
protocols.The H-SEND approach is designed to be tied
into other existing technologies. For example, model-
based mechanisms could be used in addition to pro-
grammer specified invariants to insert monitoring code.
For future work, we would like to implement error-
masking, and provide a tiered classification of errors
based upon severity. We plan to implement automatic
invariant insertion by a compiler and consider other types
of errors, such as detecting malicious nodes injected into
the network.
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