
Author’s Retrospective for:
Array Privatization for Parallel Execution of Loops

Zhiyuan Li
Department of Computer Science

Purdue University
250 North University Street

West Lafayette, Indiana, USA
zhiyuanli@purdue.edu

ABSTRACT
Array privatization, as a program transform to increase the
opportunity for loop parallelization, was introduced at a
time when numerical programs dominated the parallel com-
puting world. Today, with parallel processors becoming
ubiquitous, the computer industry faces a new challenge, i.e.
how to best utilize hardware parallelism for the next gener-
ation of main-stream applications. The author re-examines
the technique of array privatization both in its historical
context and in view of new developments in recent years.

Original paper:
http://doi.acm.org/10.1145/143369.143426

Categories and Subject Descriptors: D.3.4 [Program-
ming Languages]: Processors – Compilers, run-time en-
vironments; F.3.2 [Logics And Meanings of Programs]:
Semantics of Programming Languages – Program Analysis

Keywords: Program parallelization; loops; memory allo-
cation

1. BACKGROUND
In the fall of 1990, I joined the compiler group of the Cen-

ter for Supercomputing Research and Development (CSRD)
in University of Illinois, Urbana-Champaign (UIUC). Under
the leadership of the director, David Kuck, CSRD was de-
signing and building the Cedar multiprocessor cluster [9].
There were groups working on its hardware, the operating
system, the compiler, performance analysis tools, numerical
libraries and many other issues concerning supercomputing.
Many results from the Cedar project were ground-breaking.

The compiler group, led by David Padua, was busy design-
ing and implementing a Fortran dialect called Cedar Fortran
[8] that provides syntax for multiple levels of parallelism and
data locality. In order to understand how to make it easier
to convert existing numerical programs for shared-memory
parallel computers, the compiler group also started to hand
parallelize a suite of benchmark programs contributed by

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear thisnotice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ICS 25th Anniversary Volume. 2014
ACM 978-1-4503-2840-1/14/06.
http://dx.doi.org/10.1145/2591635.2591648.

the PERFECT Club [2]. Continuing UIUC’s long tradition
of pioneering automatic parallelization techniques, the com-
piler group wanted to find out what kind of new techniques
might be needed to automatically convert the PERFECT
benchmark programs into efficient parallel codes.

The initial experience from this hand parallelization ef-
fort was presented at International Conference on Parallel
Processing in 1991 and a more definitive report was later
published in 1993 [6]. These reports identify several new
techniques that are instrumental for parallelizing the PER-
FECT benchmarks, with array privatization being one of
the more important.

The basic idea for array privatization is quite simple. If a
loop operates on different parts of arrays in different itera-
tions, then these iterations can be executed simultaneously
on multiple processors. Often, the intermediate results are
stored in arrays that are rewritten from iteration to iter-
ation. Array privatization creates a private copy of such
arrays for each processor, such that writes from iterations
executing in parallel do not cause conflicts. This transfor-
mation is especially important because arrays are the most
common data structures in numerical programs to represent
physical quantities.

To anyone who is not the author of the original program,
determining which arrays can be safely privatized can be a
tedious task. One must determine whether the lifetime of an
array (or a part of it) may extend across the iterations of the
targeted loop. If so, then privatizing that array will cause
an incorrect computation result. Moreover, it is necessary to
determine whether the values written to a privatized array
in the last loop iteration remain live after the parallel loop
exits. If so, these values must be copied back to the original
shared array to make them accessible to all processors. It is
safe to copy the entire array out, but unnecessary copying
can incur high overhead. The program scope to be analyzed
for array privatization can be extensive, making the analysis
both laborious and error-prone. Obviously, there is a strong
incentive to automate the analysis.

Prior to the hand parallelization experiment by the CSRD
compiler group, the IBM Ptran project team published a
framework for automatically converting a sequential pro-
gram into parallel code using the fork/join shared-memory
model [1]. Among the ideas presented within that frame-
work was privatizing scalar variables to remove data depen-
dencies caused by storage conflicts [3].

The idea to duplicate variables in order to increase paral-
lelism dates back to the scalar expansion technique for auto-



matic vectorization [10], which removes data dependencies
due to iterative read/write operations on a single scalar by
letting such operations be performed on elements of a new
array instead. Conceptually, data dependencies caused by
storage conflicts can be eliminated completely by fully ex-
panding all variables, including arrays, that are responsible
for such conflicts. It is unknown how to automatically per-
form such conversion in the general case, but under a set of
ideal conditions automatic array expansion is possible.

In practice, however, it is obvious that excessive variable
expansion incurs overheads that are unacceptable. Increas-
ing a single array dimension can increase the storage for
that array by an order of magnitude. In 1990’s, comput-
ers simply did not have enough memory to allow full array
expansion. Moreover, storage increases tend to make it dif-
ficult to efficiently use faster but smaller memory devices,
such as caches, which is perhaps the bigger issue today. The
technique of privatization, by making one copy of the vari-
able for each processor, increases loop level parallelism at
the minimum storage cost.

Unfortunately, a number of serious challenges stand in the
way when one tries to automatically privatize arrays. Some
of them are common to all analyses that deal with array
references, e.g. how to build a mathematical system that
is sufficiently precise to model the analysis problem and yet
can be efficiently solved. There is a unique challenge to array
privatization, however. Its underlying mathematical system
may simultaneously involve all references to the targeted ar-
ray. This is in contrast to the traditional data dependence
analysis that answers the question whether array accesses
from different iterations interfere with each other. For data
dependence analysis, it is sufficient to examine array refer-
ences one pair at a time, which greatly simplifies both the
mathematical system and the information gathering to build
the system.

At the highest level, there are two alternative approaches
to the construction of the mathematical system for array
privatization, which we now discuss.

2. THE TOP-LEVEL DESIGN REEXAMINED
The paper revisited here takes an approach that can be

viewed as write-centric, and it corresponds to a forward di-
rection in which the mathematical system is built based on
program analysis and is solved incrementally. An opposite
approach is read-centric, corresponding to backward propa-
gation. In a later experiment to actually build a compiler
prototype, my student, Junjie Gu, and I took the latter ap-
proach [7].

The write-centric approach computes the cover set for the
array targeted for privatization at every program point in
the loop. This is the set of array elements that are known to
have been definitely written, no matter what execution path
is taken when the specific program point is reached. Nat-
urally, this set must be computed in the forward direction,
with every write reference examined for the array elements
being written. Note that this set will be parameterized by
the execution conditions of the current program point, in-
cluding the index variables of all nested loops (within the
targeted loop) containing the program point.

When analyzing a sequence of program statements, the
cover set can be expanded (by union operations) on-the-fly.
If a read reference is encountered, its upwardly exposed el-
ements can be determined by subtracting the current cover

set from the set of array elements that are read. Different
cover sets, however, must be computed for different execu-
tion paths until they are intersected.

The read-centric approach propagates, in the backward
direction, the set of array elements that may be upwardly
exposed to the beginning of any arbitrary iteration of the
targeted loop. When a write reference is encountered, the
elements written are subtracted from the set being propa-
gated. The difference is propagated further. An obvious
potential advantage is that, if most of the time the differ-
ence is either empty or in a simple shape, then the cost
to propagate the upwardly exposed set is low. In compari-
son, the write-centric approach must propagate all elements
that are written in the targeted loop, which may consume
much more storage and time. However, the read-centric ap-
proach has a potential down side: if most of the time the
set subtraction results in a non-convex set, we will need to
decompose the result into several convex sets, because the
solvers of the mathematical systems normally require the
sets to be convex. Hence, we may end up with propagat-
ing a long list of fragmented convex sets. In the experiment
mentioned above [7], however, a set representation is devised
to allow lazy computation of set differences. A set subtrac-
tion is registered but not actually performed until it cannot
be postponed any further. The experiment shows that for
the PERFECT benchmarks the subtraction operations can
often be avoided this way.

3. OTHER DEVELOPMENTS
Numerous efforts have been undertaken by researchers to

make array access analyses efficient. Progress has been made
on several fronts, some of which are recounted below, as they
have direct impact on the quality and efficiency of automatic
array privatization.

Set representation.
The set of array elements needs to be represented in a way

that allows set operations to be performed efficiently. For
array privatization, one can borrow methods originally pro-
posed for interprocedural data dependence analysis. Often,
the set of elements accessed by a single array reference forms
a regular array section and can be denoted by a triplet (lower
bound, upper bound, stride) [12, 4]. During automatic array
privatization, both the cover sets for write references and
the sets of upwardly exposed elements can be represented
as a list of regular array sections. It is often beneficial to
maintain a list of postponed set subtraction operations, as
mentioned above, instead of eagerly performing the subtrac-
tion and storing the fragmented result as a list of regular
array sections.

Solving the underlying mathematical systems.
The problem of determining whether a set of written ar-

ray elements overlaps a set of upwardly exposed elements
can usually be reduced to the problem of determining the
feasibility of a set of integer linear inequalities. Such lin-
ear inequalities contain loop index variables and possibly
other symbols appearing in array subscripts and loop limits.
This is an integer programming problem and in general can
be very time consuming to solve. Numerous approximation
methods have been proposed but are not discussed here. It
is worth pointing out that a more comprehensive mathemat-



ical model that incorporates execution path conditions may
be needed, in practice, for some cases. Today, logical system
solvers are mature enough to solve such more complicated
systems.

Finding relationship between different symbols.
A more challenging issue than solving a logical system con-

cerns finding sufficient information to build a useful system.
In general, the more constraints we can extract from the pro-
gram the more precise the model is. If two different symbols
appear in the system but we know nothing about their rela-
tionship, then the system tends to be a poor approximation
of the problem and its solution may be useless. For this
reason, we ideally want to find a closed-form expression for
every symbol such that the expression contains no symbols
except for the program input variables. This way, every use-
ful relationship governing the symbols will be represented in
the mathematical system. Unfortunately, in practice we are
rarely able to obtain such an ideal representation, which
means that there will be “unknown symbols” present in the
system. We wish to be able to find useful constraints on such
symbols via symbolic substitution. The demand-driven sub-
stitution method proposed by Tu and Padua synchronizes
the substitution steps for two symbols of interest [13]. This
method is found to be especially effective for the purpose of
automatic array privatization.

Dynamic methods.
For programs that are difficult to analyze at compile time,

dynamic privatization methods have been proposed for ar-
rays [11, 5].

Researchers looking into ways to parallelize non-numerical
programs have discovered that non-array aggregate vari-
ables, such as dynamically allocated irregular data struc-
tures, may also be privatized to improve loop level paral-
lelism. Due to the space limit, these new developments are
not discussed here.

4. LOOKING FORWARD
Automatic array privatization is motivated mainly by the

desire to automatically parallelize programs. Due to the
well-known difficulties with parallelizing legacy programs,
whether automatic parallelization has a future has constantly
been questioned. One has to ask, however, what the effec-
tive alternatives are. Based on the difficulties experienced
by many when teaching or learning parallel programming,
the question seems to be unanswered. It is important to
find an effective way to retain the determinism of computa-
tional results offered by sequential programming languages
and yet, at the same time, to remove the complications that
can obscure the inherent parallelism in a computation prob-
lem.

5. REFERENCES
[1] F. Allen, M. Burke, P. Charles, R. Cytron, and

J. Ferrante. An overview of the PTRAN analysis
system for multiprocessing. The Journal of Parallel
and Distributed Computing, 5(5):617 – 640, October
1988.

[2] M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang,
L. Pointer, R. Roloff, A. Sameh, E. Clementi, S. Chin,
D. Schneider, G. Fox, P. Messina, D. Walker,

C. Hsiung, J. Schwarzmeier, K. Lue, S. Orszag,
F. Seidl, O. Johnson, and R. Goodrum. The
PERFECT Club benchmarks: Effective performance
evaluation of supercomputers. International Journal of
Supercomputer Applications, 3:5–40, 1988.

[3] M. Burke, R. Cytron, J. Ferrante, and W. Hsieh.
Automatic generation of nested, fork-join parallelism.
Journal of Supercomputing, 3(2):71 – 88, 1989.

[4] D. Callahan and K. Kennedy. Analysis of
interprocedural side effects in a parallel programming
environment. Journal of Parallel and Distributed
Computing, 5(5):517–550, 1988.

[5] F. Dang, H. Yu, and L. Rauchwerger. The R-LRPD
test: Speculative parallelization of partially parallel
loops. In Proceedings of the 16th International
Symposium on Parallel and Distributed Processing,
IPDPS ’02, pages 20–, Washington, DC, USA, 2002.
IEEE Computer Society.

[6] R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li, and
D. A. Padua. Restructuring Fortran programs for
Cedar. Concurrency - Practice and Experience,
5(7):553–573, 1993. An early version is in Proceedings
of the 1991 International Conference on Parallel
Processing, pages 57–66, 1991.

[7] J. Gu, Z. Li, and G. Lee. Experience with efficient
array data flow analysis for array privatization. In
Proceedings of the Sixth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming,
PPOPP ’97, pages 157–167, New York, NY, USA,
1997. ACM.

[8] M. D. Guzzi, J. P. Hoeflinger, D. A. Padua, and D. H.
Lawrie. Cedar Fortran and other vector and parallel
Fortran dialects. In Proceedings of the 1988
ACM/IEEE Conference on Supercomputing,
Supercomputing ’88, pages 114–121, Los Alamitos,
CA, USA, 1988. IEEE Computer Society Press.

[9] D. J. Kuck, E. S. Davidson, D. H. Lawrie, and A. H.
Sameh. Parallel supercomputing today and the Cedar
approach. Science, 231(4741):967 – 974, 1986.

[10] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure,
and M. Wolfe. Dependence graphs and compiler
optimizations. In Proceedings of the 8th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’81, pages 207–218,
New York, NY, USA, 1981. ACM.

[11] L. Rauchwerger and D. Padua. The privatizing
DOALL test: a run-time technique for DOALL loop
identification and array privatization. In Proceedings
of the 8th international conference on Supercomputing,
ICS ’94, pages 33–43, New York, NY, USA, 1994.
ACM.

[12] P. F. Rémi Triolet and F. Irigoin. Direct
parallelization of call statements. Proceedings of the
ACM Symposium on Compiler Construction, 1986.

[13] P. Tu and D. Padua. Gated SSA-based demand-driven
symbolic analysis for parallelizing compilers. In
Proceedings of the 9th International Conference on
Supercomputing, ICS ’95, pages 414–423, New York,
NY, USA, 1995. ACM.


