Improving Parallelism and Locality
with Asynchronous Algorithms

Lixia Liu, Zhiyuan Li
Purdue University, USA
PPOPP 2010, January 2009

Work supported in part by NSF through
grants ST-HEC-0444285, CPA-0702245 and
CPA-0811587, and by a Google Fellowship

Background

AMD 8350
Multicore architecture
; : 2GHz 2GHz 2GHz 2GHz
muglplf COFer?. per CEIp Core1 Core2 Core3 Core4
oaest on-chip cachnes
Memory bandVF\)”dth ISSUG 64KB L1 64KB L1 64KB L1 64KB L1
Increasing gap between CPU speed and 512KBL2 | 512KBL2 | 512KBL2 | 512KB L2
off-chip memory bandwidth 2MB L3
Increasing bandwidth consumption by aggressive Memory Controller

hardware prefetching

Software
Many optimizations increase memory bandwidth requirement

Parallelization, Software prefetching, ILP

Some optimizations reduce memory bandwidth requirement
Array contraction, index compression

Loop transformations to improve data locality

Loop tiling, loop fusion and others
Restricted by data/control dependences

Background

Loop tiling is used to increase data locality
Example program: PDE iterative solver

dot = 1,itmax . ?

update(a, n, f); a(ij) |
- (\ L
.

I Compute residual and convergence test |

error = residual(a, n) ﬁ %&\ %

if (error .le. tol) then
exit
endif

Loop tiling

Tiling is skewed to satisfy data dependences
After tiling, parallelism only exists within a tile
due to data dependences between tiles

e
'«.Jrld .
Parallelize

\ (mm e
1@@@@\@@0 GGGG\

2 OQO0O|I0O0 00000000
oNe

'?|GGGG|GGDD‘GG

"GE}GGGD‘GQGGGG S

Loop tiling code

dot=1, itmax/M + 1

| Execute a chunk of M iterations after tiling
update_tile(a, n, f, M)

I Compute residual and perform convergence test
error = residual(a, n)

if (error .le. tol) then

exit
end if

Questions
How to select chunk
size?

Is
necessary?

Motivations

Mitigate the memory bandwidth problem
Apply data locality optimizations to challenging cases

Relax restrictions imposed by data/control
dependences

Asynchronous

Basic idea: allow to use of old neighboring values in
the computation, still converging

Originally proposed to reduce communication cost
and synchronization overhead

Convergence rate of asynchronous algorithms’
May slowdown convergence rate

Our contribution is to use the asynchronous model
to improve parallelism and locality simultaneously
Relax dependencies

Monotone exit condition

[1] Frommer, A. and Szyld, D. B. 1994. Asynchronous two-stage iterative methods. In Numer.
Math. 69, 2, Dec 1994.

Tiling without recovery

dot=1, itmax/M + 1

| Execute a chunk of M iterations after tiling
update_tile(a, n, f, M)

I Compute residual and convergence test
error = residual(a, n)

if (error .le. tol) then
exit
end if
end do

Asynchronous model

Achieve parallelism across the grid
Not just within a tile
Apply loop tiling to improve data locality
Requiring a partition of time steps in chunks
Eliminate recovery overhead

Grid -

Sequential
T
1 OO0 0000 000000 :----i
20 00
ItlErEl’tiI:Z:IL;'II::Il:::l(DI::)(:ICI GDGOOG :-...i
sloo 0000 000000 FTXX X
JeNelleNeNeNo/liNoNo) [oNoe o N N ———

Chunk size selection

Chunk size: # iterations executed speculatively in
the tiled code

|deal if we can predict the exact iterations to
converge
However, it is unknown until convergence happens

Too large a chunk, we pay overshooting overhead

Too small, poor data reuse and poor data locality

10

How to determine chunk

size?

Poor solutions
Use a constant chunk size (randomly pick)
Estimate based on the theoretical convergence rate

A better solution: Adaptive chunk size

Use the latest convergence progress to predict how
many more iterations are required to converge

tol
¢ = lﬂg(i) pe C’/lﬂg(i) then €* = (C
Tk Te—1

. :residual error of i-th round of tiled code

11

Evaluations

Platforms for experiments:
Intel Q6600, AMD8350 Barcelona, Intel E5530 Nehalem

Evaluated numerical methods: Jacobi, GS, SOR

Performance results

Synchronous model vs. asynchronous model with the best
chuck size

Original code vs. loop tiling
Impact of the chunk size
Adaptive chunk selection vs. the ideal chunk size

12

Configurations

Peak bandwidth of our platforms

A AMDS8350
4x4 cores

B Q6600
1x4 cores

C E5530
2x4 cores

64KB
private

32KB
private

256KB
private

512KB
private

2x4MB
shared

1MB
private

4x2MB
shared

N/A

2x8MBs

shared

21.6

8.5

51

18.9

4.79

31.5

13

Results - Jacobi

Machine A

50 tiled tiled-norec
_ Performance

40 async-base async-tiled varies with
Q izel
330 chunk size!
3
) 20 async-tiled

10 version is the

best!
0
0 90 Chunk 100 150

Machine |kernel|parallel| tiled [tiled-norec|async-base [async-tiled

A Jacobi 5.95 16.76 27.24 5.47 39.11
16 cores

14

Results - Jacobi

Machine B
4 tiled tiled-norec Q

async-base async-tiled Poor
q 3 performance
> . -
S without tiling
O 2
@ (async-base
o
N and parallel)!

0 50 chunk 100 150

Machine |kernel |parallel| tiled |tiled-norec|async-base |async-tiled

Jacobi 1.01 2.55 3.44 1.01 3.67
4 cores

15

Results - Jacobi

Machine C
15 tiled tiled-norec
asyne-base async-tiled
2 10
©
(¢D)]
(¢D]
& 5
0
0 20 40 60“"U"y 100 120 140 160
Jacobi 3.73 8.53 12.69 3.76 13.39

8 cores

16

A
B
C
A
B
C

GS

GS

GS
SOR
SOR
SOR

5.49
0.68
3.54
4.50
0.65
3.84

12.76
5.69
8.20
11.99
5.24
7.53

22.02
9.25
11.86
21.25
8.54
11.51

26.19
4.90
11.00
29.08
7.34
11.68

30.09
14.72
19.56
31.42
14.87
19.10

Asynchronous tiled version performs better than synchronous tiled
version (even without recovery cost)

Asynchronous baseline suffers more on machine B due to less
memory bandwidth available

17

Adaptive Chunk Size

Speedup

adaptive-1: lower bound of chunk size is 1
adaptive-8: lower bound of chunk size is 8

Jacobi

async-tiled
adaptive-1
adaptive-8

ImﬂaICthE

GS
async-tiled
adaptive-1
adaptive-8
20 40 60
Initial Chunk

80

18

Conclusions

Showed how to benefit from the asynchronous model for relaxing
data and control dependences

improve parallelism and data locality (via loop tiling) at the same time

An adaptive method to determine the chunk size

because the iteration count is usually unknown in practice

Good performance enhancement when tested on three well-known
numerical kernels on three different multicore systems.

19

Thank you!

