
Lixia Liu, Zhiyuan Li
Purdue University, USA
PPOPP 2010 January 2009PPOPP 2010, January 2009

Work supported in part by NSF throughWork supported in part by NSF through
grants ST-HEC-0444285, CPA-0702245 and
CPA-0811587, and by a Google Fellowship

M lti hit tMulticore architecture
Multiple cores per chip
Modest on-chip caches
Memory bandwidth issuey
▪ Increasing gap between CPU speed and

off-chip memory bandwidth
▪ Increasing bandwidth consumption by aggressive

hardware prefetching

Software
Many optimizations increase memory bandwidth requirement
▪ Parallelization, Software prefetching, ILP
Some optimizations reduce memory bandwidth requirementSome optimizations reduce memory bandwidth requirement
▪ Array contraction, index compression
Loop transformations to improve data locality
▪ Loop tiling, loop fusion and others
▪ Restricted by data/control dependencesy p

2

Loop tiling is used to increase data locality
Example program: PDE iterative solver

The base implementation
do t = 1 itmaxdo t 1,itmax

update(a, n, f);

! Compute residual and convergence test! Compute residual and convergence test
error = residual(a, n)

if (error .le. tol) then
exit

3

endif
end do

Tiling is skewed to satisfy data dependences
After tiling, parallelism only exists within a tile
due to data dependences between tilesdue to data dependences between tiles

4

The tiled version
with speculated executionwith speculated execution

do t = 1, itmax/M + 1

! Save the old result into buffer as checkpoint
oldbuf(1:n 1:n) = a(1:n 1:n)

Questions
1 How to select chunkoldbuf(1:n, 1:n) = a(1:n, 1:n)

! Execute a chunk of M iterations after tiling
update_tile(a, n, f, M)

1. How to select chunk
size?

2. Is recovery overhead
?

! Compute residual and perform convergence test
error = residual(a, n)

necessary?

if (error .le. tol) then
call recovery(oldbuf, a, n, f)
exit

end ifend if
end do

5

Mitigate the memory bandwidth problem
Apply data locality optimizations to challenging cases
R l i i i d b d / lRelax restrictions imposed by data/control
dependences

6

B i id ll t f ld i hb i l iBasic idea: allow to use of old neighboring values in
the computation, still converging

O i i ll d t d i ti tOriginally proposed to reduce communication cost
and synchronization overhead

Convergence rate of asynchronous algorithms1Convergence rate of asynchronous algorithms1

May slowdown convergence rate

Our contribution is to use the asynchronous modelOur contribution is to use the asynchronous model
to improve parallelism and locality simultaneously

Relax dependencies
M t it ditiMonotone exit condition

7

[1] Frommer, A. and Szyld, D. B. 1994. Asynchronous two-stage iterative methods. In Numer.
Math. 69, 2, Dec 1994.

Th til d i ith tThe tiled version without recovery

do t = 1, itmax/M + 1

! E t h k f M it ti ft tili! Execute a chunk of M iterations after tiling
update_tile(a, n, f, M)

! Compute residual and convergence test
error = residual(a, n)

if (error .le. tol) then
exit

end if
end do

8

Achieve parallelism across the grid
Not just within a tile

A l l tili t i d t l litApply loop tiling to improve data locality
Requiring a partition of time steps in chunks

Eliminate recovery overheadEliminate recovery overhead

9

Chunk size: # iterations executed speculatively in
the tiled code

Ideal if we can predict the exact iterations to
converge

However, it is unknown until convergence happens

Too large a chunk we pay overshooting overheadToo large a chunk, we pay overshooting overhead

Too small, poor data reuse and poor data localityp p y

10

Poor solutions
Use a constant chunk size (randomly pick)
E i b d h h i lEstimate based on the theoretical convergence rate

A better solution: Adaptive chunk sizeA better solution: Adaptive chunk size
Use the latest convergence progress to predict how
many more iterations are required to converge

ri :residual error of i-th round of tiled code

11

Platforms for experiments:
Intel Q6600, AMD8350 Barcelona, Intel E5530 Nehalem

Evaluated numerical methods: Jacobi, GS, SOR

Performance results
Synchronous model vs. asynchronous model with the best
chuck sizechuck size
Original code vs. loop tiling
Impact of the chunk size
Adaptive chunk selection vs. the ideal chunk size

12

Peak bandwidth of our platforms

Machine Model L1 L2 L3 BW
(GB/s)

SBW
(GB/s)

A AMD8350
4 4

64KB
i t

512KB
i t

4x2MB
h d 21.6 18.94x4 cores private private shared 6 8 9

B Q6600
1x4 cores

32KB
private

2x4MB
shared N/A 8.5 4.79

E5530 256KB 1MB 2 8MBC E5530
2x4 cores

256KB
private

1MB
private

2x8MBs
shared 51 31.5

13

Machine A
50 tiled tiled-norec Performance

20

30

40

pe
ed

up

async-base async-tiled
Performance
varies with
chunk size!

til d

0

10

20

0 50 100 150

Sp async-tiled
version is the

best!

0 50 100 150Chunk

Machine kernel parallel tiled tiled-norec async-base async-tiled
A Jacobi 5 95 16 76 27 24 5 47 39 11

14

16 cores Jacobi 5.95 16.76 27.24 5.47 39.11

Machine B
4 tiled tiled-norec

async-base async-tiled Poor

2

3

Sp
ee

du
p

async base async tiled Poor
performance
without tiling
(async-base
and parallel)!

0

1

0 50 100 150

S

Chunk

and parallel)!

Machine kernel parallel tiled tiled-norec async-base async-tiled
B

4 Jacobi 1 01 2 55 3 44 1 01 3 67

15

4 cores Jacobi 1.01 2.55 3.44 1.01 3.67

Machine C
15 tiled tiled-norec

10

ee
du

p

tiled tiled norec
async-base async-tiled

0

5Sp
e

Ch k

Machine kernel parallel tiled tiled-norec async-base async-tiled
C Jacobi 3 73 8 53 12 69 3 76 13 39

0 20 40 60 80 100 120 140 160Chunk

16

8 cores Jacobi 3.73 8.53 12.69 3.76 13.39

Machine kernel parallel tiled tiled-norec async-base async-tiled

A GS 5.49 12.76 22.02 26.19 30.09

B GS 0.68 5.69 9.25 4.90 14.72

C GS 3.54 8.20 11.86 11.00 19.56

A SOR 4.50 11.99 21.25 29.08 31.42

B SOR 0.65 5.24 8.54 7.34 14.87

C SOR 3.84 7.53 11.51 11.68 19.10

• Asynchronous tiled version performs better than synchronous tiled
version (even without recovery cost)

• Asynchronous baseline suffers more on machine B due to less
memory bandwidth available

17

memory bandwidth available

adaptive-1: lower bound of chunk size is 1
adaptive-8: lower bound of chunk size is 8

30

40

up

GS

30

40

50

up

Jacobi

0

10

20

Sp
ee

d

async-tiled
adaptive-1
adaptive-8

10

20

30

Sp
ee

du

async-tiled
adaptive-1
adaptive-8 0

0 20 40 60 80
Initial Chunk

p
0

0 100
Initial Chunk

adaptive 8

18

Showed how to benefit from the asynchronous model for relaxing
data and control dependences

improve parallelism and data locality (via loop tiling) at the same time

An adaptive method to determine the chunk size

because the iteration count is usually unknown in practice

Good performance enhancement when tested on three well-knownGood performance enhancement when tested on three well-known
numerical kernels on three different multicore systems.

19

Thank you!

20

