
Applying Array Contraction to A Sequence of DOALL Loops

Yonghong Song
Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054

yonghong.song@sun.com

Zhiyuan Li
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

li@cs.purdue.edu

Abstract

Efficient program execution on multiprocessor comput-
ers requires both sufficient parallelism and good data lo-
cality. Recent research found that, using a combination of
loop shifting, loop fusion, and array contraction, one can
reduce the memory required to execute a sequence of se-
rial loops, thereby to improve the cache locality. This paper
studies how to extend such a memory-reduction scheme to
a sequence of DOALL loops which are executed in paral-
lel on multiprocessors. Two methods are proposed to over-
come difficulties caused by loop-carried dependences. Data
copy-in is performed to remove anti-dependences between
different parallel threads, and computation duplication is
performed to remove flow dependences. Experiments per-
formed on a number of benchmark programs show that the
proposed technique improves both cache locality and par-
allel execution speed for the DOALL loops. The scheme
achieves an average speedup of 1.41 for 17 programs on a
4-processor SUN machine.

1 Introduction

Efficient program execution on multiprocessor comput-
ers requires both sufficient parallelism and good data lo-
cality. Recent research introduced a scheme (called SFC)
that combines loop shifting (S), loop fusion (F) and array
contraction (C) to transform a sequence of loop nests into a
single loop nest such that the required total memory space is
minimized [15, 14]. This reduction in memory requirement
improves both the cache locality and the sequential execu-
tion speed of the program. It is then natural to ask whether
the SFC can be used to improve the cache locality of a se-
quence of DOALL loops. (A DOALL loop is an indexed
loop, e.g. a Fortran DO loop, which has no loop-carried
data dependences, i.e., data dependences between different
iterations, except those in a parallelizable reduction opera-
tion such as a vector summation.)

L1: DO I = 1, N
A(I) = E(I)+E(I−1)

END DO
L2: DO I = 1, N

E(I) = A(I)
END DO

a2 = E(1) + E(0)
DO I = 2, N

a1 = a2
a2 = E(I) + E(I − 1)
E(I − 1) = a1

END DO
E(N) = a2

!$OMP PARALLEL DO
DO I = 1, N

A(I) = E(I) + E(I − 1)
END DO

!$OMP PARALLEL DO
DO I = 1, N

E(I) = A(I)
END DO

(a) (b) (c)

!$OMP PARALLEL PRIVATE(P,C,L,U,t)
P = OMP GET NUM THREADS()
C = (N + P − 1)/P
L = 1 + OMP GET THREAD NUM() ∗ C
U = MIN(L + C − 1, N)
t = E(L − 1)

!$OMP BARRIER

DO I = L, U
IF (I.EQ.L) THEN

A(I) = E(I) + t
ELSE

A(I) = E(I) + E(I − 1)
END IF

END DO
DO I = L, U

E(I) = A(I)
END DO

!$OMP END PARALLEL

!$OMP PARALLEL PRIVATE(P,C,L,U,t,a1 ,a2)
P = OMP GET NUM THREADS()
C = (N + P − 1)/P
L = 1 + OMP GET THREAD NUM() ∗ C
U = MIN(L + C − 1, N)
t = E(L − 1)

!$OMP BARRIER

a2 = E(L) + t
DO I = L + 1, U

a1 = a2
a2 = E(I) + E(I − 1)
E(I − 1) = a1

END DO
E(U) = a2

!$OMP END PARALLEL

(d) (e)

Figure 1. Example 1

In this paper, we shall show experimental results which
demonstrate improved cache locality and execution speed
of a number of benchmark programs as a result of apply-
ing a parallel version of SFC. Some of these programs re-
quire only straightforward loop fusion and array contrac-
tion. But for others, straightforward loop fusion (even with
loop shifting) introduces loop-carried data dependences,
which makes the resulting loop nest no longer DOALL.
Hence, such programs require additional transforms in or-
der to preserve the parallelism while allowing array contrac-
tion.

Figure 1 shows an example. Figure 1(a) lists a sequence
of two loops, L1 and L2. Suppose array A is dead after
loop L2. Using the SFC technique [15, 14], one can first
shift the loop limits in L2, then fuse both loops before con-
tracting the array A into two scalars (Figure 1(b)). On the
other hand, to execute the loops in Figure 1(a) on a multi-
processor computer, one can convert L1 and L2 into parallel
loops, since they are both DOALL. Figure 1(c) shows how
to use OpenMP directives to mark these two loops as paral-

Fork threads

Prologue:
 Copy-in E(L-1)

Prologue:

Anti-
dependence
removed
by copy-in

Read E

Write E

Control
flow

Loop
iteration
space

Anti-
depen
dence

Figure 2. Illustration of Data Copy-In

lel. Unfortunately, the SFC technique cannot be applied in
a straightforward way to these parallel loops, because they
cannot be legally fused with or without loop shifting. (The
fused loop in Figure 1(b) is not DOALL, since the shift-
ing of L2 has created a loop-carried anti-dependence due to
array E.) What we need is an alternative way to parallelize
the given sequence of DOALL loops such that the SFC tech-
nique can be applied.

Our solution takes advantage of the fact that the num-
ber of available processors, P , is usually much smaller than
the iteration counts of the parallel loops. We partition the
iterations into P blocks of consecutive iterations. By let-
ting each processor executes one of such blocks, we con-
fine the potential data races (due to the loop-carried data
dependences) to the array elements that are accessed in
those iterations on the partition boundary. We can then re-
move such boundary dependences by two kinds of dupli-
cation. The anti-dependences are removed by data copy-
in, which duplicates the array elements in contention. The
flow-dependences are removed by computation duplication,
which makes the reader of an array element recompute the
data value instead of taking the value computed by a differ-
ent processor. Note that, based on the assumptions made in
Section 2, output dependences will not exist between differ-
ent threads.

Figure 1(d) shows the parallelization of the loops in Fig-
ure 1(a) using the idea of data copy-in. The parallel code,
which uses OpenMP directives, is executed by each pro-
cessor which participates in the execution of the loops. De-
pending on its assigned thread number, the processor gets to
execute a certain block of the iterations. The variable P rep-
resents the number of threads which, for the purpose of this
paper, can be viewed as the number of available processors.
The lower bound L and upper bound U define the range of
the iterations executed in each thread. E(L − 1) is copied

Fork threads

Prologue:
 Recomputes A(L-1)

Prologue:

Flow
dependence
removed by
computation
duplication

Write A

Read A

Control
flow

Loop
iteration
space

Flow
depen
dence

Figure 3. Illustration of Computation Duplica-
tion

in to remove the anti-dependence between the boundary it-
erations. Such copy-in operations are placed in the parallel
loop’s prologue, which is separated from the thread body
by a synchronization barrier. Figure 2 illustrates how the
copy-in removes the boundary anti-dependences. The SFC
technique [15, 14] can now be applied to the thread body,
producing the final array-contracted code in Figure 1(e).

To see how computation duplication works, consider an
example which is produced by replacing the reference to
A(I) in loop L2 (see Figure 1(a)) by a reference to A(I−1).
In this example, if the parallel code were generated follow-
ing the style of Figure 1(d), there would exist a flow de-
pendence between different processors. Figure 3 illustrates
how to use computation duplication to remove such a flow
dependence.

In the rest of the paper, we shall present a scheme
which a compiler may use to perform array contraction on
DOALL loops as illustrated above. We present experimen-
tal results obtained by applying the scheme to the bench-
mark programs used in the previous study of the SFC tech-
nique [15, 14]. In Section 2, we present a program model
for this study. In Section 3, we present the new compiler
scheme for a sequence of DOALL loops. We show experi-
mental results in Section 4, compare related work in Section
5 and conclude in Section 6.

2 Program Model and Loop Dependence
Graph

We consider a collection of loop nests, L1, L2, . . ., Lm,
m ≥ 1, as shown in Figure 4. Each label Li denotes a tight
nest of loops with indices Li,1, Li,2, . . ., Li,n, n ≥ 1, listed
from the outermost level to the innermost. (For the exam-

L1 : DO L1,1 = l11, l11 + b1 − 1
DO L1,2 = l12, l12 + b2 − 1
. . .
DO L1,n = l1n, l1n + bn − 1

. . .
Li : DO Li,1 = l21, l21 + b1 − 1

DO Li,2 = l22, l22 + b2 − 1
. . .
DO Li,n = l2n, l2n + bn − 1

. . .
Lm : DO Lm,1 = lm1, lm1 + b1 − 1

DO Lm,2 = lm2, lm2 + b2 − 1
. . .
DO Lm,n = lmn, lmn + bn − 1

Figure 4. The program model

L1: DO K = 2, KN
DO J = 2, JN

ZA(J, K) = ZP(J − 1, K + 1)
+ZR(J − 1, K − 1)

END DO
END DO

L2: DO K = 2, KN
DO J = 2, JN

ZB(J, K) = ZQ(J −1, K)+ZZ(J, K)
END DO
END DO

L3: DO K = 2, KN
DO J = 2, JN

ZP(J, K) = ZP(J, K) + ZA(J, K)
−ZA(J − 1, K) − ZB(J, K)
+ZB(J, K + 1)

END DO
END DO

L4: DO K = 2, KN
DO J = 2, JN

ZQ(J, K) = ZQ(J, K) + ZA(J, K)
+ZA(J − 1, K) + ZB(J, K)
+ZB(J, K + 1)

END DO
END DO

(a)

L1

L4

L2

L3

(0,0)
(0,1) (-1,0)

(0,0)
(0,0)

(-1,0)

(0,0)
(0,1)

(1
,-

1)

(0
,-

1)

(0
,0

)

(0
,0

)

!$OMP PARALLEL PRIVATE(P,C,L,U)
P = OMP GET NUM THREADS()
C = (KN − 1 + P − 1)/P
L = 2 + OMP GET THREAD NUM() ∗ C
U = MIN(L + C − 1, KN)

DO K = L, U
DO J = 2, JN

ZA(J, K) = ZP(J − 1, K + 1)
+ZR(J − 1, K − 1)

END DO
END DO
DO K = L, U

DO J = 2, JN
ZB(J, K) = ZQ(J − 1, K) + ZZ(J, K)

END DO
END DO
DO K = L, U

DO J = 2, JN
ZP(J, K) = ZP(J, K) + ZA(J, K)
−ZA(J − 1, K) − ZB(J, K)
+ZB(J, K + 1)

END DO
END DO
DO K = L, U

DO J = 2, JN
ZQ(J, K) = ZQ(J, K) + ZA(J, K)

+ZA(J − 1, K) + ZB(J, K)
+ZB(J, K + 1)

END DO
END DO
!$OMP END PARALLEL

(b) (c)

Figure 5. Example 2, its original loop depen-
dence graph and intermediate result before
computation duplication and data copy-in

ple in Figure 1(a), we have m = 2 and n = 1.) All the
outermost loops are assumed to be DOALL, with the possi-
ble presence of parallelizable reduction operations as men-
tioned before. We make a number of assumptions which
are the same as in the previous study of the SFC technique
for sequential execution [15, 14]. These assumptions are
restated below.

Loop Li,j has the lower bound lij and the upper bound
lij + bj − 1 respectively, where lij and bj are loop invari-
ants. All loops at the same level, j, are assumed to have
the same trip count bj . We assume that none of the given
loops can be partitioned into smaller loops by loop distri-
bution [18]. Otherwise, we apply maximum loop distribu-
tion [18] to the given collection of loops first. The purpose
of maximum loop distribution is for optimal memory-space
reduction [15].

The array regions referenced in the given collection of

loops are divided into three categories. An input array re-
gion is upwardly exposed to the beginning of L1. An output
array region is live after Lm. A local array region does not
intersect with any input or output array regions. Only the
local array regions are amenable to array contraction. In the
example in Figure 1(a), A(1 : N) is the only local array
region. Figure 5(a) shows a more complex example which
resembles one of the well-known Livermore loops. In this
example, where m = 4 and n = 2, each declared array is
of dimension [1 : JN + 1, 1 : KN + 1]. ZA(2:JN,2:KN) and
ZB(2:JN,2:KN) are local array regions.

To describe the dependence between a collection of loop
nests, we extend the definitions of the traditional depen-
dence distance vector [6] as follows.

Definition 1 Given a collection of loop nests, L1, . . ., Lm,
as in Figure 4(a), if a data dependence exists from the
source iteration~i = (i1, i2, . . . , in) of loop Lk1(1 ≤ k1 ≤

m) to the destination iteration ~j = (j1, j2, . . . , jn) of loop
Lk2(1 ≤ k2 ≤ m), we say the distance vector of this de-
pendence is ~j −~i = (j1 − i1, j2 − i2, . . . , jn − in).

For simplicity of discussion, we assume that there exist
no output dependences between different loop nests. Fur-
thermore, we assume constant dependence distance vectors
in this paper. In certain cases, one can replace non-constant
distance vectors by constant ones without suffering the op-
timality of the solution [14].

Figure 5(b) illustrates the data dependences in the code
example in Figure 5(a). The array regions associated with
the dependence edges can be inferred from the program,
and they are omitted in the figure. For instance, the flow
dependence from L1 to L3 with ~d = (0, 0) is due to array
region ZA(2 : JN, 2 : KN). In Figure 5(b), where multiple
dependences of the same type (flow, anti- or output) exist
from one node to another, all these dependences are repre-
sented by a single arc. All associated distance vectors are
then marked on this single arc.

3 The New SFC for DOALL Loops

The SFC technique relies on the fact that, given a se-
quence of loops shown in Figure 4(a), the number of simul-
taneously live array elements in the local array regions can
be reduced by fusing the given m loop nests into a single
loop nest. Through Figure 1, we have illustrated how to
make loop fusion legal by loop shifting and how to contract
arrays after loop fusion. The details of these steps and the
optimal loop-shifting choice are discussed in previous stud-
ies [15, 14]. In this paper, we focus on the new aspects of
SFC when applied to DOALL loops.

In our new scheme, the compiler first creates a paral-
lel region around the given sequence of loop nests. The
iterations of each loop nest are divided evenly among the

procedure find comp dup()
/* Let Ri be the input array region and Rd the array region which needs to be recomputed. */
Rd = φ.
for i = m to 1 by −1 do

for (each flow dependence whose destination is in L i) do
Let Lp(1 ≤ p < i) be the loop containing the dependence source.
Determine the array region, Rw , written by the dependence source.
Determine the array region, Rr , used by the dependence destination.
Rd = Rd ∪ (Rr − Rw − Ri). /* Only the needed values that are computed

by a different processor must be recomputed locally by duplication. */
end for

end for
end procedure

Figure 6. The algorithm for determining dupli-
cated computation

processors. Figure 5(c) shows the code for Figure 5(a) af-
ter this intermediate step. A synchronization barrier sep-
arates the prologue of the parallel region from the thread
body, and the latter contains the original loop nests whose
loop bounds are modified according to the partitioning. We
then apply computation duplication and data copy-in to the
loop nests in the thread body, if they are needed. Array
contraction follows afterwards, regardless whether compu-
tation duplication and data copy-in are applied or not. Next,
we discuss how to determine whether computation duplica-
tion and data copy-in are needed in order to perform array
contraction and, if needed, how to apply them.

3.1 Computation Duplication

Computation duplication may have a ripple effect that
must be handled systematically. A duplicated computation
in loop Li may require the values computed in another loop,
say Lj , by a different processor. A new case of boundary
flow dependence hence may arise. Note that loop Lj must
precede Li lexically in the given sequence of loops, hence
j < i. A flow dependence from Li to Li will not require
computation duplication because it cannot be loop-carried
in Li,1 which is a DOALL loop. Figure 6 shows the algo-
rithm that formalizes the handling of the ripple effect. This
algorithm visits the loop nests in the reversed lexical order.
It determines all array regions whose computation must be
duplicated because of the boundary flow dependences.

The inserted computation-duplication code recomputes
the values of certain array elements that are used in the
thread. The storage for such recomputed values deserves a
careful consideration. In order to reduce the required mem-
ory size, it is beneficial to store these values in the original
arrays. However, there are cases in which we are forced
to allocate new variables that are private to the thread in
order to store the recomputed values. Suppose an array el-
ement is written more than once in one of the original loop
nests. It then has different values, at different time, that are
used by different read references. Further suppose that, af-
ter loop parallelization, the same array element needs to be
recomputed (by computation duplication) in the prologue

procedure find copy in()
/* Let Ro be the read-only input array region and Rd the array region which needs to be copied in. */
Rd = φ.
for i = 1 to m do

for (each anti-dependence whose source is in Li) do
Determine the dependence destination Lj , j > i.
Determine the array region, Rr , read by the dependence source in loop Li .
Determine the array region, Rw , written by the dependence destination in loop Lj .

Rd = Rd ∪ (Rr − Rw − Ro).
end for

end for
end procedure

Figure 7. The algorithm for computing copy-in
array regions

of the parallel region in order to remove flow dependences
between different threads. Without allocating private vari-
ables, the single storage for the original array element obvi-
ously cannot hold multiple values, even though all of these
values are used by some read references in the same loop ex-
ecuted by the same thread. Private variables must therefore
be allocated to store all these values. The read operations
will then read the corresponding private variables.

For the example in Figure 5(c), we can easily find that the
array region which needs recomputation is ZB(2 : JN, U +
1). This is due to the flow dependence from the reference to
ZB(J, K) in L2 to the reference to ZB(J, K + 1) in L3 and
due to the flow dependence from the reference to ZB(J, K)
in L2 to the reference to ZB(J, K + 1) in L4.

3.2 Data Copy-in

After using computation duplication to remove boundary
flow dependences, we use data copy-in to remove bound-
ary anti-dependences. It is possible for an array to be both
written (for computation duplication) and read in the pro-
logue, which creates data races. When this happens, we
place all data copy-in code ahead of the computation du-
plication code in the prologue, and we use an additional
synchronization barrier to separate these two parts.

Figure 7 shows the procedure for finding array regions
which need to be copied in, where Ro represents the por-
tion of input array regions which are read but not written
in the given code segment. For each anti-dependence, the
array region to be copied will be copied to variables that are
private to the thread. Therefore such an anti-dependence
no longer exists between different threads when the thread
body is executed.

For the example in Figure 5(c), the array region which
needs copy-in is ZP(2 : JN, U + 1), which is due to the
anti-dependence from the reference to ZP(J − 1, K + 1) in
L1 to the reference to ZP(J, K) in L3.

3.3 Contracting the Arrays

After all necessary computation duplication and data
copy-in are inserted in the parallel code region. The SFC

!$OMP PARALLEL PRIVATE(P,C,L,U,t)
P = OMP GET NUM THREADS()
C = (KN − 1 + P − 1)/P
L = 2 + OMP GET THREAD NUM() ∗ C
U = MIN(L + C − 1, KN)
t(1 : JN − 1) = ZP(1 : JN − 1, U + 1).
IF (U.NE.KN) THEN

DO J = 2, JN
ZB(J, U + 1) = ZQ(J − 1, U + 1)

+ZZ(J, U + 1)
END DO

END IF
!$OMP BARRIER

DO K = L, U
DO J = 2, JN

IF (K.EQ.U) THEN
ZA(J, K) = t(J − 1)

+ZR(J − 1, K − 1)
ELSE

ZA(J, K) = ZP(J − 1, K + 1)
+ZR(J − 1, K − 1)

END IF
END DO

END DO
DO K = L, U

DO J = 2, JN
ZB(J, K) = ZQ(J − 1, K) + ZZ(J, K)

END DO
END DO
DO K = L, U

DO J = 2, JN
ZP(J, K) = ZP(J, K) + ZA(J, K)

−ZA(J − 1, K) − ZB(J, K)
+ZB(J, K + 1)

END DO
END DO
DO K = L, U

DO J = 2, JN
ZQ(J, K) = ZQ(J, K) + ZA(J, K)

+ZA(J − 1, K) + ZB(J, K)
+ZB(J, K + 1)

END DO
END DO
!$OMP END PARALLEL

!$OMP PARALLEL PRIVATE(P,C,L,U,t,ZB1,a1 ,a2 ,b)
P = OMP GET NUM THREADS()
C = (KN − 1 + P − 1)/P
L = 2 + OMP GET THREAD NUM() ∗ C
U = MIN(L + C − 1, KN)
t(1 : JN − 1) = ZP(1 : JN − 1, U + 1).
IF (U.NE.KN) THEN

DO J = 2, JN
ZB(J, U + 1) = ZQ(J − 1, U + 1)

+ZZ(J, U + 1)
END DO

END IF
!$OMP BARRIER

DO J = 2, JN
ZB1(J) = ZQ(J − 1, L) + ZZ(J, L)

END DO

DO K = L, U − 1
a1 = ZA(1, K)
DO J = 2, JN

a2 = ZP(J − 1, K + 1)
+ZR(J − 1, K − 1)

b = ZQ(J − 1, K + 1) + ZZ(J, K + 1)
ZP(J, K) = ZP(J, K) + a2 − a1

−ZB1(J) + b
ZQ(J, K) = ZQ(J, K) + a2 + a1

+ZB1(J) + b
a1 = a2
ZB1(J) = b

END DO
END DO

a1 = ZA(1, K)
DO J = 2, JN

a2 = t(J − 1) + ZR(J − 1, K − 1)
ZP(J, K) = ZP(J, K) + a2 − a1
−ZB1(J) + ZB(J, U + 1)

ZQ(J, K) = ZQ(J, K) + a2 + a1
+ZB1(J) + ZB(J, U + 1)

a1 = a2
END DO
!$OMP END PARALLEL

(a) (b)

Figure 8. Parallelized code for Example 2

technique [15, 14] is applied to the new loop nests L1

though Lm in the thread body.
For the example in Figure 5(a), Figure 8(a) shows the

code after automatic parallelization by applying computa-
tion duplication and data copy-in techniques. The only
write reference to shared data is ZB(J, U + 1) in the com-
putation duplication code and the data copy-in code. Since
there exists no other read references to array ZB in those
codes, there exists no data race between different threads.

Figure 8(b) shows the code after array contraction. For
arrays ZA and ZB in Figure 8(a), the local array regions ac-
cessed are ZA(1 : JN, L : U) and ZB(2 : JN, L : U + 1)
respectively. After array contraction (Figure 8(b)), ZA is
contracted to ZA(1, L : U) plus two scalars, a1 and a2. Ar-
ray ZB is contracted to ZB(2 : JN, U + 1), ZB1(2 : JN) and
a scalar b.

We do not apply the extended SFC, including compu-
tation duplication and data copy-in, unless we determine
that the predicted performance after final array contraction
is better than that of the original code segment. For sim-
plicity, we assume that the synchronization overhead is the
same before and after the transformation. (Although we in-
troduce new barriers in the prologue of the parallel region,
we may also remove certain barriers because of loop fu-
sion.) With such an assumption, we predict the profitability
of the extended SFC by examining whether it reduces the

number of cache misses [15]. To estimate cache misses, we
estimate the reuse distance [19] for each dependence and
compare it to the cache size. If it is equal to or smaller
than the cache size, the memory access at the dependence
destination is assumed to be a cache hit. Otherwise, it is
assumed to be a cache miss. We illustrate using Example 2
as follows.

Let Cs represent the cache size and Cb the cache line
size, both measured in the number of data elements. We
estimate the total number of cache misses in the original
code of Example 2 (Figure 5(a)) by x1 = (KN − 1) ∗ (JN−

1) ∗ 12/Cb. The total number of cache misses in the copy-
in and computation duplication codes (accumulated over all
threads) is estimated by x2 = (JN−1)∗5∗P/Cb, where P
represents the number of OpenMP threads. The number of
cache misses in the code generated after array contraction
(accumulated over all threads) is estimated by (JN − 1) ∗
2 + (U −L+ 1) ∗ (JN− 1) ∗ 4 ∗P/Cb, which is equivalent
to x3 = ((JN − 1) ∗ 2 ∗ P + (KN − 1) ∗ (JN − 1) ∗ 4)/Cb.
The condition x2 + x3 < x1 holds if and only the condition
7 ∗P < (KN − 1) ∗ 8 holds, which is the case for large KN.
We can let the compiler generate two versions of code such
that only under the condition 7 ∗P < (KN− 1) ∗ 8 does the
parallelized version with array contraction get executed.

4 Experimental Results

To evaluate the effectiveness of the array contraction
technique discussed in this paper, we examine their appli-
cability to the test programs used in the previous study of
the SFC technique [15]. Among those 20 test programs,
we find that the technique in this paper is not suitable for
LL14, lucas and laplace-gs. This is because these
three programs contain loops which are not DOALL but
whose fusion is required in order to perform array contrac-
tion. For the experimentation in this paper, therefore, we
exclude these three programs.

Table 1 lists the remaining 17 programs used in our ex-
periments. In the listed programs, the loop nests fused for
array contraction are all DOALL loops. In this table, “m/n”
represents the number of loops in the loop sequence (m)
and the maximum loop nesting level (n). For each of the
benchmarks in Table 1, all m loops are fused together. For
swim95, swim00 and hydro2d, where n = 2, only the
outer loops are fused. For all other benchmarks, all n loop
levels are fused. Further details concerning the program de-
scriptions and input parameter selections can be found in
the previous SFC study [15].

Among the 17 programs, the DOALL loops in
combustion, climate, and all those purdue-set pro-
grams can be directly fused into a single DOALL loop with-
out inserting data copy-in and computation duplication, as
shown in Table 1. Optimal array contraction can be applied

Table 1. Test Programs
Benchmark Name Description Input Parameters m/n Comp. duplication and copy-in

LL18 Livermore Loop No. 18 N = 400, ITMAX = 100 3/2 Computation Duplication
Jacobi Jacobi Kernel w/o convergence test N = 1100, ITMAX = 1050 2/2 Both

tomcatv A mesh generation program from SPEC95fp reference input 5/1 Both
swim95 A weather prediction program from SPEC95fp reference input 2/2 Computation Duplication
swim00 A weather prediction program from SPEC2000fp reference input 2/2 Computation Duplication
hydro2d An astrophysical program from SPEC95fp reference input 10/2 Both

mg A multigrid solver from NPB2.3-serial benchmark Class ‘W’ 2/1 Neither
combustion A thermochemical program from UMD Chaos group N1 = 10, N2 = 10 1/2 Neither
purdue-02 Purdue set problem02 reference input 2/1 Neither
purdue-03 Purdue set problem03 reference input 3/2 Neither
purdue-04 Purdue set problem04 reference input 3/2 Neither
purdue-07 Purdue set problem07 reference input 1/2 Neither
purdue-08 Purdue set problem08 reference input 1/2 Neither
purdue-12 Purdue set problem12 reference input 4/2 Neither
purdue-13 Purdue set problem13 reference input 2/1 Neither

climate A two-layer shallow water climate model from Rice reference input 2/4 Neither
laplace-jb Jacobi method of Laplace from Rice ICYCLE = 500 4/2 Both

without hurting the parallelism. In program mgrid, the
sequence of DOALL loops fused for array contraction are
all immediately embedded in an outermost DOALL loop.
The remaining programs, i.e. LL18, Jacobi, tomcatv,
swim95, swim00, hydro2d and laplace-jb, require
computation duplication and/or data copy-in in order to
keep the loops parallelized while allowing array contrac-
tion.

We manually apply the technique described in Section 3
to parallelize the loops using data copy-in and computa-
tion duplication. We then apply the tool developed in pre-
vious work [15] to perform loop shifting, loop fusion and
array contraction (i.e. SFC). For comparison, we also run
the parallelized code with computation duplication and data
copy-in inserted, and then with loops fused. These ver-
sions, however, do not have arrays contracted. Altogether,
thus, we have five versions of code to compare, including
the original sequential code and the sequential code pro-
duced by the SFC technique. All these codes are run on
a 4-processor SUN multiprocessor computer. Each pro-
cessor is a SUN UltraSPARC II 248MHz processor with a
16KB L1 data cache and a 1MB L2 cache. The L1 cache is
directly-mapped with a line size of 16 bytes. The L2 cache
is directly-mapped with a line size of 64 bytes.

To generate the machine code, we use SUN’s native For-
tran compiler which has a version of Sun Workshop 6 up-
date 1. All sequential codes are compiled with the “-fast”
option. All parallel (OpenMP) codes are compiled with the
“-fast -openmp -autopar” option. To measure the parallel
performance of the original codes, we take the better ex-
ecution time from two versions of codes. In one version,
we manually add OpenMP pragmas to the original codes,
which are compiled with the “-fast -openmp -autopar” op-
tion. The other version is parallelized automatically by the
native compiler using its “-fast -autopar” option. The auto-
matic parallelization facility of the compiler may re-arrange

0

1

2

3

4

5

6

LL
18

Ja
co

bi

to
m

ca
tv

sw
im

95

sw
im

00

hy
dr

o2
d

m
g

co
m

bu
sti

on

Benchmarks

S
p

ee
d

u
p

Org
Red
Para-Org
Para-Fusion
Para-Red

0

2

4

6

8

10

12

pu
rd

ue
-0

2

pu
rd

ue
-0

3

pu
rd

ue
-0

4

pu
rd

ue
-0

7

pu
rd

ue
-0

8

pu
rd

ue
-1

2

pu
rd

ue
-1

3

cli
m

at
e

lap
lac

e-
jb

Benchmarks

S
p

ee
d

u
p

Org
Red
Para-Org
Para-Fusion
Para-Red

Figure 9. Execution results

loop nests for better performance. We add “-autopar” to the
compilation flag such that the loops not fused by our tech-
nique can be examined by the native compiler for automatic
parallelization. For programs purdue-07 and climate,
we turn off parallelization for both the original loop nests
and the loop nests transformed by our technique. This is
because of small trip counts and small amount of work in
the loop body.

4.1 Execution Results

Figure 9 compares the execution speed. The label “Org”
stands for the sequential execution of the original codes,
which is used as the normalization base. The label “Red”
stands for the serial execution of the codes transformed by
SFC. The label “Para-Org” stands for the parallel execution
of the original codes. “Para-Fusion” stands for the paral-
lel execution of the code transformed by the new technique

except that the arrays are not yet contracted after loop fu-
sion. “Para-Red” stands for the parallel execution of the
final codes transformed by the new technique.

According to Figure 9, the parallelized codes trans-
formed by our technique perform better than the paral-
lelized original codes in all 17 programs except mg, with a
speedup ranging from 0.95 to 5.0 and a geometric means
of 1.41. For mg, the original codes perform better than
memory-reduction codes in both single-processor and mul-
tiprocessor runs. We suspect that this abnormal behavior is
caused by the instruction scheduling performed by the na-
tive compiler’s back-end. We will investigate this behavior
further in the future study.

According to Figure 9, for all those listed programs, the
parallelized code with array contraction also performs better
than the parallelized code after loop fusion but before array
contraction. The speedup ranges from 1.01 to 5.0 with a
geometric mean of 1.42. For tomcatv, the performance
of the parallelized version after loop fusion but before ar-
ray contraction is particularly poor. This is because, for this
program, loop interchange is performed to enable loop fu-
sion. Before array contraction, the loop interchange spoils
the spatial locality of most of the arrays.

Figure 10 shows the L1 and L2 cache miss rates. We
measure the cache miss rate by using the perfmon pack-
age. We only measure the cache miss rate for the main
thread, since we have not found a reliable way to mea-
sure the cache miss rates for the entire parallel programs
on the computer system used in the experiments. In this fig-
ure, “Para-Org-L1” and “Para-Org-L2” stand for the L1 and
the L2 cache miss rates of the original codes parallelized in
the straightforward fashion. “Para-Red-L1” and “Para-Red-
L2” stand for the L1 and the L2 cache miss rates of the
parallel codes with array contraction. From this figure, we
see that for most of the programs, array contraction indeed
reduces cache miss rate for either the L1 or the L2 cache, or
both. For swim00 and climate, although the miss rates
are not reduced, the number of array references are reduced
significantly because of several arrays being contracted to
scalars. For swim00, the number is reduced from 9.2B to
6.3B. For climate, it is reduced from 6.9M to 1.5M.

5 Related Work

Several authors have considered a single perfect nest
of loops. For such a single loop nest, they have studied
the relationship between loop schedules (including parallel
schedules) and storage optimization [17, 16, 11]. Unlike
the SFC technique and its parallel extension discussed in
this paper, the previous studies consider neither loop fusion
nor loop shifting to enable array contraction. Among these
studies, Strout et al. first propose the use of a universal oc-
cupancy vector (UOV) to derive schedule-independent stor-

0

0.1

0.2

0.3

0.4

0.5

0.6

LL
18

Ja
co

bi

to
m

ca
tv

sw
im

95

sw
im

00

hy
dr

o2
d

m
g

co
m

bu
sti

on

Benchmarks

C
ac

h
e

M
is

s
R

at
es

Para-Org-L1
Para-Red-L1
Para-Org-L2
Para-Red-L2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

pu
rd

ue
-0

2

pu
rd

ue
-0

3

pu
rd

ue
-0

4

pu
rd

ue
-0

7

pu
rd

ue
-0

8

pu
rd

ue
-1

2

pu
rd

ue
-1

3

cli
m

at
e

lap
lac

e-
jb

Benchmarks

C
ac

h
e

M
is

s
R

at
es

Para-Org-L1
Para-Red-L1
Para-Org-L2
Para-Red-L2

Figure 10. Cache miss rate

age mapping for loops [16]. When such a mapping is found,
arrays may be contracted along a single dimension without
imposing new constraints on permissible loop schedules.
Thie et al. study several problems concerning schedule and
storage optimization [17], including the problems of find-
ing the minimum storage under a given schedule, finding
an optimal schedule (if possible) given an amount of stor-
age, and finding the minimum storage that do not impose
any new constraints on loop schedules. Pike et al. give a
detailed study of the relationship between loop tiling and
array contraction, given a perfect loop nest that is executed
sequentially [11].

The computation duplication to avoid synchronization is
not new. Mellor-Crummey et al. have used a similar com-
putation duplication technique in dHPF compiler for effec-
tively parallelization of HPF codes [9]. They target a single
loop nest while we target a collection of loop nests. For
cross-iteration anti-dependences, we use data copy-in while
they use selective loop distribution to minimize synchro-
nization overhead.

The SFC technique is first used to improve the perfor-
mance of sequentially executed loops [15]. A closely re-
lated work is presented for the purpose of reducing the stor-
age requirement in embedded systems [3]. Both of these
techniques utilize network flow algorithms to compute the
optimal shifting to minimize the required memory space,
but the work in [3] targets a single-level loop only. The
SFC technique [15] handles a collection of multi-level loop
nests.

For loop fusion and array contraction, Kennedy and
McKinley prove that maximizing data locality by loop fu-
sion for registers is NP-hard [5]. Ding and Kennedy prove
that loop fusion for maximum cache reuse is Np-hard [2].
Singhai and McKinley present parameterized loop fusion to
improve parallelism and cache locality simultaneously [13].

Manjikian and Abdelrahman present a shift-and-peel tech-
nique to increase opportunities for loop fusion [8], which is
first presented as peel-and-jam by Porterfield [12]. Allen et
al. first combine loop distribution and loop fusion for paral-
lelization purpose [1]. Gao et al. combine loop fusion and
array scalarization to improve register utilization [4]. Lim
et al. combine loop blocking, loop fusion and array con-
traction to exploit parallelism [7]. The above two works do
not use loop shifting. Ng et al. combine loop fusion, array
contraction and array rotation in a production compiler [10],
which mostly focuses on single processor performance.

6 Conclusion

In this paper, we have presented a technique to apply
array contraction to a sequence of DOALL loops. Previ-
ous studies have examined the relationship between par-
allel loop schedules and storage optimization for a single
perfectly-nested loop. Our work presents a new method to
combine array contraction with loop parallelization when
given a sequence of DOALL loops. For loops that can-
not be fused in a straightforward way to allow array con-
traction, we present two techniques, i.e. data copy-in and
computation duplication, to remove fusion-preventing data
dependences. Experimental results show that our technique
obtain performance that is superior to the straightforward
method which parallelizes the original loop nests without
fusion and array contraction.

Acknowledgment

This work is sponsored in part by National Science
Foundation through grants ITR/ACR-0082834 and CCR-
0208760. The authors thank the reviewers for their careful
reviews and useful suggestions.

References

[1] Allen, Callahan, and Kennedy. Automatic decomposition of
scientific programs for parallel execution. In Proceedings of
the 14th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pages 63–76, January 1987.

[2] C. Ding and K. Kennedy. Improving effective bandwidth
through compiler enhancement of global cache reuse. Jour-
nal of Parallel and Distributed Computing, 64(1):108–134,
January 2004.

[3] A. Fraboulet, G. Huard, and A. Mignotte. Loop alignment
for memory accesses optimization. In Proceedings of the
Twelfth International Symposium on System Synthesis, Boca
Raton, Florida, November 1999.

[4] G. R. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collec-
tive loop fusion for array contraction. In Proceedings of the
Fifth Workshop on Languages and Compilers for Parallel

Computing. Also in No. 757 in Lecture Notes in Computer
Science, pages 281–295, Springer-Verlag, 1992.

[5] K. Kennedy and K. S. McKinley. Maximizing loop paral-
lelism and improving data locality via loop fusion and dis-
tribution. In Springer-Verlag Lecture Notes in Computer Sci-
ence, 768. Proceedings of the Sixth Workshop on Languages
and Compilers for Parallel Computing, Portland, Oregon,
August, 1993.

[6] D. J. Kuck. The Structure of Computers and Computations,
volume 1. John Wiley & Sons, 1978.

[7] A. W. Lim, S.-W. Liao, and M. S. Lam. Blocking and ar-
ray contraction across arbitrarily nested loops using affine
partitioning. In Proceedings of 2001 ACM Conference on
PPOPP, pages 103–112, Snowbird, Utah, June 2001.

[8] N. Manjikian and T. Abdelrahman. Fusion of loops for par-
allelism and locality. IEEE Transactions on Parallel and
Distributed Systems, 8(2):193–209, February 1997.

[9] J. Mellor-Crummey, V. Adve, B. Broom, D. Chavarria-
Miranda, R. Fowler, G. Jin, K. Kennedy, and Q. Yi. Ad-
vanced optimization strategies in the rice dhpf compiler.
Concurrency - Practice and Experience, 1:1–20, 2001.

[10] J. Ng, D. Kulkarni, W. Li, R. Cox, and S. Bobholz. Inter-
procedural loop fusion, array contraction and rotation. In
Proceedings of the 12th International Conference on Paral-
lel Architectures and Compilation Techniques, pages 114–
124, New Orleans, Louisiana, September 2003.

[11] G. Pike and P. N. Hilfinger. Better tiling and array contrac-
tion for compiling scientific programs. In Proceedings of the
IEEE/ACM SC 2002 Conference.

[12] A. Porterfield. Software Methods for Improving Cache Per-
formance. PhD thesis, Department of Computer Sciences,
Rice University, May 1989.

[13] S. K. Singhai and K. S. McKinley. A parameterized loop fu-
sion algorithm for improving parallelism and cache locality.
The Computer Journal, 40(6), 1997.

[14] Y. Song, R. Xu, C. Wang, and Z. Li. Improving data locality
by array contraction. IEEE Transactions on Computers. To
appear in vol 53 no. 8, August 2004.

[15] Y. Song, R. Xu, C. Wang, and Z. Li. Data locality enhance-
ment by memory reduction. In Proceedings of the 15th ACM
International Conference on Supercomputing, Naples, Italy,
June 2001.

[16] M. M. Strout, L. Carter, J. Ferrante, and B. Simon.
Schedule-independent storage mapping for loops. In Archi-
tectural Support for Programming Languages and Operat-
ing Systems, pages 24–33, 1998.

[17] W. Thies, F. Vivien, J. Sheldon, and S. P. Amarasinghe. A
unified framework for schedule and storage optimization. In
SIGPLAN Conference on Programming Language Design
and Implementation, pages 232–242, 2001.

[18] M. Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley Publishing Company, 1995.

[19] Y. Zhong, C. Ding, and K. Kennedy. Reuse distance analysis
for scientific programs. In Proceedings of the Sixth Work-
shop on Languages, Compilers, and Run-time Systems for
Scalar Computers, March 2002.

