

Dependence-based Multi-level Tracing and Replay for
Wireless Sensor Networks Debugging*

Man Wang1 Zhiyuan Li1
1Department of Computer Science,

Purdue University,
West Lafayette, IN, 47906

U.S.A
{wang80,zhiyuanli}@purdue.edu

Feng Li2 Xiaobing Feng2
2Key Laboratory of Computer

Architecture, Institute of Computing
Technology,

Chinese Academy of Sciences
Haidian District, Beijing, China

 {lifeng2005,fxb}@ict.ac.cn

Saurabh Bagchi3 Yung-Hsiang Lu3

3School of Electrical and Computer
Engineering,

Purdue University,
West Lafayette, IN, 47906

U.S.A
{sbagchi,yunglu}@purdue.edu

Abstract
Due to resource constraints and unreliable communication,
wireless sensor network (WSN) programming and debugging
remain to be a challenging task. Runtime errors must be
constantly monitored, often by checking for violations of certain
invariants. Once an error is detected, diagnosis must be performed
to identify the origin of the error. Deterministic replay is an error
diagnosis method which has long been proposed for distributed
systems. However, one of the significant hurdles for applying
deterministic replay on WSN is posed by the small program
memory on typical sensor nodes. This paper proposes a
dependence-based multi-level method for memory-efficient
tracing and replay. In the interest of portability across different
hardware platforms, the method is implemented as a source-level
tracing and replaying tool. To further reduce the code size after
tracing instrumentation, a cost model is used for making the
decision on which functions to in-line. A prototype for the tool
targets C programs is developed on top of the Open64 compiler
and is tested using several TinyOS applications running on
TelosB motes. Preliminary experimental results show that the test
programs, which do not fit the program memory after
straightforward instrumentation, can be successfully
accommodated in memory using the new method such that the
injected errors can be found.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids

General Terms Algorithms, Reliability.

Keywords Wireless sensor network; program debugging;
invariants; dependence analysis; resource constrains.

1. Introduction
Wireless sensor networks (WSN) are gaining increased attention
for possible use in applications such as structural health

monitoring, environmental surveillance, scientific observation,
and others [27,28]. A wireless sensor network typically consists of
a large number of unattended wireless sensor nodes. Despite the
increasing efforts [6,20] made to ease the development and
simulation of WSN applications, sensor network programming
and debugging is still a difficult task in view of resource
constraints and unreliable communications on wireless sensor
nodes. *

Deterministic replay (or record-replay) is an error diagnosis
method which has long been proposed for distributed systems.
Under this method, nondeterministic events are recorded
throughout the system operation. When an error is reported, the
program can be re-run, with the recorded events restaged to allow
the programmer to inspect the executed statements and the state
change they cause such that the source of the error, namely the
incorrectly written statements or unexpected events causing the
error, can be located. The replay method significantly reduces the
amount of information to record at run time.

In this paper, we make two main contributions to replay-based
diagnosis on WSN. Firstly, we present a dependence-based multi-
level tracing and replay scheme to significantly reduce the
required program memory for record and replay in WSN
applications. The severely limited program memory on WSN
motes (48 KB on the popular TelosB motes, for example) has
forced most existing schemes for run-time logging on WSN to
record only coarse information which is far from sufficient for
deterministic replay. This makes it difficult to pin-point the source
of the errors which are detected at run time. Our scheme, lends an
effective solution for the memory size problem. Secondly, based
on our multi-level scheme, we develop a source-level tracing and
replaying tool which is independent of the hardware platforms and
the cross compiler (except for a system library call to make
certain memory accesses atomic). The source-level tracing,
compared to assembly-level tracing, offers high portability of the

* The Purdue authors are sponsored in part by National Science

Foundation through grants CNS-0716271 and CNS-075110. The ICT
authors are sponsored by a Chinese National Basic Research Grant
(2011CB302504), a Chinese National Science and Technology Major
Project (2009ZX01036-001-002), and a grant from Foundation for
Innovative Research Groups of the National Natural Science Foundation
of China (Grant No. 90412010)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LCTES’11 April 11-14, 2011, Chicago, Illinois, USA.
Copyright ©2011 ACM 978-1-4503-0555-6/11/04…10.00.

tool. It also enables the user to take advantage of many existing
source-level debuggers, such as GNU’s gdb, when replaying on a
desktop machine.

The rest of the paper is organized as follows. Section 2 defines
the problem addressed by this paper and gives an overview of our
solution. Section 3 discusses how to reduce instrumentation based
on dependence information and proves its effectiveness under a
number of assumptions. Section 4 discusses multi-level tracing in
case such assumptions are not satisfied. Implementation and
experimental results are presented in Section 5. Section 6
summarizes related works on WSN debugging and deterministic
replay and we conclude in Section 7.
.

