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Abstract
Applications running on the StrongARM SA-1110 or XScale pro-
cessor cores can specify cache mapping for each virtual page to
achieve better cache utilization. In this work, we describe a method
to efficiently perform cache mapping. Under this scheme, we se-
lect a number of loops for sampling. These loops are selected au-
tomatically based on clock profiling information. We formulate the
optimal cache mapping problem as an Integer Linear Programming
(ILP) problem. Experiments performed on 14 test programs show
speedups in 13 of them (over the default mapping) after applying
our sample-based cache mapping scheme. The geometric mean of
program speedups for all the 14 test programs is 1.098. Further-
more, compared with a previous heuristic method which uses the
full memory trace, the sample-based method performs cache map-
ping faster by an order of magnitude without sacrificing the quality
of mapping.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Optimization

General Terms Performance

Keywords handheld devices, cache mapping, mini cache, cache
bypass, profiling, trace sampling

1. Introduction
As the gap between processor and memory speed continues to
widen, cache performance becomes increasingly critical to the
overall system performance. Researchers have observed that differ-
ent program regions may have different access patterns and reuse
types, and it is possible to fine-tune the cache management mech-
anism to exploit the reuse behaviors and achieve a better memory
performance [4, 2, 3]. The Intel StrongARM SA-1110 [8] and the
Intel XScale [9] processor cores have two data caches, namely the
main data cache and the smaller-sized mini cache, at the same level
in the cache hierarchy. We can map virtual pages to either one of the
two caches to get better overall cache reuse. The cache scheme in
these processors also supports cache bypass. Cache bypass reduces
the amount of data fetched from the main memory by not caching
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the data item which exhibits low locality. In addition, by keeping
non-reusable data items out of the cache, cache bypass also leaves
more cache space for the reusable data.

In similar cache schemes proposed previously [17, 10, 5], the
cache selection and the bypass decision are made by the hardware.
In contrast, on the StrongARM SA-1110 and the XScale proces-
sors, the program specifies explicitly for each virtual page whether
it should bypass the cache and, if not, which cache it should use.
We call the process of specifying the mapping between the virtual
pages and the caches cache mapping. In our previous work [22], we
evaluated the cache system in the StrongARM SA-1110 processor
core. We formulated cache mapping as an optimization problem
and proved it to be NP-hard. A heuristic based on a full-trace anal-
ysis was proposed to derive a cache mapping which is better than
the system’s default in which all the virtual pages are mapped to
the main cache. Unfortunately, the heuristic based on the whole
trace is too time consuming for practical use. In the experiments,
the heuristic takes 5 minutes to 7 hours for traces ranging from 29.8
MB to 503 MB.

To use cache mapping to improve program memory perfor-
mance, we must have a way to estimate the dynamic memory ac-
cess behavior of the program. Typical applications which run on
the StrongARM and the XScale processors perform multimedia
tasks, encryption, and compression, among others. The dynamic
constructs in these programs (pointers, indirectly accessed arrays,
and branches) make it difficult to predict the runtime memory be-
havior through static program analysis only. Therefore, we use pro-
filing to obtain important runtime information. We use a training
set of input to find a cache mapping, which is also applied to other
runs whose inputs may be different. In practice, one needs to ob-
tain profiling information using the training set in a timely manner
in order to try several training data sets and compute the results.
Therefore, we must find a cache mapping scheme which is much
faster than our previous heuristic method, but without sacrificing
the mapping quality.

In this paper, we propose a sample-based, new mapping scheme
to achieve the objective stated above. Under this scheme, a number
of important loops are automatically selected for sampling. The
optimal cache mapping for the simplified memory trace is obtained
by solving an Integer Linear Programming (ILP) problem. In our
experiments performed on 14 test programs, we find 13 programs to
show a performance improvement (over the default mapping) after
applying our sample-based cache mapping scheme. The geometric
means of program speedup is 1.098. Furthermore, the sample-based
method performs cache mapping faster by an order of magnitude
than a previous heuristic method using the whole memory trace,
without sacrificing the mapping quality.

The rest of the paper is organized as follows. We briefly review
the background of the work in Section 2. Our sampling framework
is presented in Section 3. Section 4 discusses a method to choose
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T = Tmiss ∗ (Nmiss main + Nmiss mini)

+ Thit ∗ (Nhit main + Nhit mini)

+ Tnoncacheable ∗ Nnoncacheable

where

Thit : access time for a cache hit,

Tmiss : average access time for a cache miss,

Tnoncacheable : access time for a noncacheable access,

Nmain : total number of accesses to the main cache,

Nmini : total number of accesses to the mini cache,

Nnoncacheable : total number of noncacheable accesses.

Table 1. The formula to compute the total memory access time

the sampled loops. In Section 5, we describe the formulation of
the optimal cache mapping problem as an ILP problem. Section 6
shows the experimental results and Section 7 discusses related
work. We conclude the paper in Section 8.

2. Cache Mapping
In this section, we first give an overview of the cache system in
the Intel StrongARM SA-1110 processor core. We then define
the cache mapping problem. We also discuss the concept of the
population list, which is an extension of the reuse distance [14]. We
use this concept to determine the cache mapping in our scheme.

2.1 Cache System in StrongARM SA-1110 Based Processors

The Intel StrongARM SA-1110 processor core[8] employs two
logically separate data caches, i.e. the main data cache and the mini
cache. The 8K-byte main data cache is 32-way set associative with
the round-robin replacement. The 512-byte mini cache is 2-way set
associative with the LRU replacement. The cache line size is 32
bytes on both caches. For each data cache access, both caches are
probed in parallel. However, a particular memory block can exist
in only one of the two caches at any time.

Both the main cache and the mini cache are indexed and tagged
by virtual addresses. In cache mapping, all memory blocks in the
same virtual page will be mapped to the same cache. The mapping
is controlled by the bufferable bit (B) and the cacheable bit (C) in
the page table entry in the MMU. If B=1 and C=1, which is the
default, the data in this page go to the main data cache. If B=0

and C=1, the data go to the mini cache. If C=0, then the page is
noncacheable and the memory accesses bypass both caches. This
mechanism provides the compiler or the application programs the
ability to control page-to-cache mapping by modifying the B and
C bits in the MMU. Note that we need to flush the caches and the
TLB entries for consistency after changing the mapping of virtual
pages.

2.2 The Problem

Formally stated, the cache mapping problem is as follows. Let the
main data cache size be S, the mini data cache size be Smini . We
want to assign each virtual page Pi to one of the three mutually
exclusive sets, Setmini, Setmain, and Setnoncacheable, such that
the total memory access time, denoted as T , computed as shown in
Table 1, is minimized.

2.3 Population Lists

We assume that the caches are fully associative and the replacement
policy is LRU. We can use the reuse distance [14] to predict cache

memory locations:  

pages: 

references:  

a1 a2 a3 a4 a2 a3 a1

P1 P2 P2 P3 P2 P2 P1

r1 r2 r3 r4 r6r5 r7

(P2,2), (P3,1)

Figure 1. An example of population lists

hits and misses. For each memory access, its reuse distance is the
number of distinct locations accessed between the current reference
and the most recent reference to the same memory address. If
the reference is the first access to that memory location, we let
the reuse distance be ∞. Unless stated otherwise, all the memory
locations mentioned in this paper are identified by the memory
block indices, instead of the addresses. This way, spatial locality
will appear as temporal locality, and we can focus our attention to
temporal locality only. Assuming a fully associative cache with the
LRU replacement policy, the cache hits can be computed based on
reuse distances. A memory reference with a reuse distance smaller
than the cache size (in the number of cache lines) will be a cache
hit. In contrast, a reference with a reuse distance greater than or
equal to the cache size will be a cache miss. So the total number
of hits are equal to the number of references whose reuse distances
are less than the cache size.

In the presence of multiple heterogeneous caches at the same
level, the exact value of a reuse distance depends on how the
pages are mapped to different caches. Given any reference, differ-
ent cache mapping can produce a different reuse distance, because
the reuse distance of a reference is determined by accesses to the
same cache. We extend the concept of reuse distances to the con-
cept of population lists.

Definition. (Population lists [22]): Suppose we are given a set of
pages (P) and a sequence of memory references R = r1, r2, . . . , rn.
For a reference ri ∈ R accessing memory location a, suppose
rj ∈ R is the reference to the same memory location a such that
(1) j < i, which means rj occurs before ri, and (2) there is no
other intermediate access to a. We define the population list of ri

as a list of pairs (k, ck), where k represents page Pk ∈ P refer-
enced between ri and rj , and ck > 0 is the number of distinct
memory locations in page Pk which are referenced meanwhile.

Figure 1 shows an example of population lists. We can see that be-
tween references r7 and r1, there is no intermediate access to mem-
ory location a1. Two distinct memory locations in page P2 (a2 and
a3), and one memory location in P3 (a4) are accessed meanwhile.
So the population lists for reference r7 is (P2, 2), (P3, 1).

To compute the reuse distance of r, under any given page map-
ping, we just need to add up ck (the number of distinct memory
blocks) for each page k which is mapped to the same cache as the
page containing r. In the example shown in Figure 1, if page P2 is
mapped to the mini cache and page P1 and P3 are mapped to the
main cache, the reuse distance of r7 will only count the portion of
P3 in the population list. Hence we have a reuse distance of 1 for
r7.

Given a memory trace, population lists can be computed using
the same algorithm for computing reuse distances [14], whose
complexity is O(nm), where n is the total number of the memory
references and m is the number of pages. Note that our method
assumes that caches are fully associative with the LRU replacement
policy, which is different from the caches in the StrongARM SA-
1110 processor. As we showed in our previous work [13], this
difference in the cache associativity and the replacement policy
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does not have a big impact on the effectiveness of our reuse distance
based method.

3. A Sample-Based Framework
In this paper, a sample means a single memory access. During the
sampling process, we take a consecutive sequence of samples for a
period of time. We call such a sequence a sub-trace, to distinguish
it from the whole memory trace.

Sampling is widely used in performance analysis and program
optimization. Different problems may need different methods of
sampling. The most common sampling method is event-based sam-
pling, also called time-based sampling [12], which takes samples
periodically. Unfortunately, time-based sampling creates gaps be-
tween memory references which make it unsuitable for making
cache-mapping decisions.

A known extension to time-based sampling is to increase the
number of samples taken when a sampling event occurs. Instead
of taking a single sample, for every n memory accesses, we take
m � 1 consecutive samples. However, making m and n constant
has a severe difficulty. The sampling rate is determined by the pair
(m, n). Different programs may need totally different values of (m,
n) to obtain a representative sub-trace. Obviously, a greater value
of m will offer a high accuracy. However, to limit the number of
samples to a manageable size, n must be made large for a large m.
Unfortunately, a large n may result in a precision loss because it
creates large gaps between some samples.

Therefore, in this work, we vary the values of m and n in
different parts of the memory trace. We take a large number of
samples (by increasing the loop sampling length defined below)
for the loops considered important, as explained below. We make
the cache mapping decision based on these samples.

We call a loop selected for sampling a sampled-loop. For a
sampled loop, we define its loop sampling length (LSL) as the
number of iterations to be sampled. The LSL for each sampled
loop must be large enough so that the generated sub-trace from a
sampled loop must have the following two properties. (1) In these
chosen iterations, there must exist data reuses. (2) These reuses
cannot be realized by the default cache mapping where all the pages
are mapped to the main cache. A different cache mapping which
employs the mini cache and cache bypass may have a better locality
for these reuses. We can vary the LSL according to a cost model.
Instead of blindly guessing the LSL for each sampled loop, we use
profiling information to select the sampled loops and their LSLs
as will be discussed in Section 4. The cache mapping, however, is
global, which affects all the loops in the program. We use an ILP
solver to find the optimal mapping given the information from the
samples, i.e. to find a cache mapping that has the minimum average
memory access time for the whole program.

In the remains of this section, we describe our sampling frame-
work. How to choose the sampling loop and its LSL will be dis-
cussed in Section 4.

3.1 The Sampled Data Objects

References to scalars and small objects usually do not access a
large number of memory locations, and their cache hit ratio is
usually very high. In contrast, accesses to large arrays tend to
spread over a large number of memory locations, and they are the
main source of cache misses. Therefore, we sample large arrays
only. In real C programs, many array references may take the
form of pointer dereferences. We perform a point-to analysis in
the compiler (GCC) to find the point-to set. If a pointer points to
a large array, then we sample memory accesses which are caused
by the pointer dereferences. In the sampling run, we discard those
accesses that fall out the address space of the target array. The cache
mapping in the StrongARM SA-1110, however, is in the unit of a

virtual page. To avoid the unnecessary conflict between sampled
objects and un-sampled objects, we transform the array declaration
such that the arrays are page aligned.

3.2 The Main Steps

Figure 2 shows the overview of the sampling framework. The goal
of the process is to find a cache mapping which reduces program’s
average memory access time.

Generate poupluation lists

Generate the new cache mapping

ILP formulation

Sample memory references

Clock profile

Figure 2. Framework

In the first step, we apply clock profiling to the target program
to find the sampled-loops and their LSLs. Detail of this step is
describe in the next section.

After that, we instrument the sampled-loops to generate the sub-
traces. Let n be the LSL of the sampled loop, the sub-trace consists
of the memory accesses to the target objects in n consecutive
iterations of this loop.

In the third step, we generate the population list for each sub-
trace. In the next step, an ILP problem is formulated based on
the population lists whose details are described in Section 5. After
solving the ILP problem, we obtain a cache mapping which decides
for each virtual page whether it should bypass the caches and
if not, which cache it is assigned to. We map the virtual pages
back to the data object and insert system calls in the original
program to map different parts of the data object to different caches
according to the cache mapping. Note that we do not assume
that arrays are all statically allocated. The sub-trace includes all
memory references. During the trace analysis, memory addresses
are used to identify data objects in the program. Page mapping
decisions are remembered for the individual pages within each data
object using their relative positions. At run time, page mapping is
done by system calls using the virtual page numbers available after
dynamic memory allocation.

4. Profile-Guided Trace Sampling
In order to reduce the sample size, we first identify those important
loops in a given program. We regard a loop to be important if it
contains data reuses that are not realized by the default mapping.
Recall that the default decision is to map all data to the main cache
only. For each loop, we estimate the number of memory blocks
it accesses. If the number of memory blocks is greater than the
number of cache lines, the data set of this loop does not fit in the
cache. If there exist data reuses in this loop, then we may realize
at least a subset of these by utilizing the mini cache or making
some references bypass the caches. We sample all such important
loops. If the virtual pages referenced in the important loops are also
referenced in other loops, we include all those loops for sampling.
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4.1 Sampled Loops and Their LSL

To choose the loops for sampling and to determine the number of
iterations to be sampled (LSL), we apply the concept of footprints
and dependence distance vectors [21] to estimate the degree of
reuses in each loop. The footprint of a loop is the number of mem-
ory blocks which are accessed during the execution of the loop.
The dependence distance vector of a loop describes the difference
vector between the iterations containing the source and the sink of
dependence. Note that the dependence here includes input depen-
dences [21].

Given a loop nest, we compute the dependence distance vectors
for all the arrays and the coalesced dependence distance [19] for
each dependence distance. The coalesced dependence distance is
defined as follows: For a loop nest, suppose bk is the invariant trip
count of loop at level k. Let the coalescing vector of the given loop
nest be ~s = (s1, s2, ...sn) such that sn = 1, sk = sk+1bk+1,
1 ≤ k ≤ n − 1. We define the coalesced dependence distance of
dependence vector ~d as the inner product ~d~sT .

Let ~d = {d1 . . . dn} be the dependence distance with the
longest coalesced distance, and di be the first non-zero entry in ~d.
We compute F , which is the footprint of di iterations, as discussed
in Section 4.4, and we use the following criteria to choose the
sampled-loops and their LSLs.

• If F is greater than the cache size, we make LSL = R ∗ di,
where constant R is chosen as described below.

• If F is less than the cache size, we first determine K, the least
number of iterations which have a footprint of size F , and make
the LSL = R ∗ K.

We extrapolate the reuse pattern in the sample iterations to the
entire set of iterations. The number of reuses for the whole trace
(rt) is estimated from the number of iterations of the loop (n),
the number of iterations in the sub-trace (s), and the number of
reuses in the sub-trace (rs) by the formula rt = n

s
∗ rs. We want to

choose R such that the estimated number of reuses is close to rt. To
better illustrate the idea, we use Figure 3 to explain how we decide
R. Note that although the following calculation is for a two-level
nested loop, the idea can be applied to any loop nest. Figure 3 shows
the iteration space of a two-level nested loop and a dependence
distance of ~d = (d1, d2). The number of reuses for the whole
iteration space due to ~d is rt = n∗m−d1∗m−d2∗n. The number
of reuses for the sub-trace is rs = R∗d1∗m−d1∗m−d2∗R∗d1.
So the estimated number of reuses for the whole loop is

(R∗d1∗m−d1∗m−d2∗R∗d1)∗n/(R∗d1) = n∗m−m∗
n

R
−d2∗n.

Since we usually have n � d1, a large R will make our calculation
close to the real number of reuses. On the other hand, a larger R will
increase the size of sub-trace. In our experiment, we set R = 16 to
balance the precision and the cost.

Take matrix-multiply in Figure 4 as an example. The depen-
dence distance with the longest coalesced distance in this loop
nest is ~d = (1, 0, 0). The footprint of one iteration of I-loop is
N ∗N/8+N/8+N/8, assuming the cache line size is 4 integers.
If the main cache size is less than N ∗N/8 + N/4, the LSL of this
loop nest is 16 for the i-loop.

Due to many reasons, such as random array accesses or indirect
array accesses, one may be unable to compute the data dependence
distance vector at compile time. In such cases, we assume that every
reference accesses a different element of the accessed arrays and
hence the longest coalesced distance equals the total sizes of the
accessed arrays. Although this estimation is coarse, it errs on the
safe side by overestimating the LSL.

......

...

...

...

... ............

3 5

J

I

...

...

...

...

m−1 m

d=(d1,d2)

0

1

n−1

n

2

0 1 2 4

Figure 3. The number of reuse due to the dependence.

int a[N][N], b[N][N], c[N][N];

...
for (i=0;i<N;i++)

for (j=0;j<N;j++) {
c[i,j] = 0 ;
for (k=0;k<N;i++)

c[i][j] += a[i][k] * b[k][j];
}

Figure 4. A loop nest for matrix multiplication

s s
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�����������

n
n % s

...

...

UnsampledSampled

...

ss

Figure 5. Project the mapping to un-sampled pages.

4.2 Extrapolating the Mapping

The sub-trace may not cover all the virtual pages accessed in the
whole loop. As shown in Figure 5, the number of virtual pages
accessed in the sampled loops (called the sampled virtual pages)
and the total number of pages are s and n, respectively. Our ILP
formulation in the later stage will only capture the reuses within the
sub-trace. The reuse pattern, in most cases, will be repeated in the
un-sampled region. As a result, we extrapolate the page mapping to
the un-sampled pages for each data object. We divide the pages in
each data object into chunks of size s each of which has the same
cache mapping as the sampled virtual pages. Let map(Pi) be the
mapping decision for page Pi, where i is the page index. Suppose
the starting page of the data object is Pt, and the sub-trace includes
the memory access from page Pj to page Pj+s, where s > 0. We
have

mapping(Pi) =


mapping(P(i−j)%(s+1)+j) for i = j + s + 1 . . . t + n
mapping(P(j−i)%(s+1)+j) for i = t . . . j − 1

To facilitate the computation of LSLs, we first build a reference
graph to show the loop nesting relation in the program.

4.3 The Reference Graph

We aim to sample the references inside loops which consist of
the majority of the array references. We use a reference graph,
G = (V, E), to represent reference relations in the program. Each
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node vi ∈ V may represent either a loop, a function, or a memory
reference to the target arrays. We define quantity n(vi) for each
node in the graph:

• If vi is a loop node, then n(vi) is the loop trip count;
• If vi is a function node, then n(vi) is the number of times this

function is called;
• If vi is an array reference node, then n(vi) is the number of

instances of this reference (i.e. number of memory accesses).

If vj is in the body of vi, we draw an edge ei,j ∈ E from vi to vj .
We use a quantity n(ei,j) to represent the number of instances of
vj that is executed for one instance of vi on average. The reference
graph may expand cross functions. Since each function corresponds
to one node, the graph is context insensitive. Note that a function
may be invoked from different call sites and the code represented
by a node may be invoked in different loop iterations. The corre-
sponding node in the reference graph may therefore have a vary-
ing number of instances. In this case, we take the average number.
We obtain the values of n(vi) and n(ei,j) from profiling. Figure 6
shows part of the reference graph for program PEGWIT/encrypt. In
this program, we choose to sample array logt and expt. The number
in each vertex vi within a pair of parenthesis is n(vi). The number
marked on each edge is n(ei,j).

Note that if there exist no recursive functions in the program,
the reference graph is a DAG. For those program with recursive
functions, we can eliminate the recursive back edges in the graph
by introducing a pseudo loop node. Suppose node v1, v2, ... , vt

are in the recursive functions, and et,1 is the back edge. We add a
pseudo node vp to the reference graph with n(vp) = n(vt)n(et,1).
We then eliminate any edge which exists between node v1, v2, ...
, vt. Finally, for each node vi where 1 ≤ i ≤ t, we add an edge
ep,i with n(ep,i) = n(vi)/n(vp) to the graph. Figure 7 shows an
example of this transformation. In the rest of this paper, we assume
that the reference graph is a DAG.

4.4 Estimating the Footprint

It is often difficult for the compiler to determine the exact footprint.
We estimate the footprint by following the formulas in Table 2. In
this table, we compute the footprint for each node through a back-
ward traversal of the reference graph. We use the number of ac-
cesses together with the amount of dependence to approximate the
size of the accessed array region. Since the number of distinct array
elements accessed cannot exceed the number of element of the ar-
ray, we limit the footprint by sizes of arrays. accessArray(vi, A)
denotes the number of memory accesses to array A in a single in-
stance of vi; accessIter(vi, k) denotes the number of memory ac-
cesses to all arrays in k iterations of vi; footprintArray(vi, A)
denotes the footprint in one iteration of vi attributed to array A;
footprintArrayIter(vi, A, k) denotes the footprint in k itera-
tion of vi with respect to array A; footprintIter(vi, k) denotes
the footprint in k iteration of vi; and arraySize(A) is the size of
array A.

5. The ILP Formulation
Although the cache mapping problem is NP-hard [22], after we
use sampling to reduce the number of population list, we can
afford to use an ILP solver to obtain the optimal solution based
on the samples. In this section, we show that, given a set of sub-
traces, each with a different sample rate, how to formulate the ILP
problem.

5.1 Generating the Population List

The first step of the formulation is to generate the population
lists for each sub-trace. The sampling substantially reduces the

gfInvert(...) {

...
for (;;) {

...
gfSmallDiv(...); ...

}
... = logt[] - logt[];
... = expt[];

gfAddMul(...);
gfAddMul(...);

for (;;) {
...

gfSmallDiv(...); ...
}
... = logt[] - logt[];

... = expt[];
gfAddMul(...);

gfAddMul(...);
}
gfAddMul(...) {

= logt[]; ...
for( ... )

if ( ... = logt[] )
... = expt[];

...
}

gfAddMul(...) {
= logt[]; ...

for( ... )
if ( ... = logt[] )

... = expt[];
...

}

loop4

gfInvert()

loop1 loop2
expt

logtgfAddMul()gfSmallDiv()

logt

logt

loop3
logt

exptlogtexpt

(10809)

(636)

(10176)
(10176)

(20352)(40698)(637)

(637) (11465)
(40698)

(10802)(10802) (366282) (366274)

(406980)

0
1

2

1 18

0.94 0.94 0.9 0.9

10
1

2
0.94

17 16

0.06 1.9
(10173)

expt

logt
(20346)

0.94

Figure 6. An example of reference graph

v1: f1()

v2: f2()v2: f2()

v3: f3() n(v) = 160

n(e) = 0.8

n(v) = 200

n(v) = 100

n(e) = 2

n(e) = 0.5

n(e) = 1

n(v) = 20

v2: f2() v3: f3()v1: f1()

n(v) = 100 n(v) = 200 n(v) = 160

v0: loop

n(v) = 80

n(e)=1.25
n(e)=2.5

n(e)=2

n(v) = 20

n(e) = 4

Transformed graphOrginal graph

Figure 7. Transform recursive function nodes to a loop node
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accessArray(vi, A) =

8

>

<

>

:

1 vi is a reference to A ∧ vi is a leaf node
0 vi is a reference to other arrays ∧ vi is a leaf node
P

∀ei,j

accessArray(vj , A) vi is not a leaf node

accessIter(vi, k) =
P

∀A

k ∗ accessArray(vj , A)

footprintArray(vi, A) = MIN(arraySize(A), accessArray(vi, A))
footprintArrayIter(vi, A, k) = MIN(arraySize(A), (k − n) ∗ accessArray(vi, A)) n is the amount of dependences with footprints ≤ k
footprintIter(vi, k) =

P

∀A

footprintArrayIter(vj , A, k)

Table 2. Equations to calculate foot-print in the reference graph

number of the memory accesses. The sampled trace, however, may
produce many identical population lists. As we will show later in
this section, each population list introduces a number of constraints
and variables to the ILP system. We group the identical population
lists to remove the redundant constraints. Our experiments show
that this simple strategy is very effective. We reduce the number
of population lists by 60% to 98% for our test programs. The time
to perform the grouping is in the order of O(n2), where n is the
size of the entire population lists. In practice, since there are many
identical population lists, the execution time of grouping is much
less than the theoretical upper bound.

5.2 Formulation

The input of the formulation is a set of sub-traces. After generat-
ing the population lists, each sub-trace st contains the following
information:

• The trip count of the sampled loop: tripCount(st).
• The number of iterations we sampled: nIter(st).
• The population lists. For each population list a, we use nDup(a)

to denote the number of population lists which are identical to
a.

For a sub-trace st, the total memory access time T (st) in Table 1
can be rewritten as

T (st) = Tmiss ∗ (Nmiss main + Nmiss mini + Nhit main

+ Nhit mini + Nnoncacheable)

− Tmiss ∗ (Nhit main + Nhit mini)

− Tmiss ∗ Nnoncacheable

+ Thit ∗ (Nhit main + Nhit mini)

+ Tnoncacheable ∗ Nnoncacheable.

Let the total number of memory accesses be L(st). We have

T (st) =

L(st) ∗ Tmiss − (Tmiss − Thit) ∗ (Nhit main + Nhit mini)

− (Tmiss − Tnoncacheable) ∗ Nnoncacheable.

T (st) only takes account of the memory accesses in sub-trace st.
We estimate the memory access time for the loop from which the
sub-trace st is taken to be T (st) ∗ tripCount(st)/nIter(st). Thus
the total memory access time for the program is estimated as

T =
X

T (st) ∗ tripCount(st)/nIter(st).

We have two types of constraints. Each page has a page-
mapping constraint which guarantees that the page will have a
unique mapping decision. Each population list has a number of
population-list constraints which ensure that only those memory
accesses with a reuse distance (under the new cache mapping) less
than the cache capacity can be cache hits. The objective function of
the ILP program is to minimize T defined above. In the following
discussion, we show the details of the ILP formulation.

5.2.1 Page-mapping constraints

For each page Pi, we define three 0-1 variables p1i, p2i and p3i,
and we impose the following constraint:

p1i + p2i + p3i = 1 (1)

This constraint guarantees that page Pi is in exactly one of the three
sets. If p1i = 1, page Pi is assigned to the main data cache. If
p2i = 1, page Pi is assigned to the mini cache. If p3i = 1, page
Pi is marked as noncacheable.

5.2.2 Population-list constraints

For each population list ai,j = (k1, ck1
) ... (kτ , ckτ ), we define

two variables a1i,j and a2i,j , to represent the reuse distances in
the main cache and the mini cache, respectively.

a1i,j =
X

k=k1...kτ

ck ∗ p1k (2)

a2i,j =
X

k=k1...kτ

ck ∗ p2k (3)

We introduce two 0-1 variables h1i,j h2i,j and the following con-
straints.

h1i,j ∗ a1i,j ≤ S − 1 (4)

h2i,j ∗ a2i,j ≤ Smini − 1 (5)

h1i,j ≤ p1i (6)

h2i,j ≤ p2i (7)

Constraint (4 – 7) imply the following property. For the optimal
solution of the ILP problem, we have h1i,j = 1 iff the reference
represented by ai,j is a hit in the main cache for the optimal cache
mapping where the total memory access is minimized. Further-
more, we have h2i,j = 1 iff the reference represented by ai,j is
a hit in the mini cache for the optimal cache mapping. If both h1i,j

and h2i,j are 0 in the optimal solution of the ILP problem, the ref-
erence represented by ai,j is not a cache hit in the optimal cache
mapping. It might be a cache miss or a cache bypass access, de-
pending on whether page Pi is marked as noncacheable. Note that
we cannot have both h1i,j and h2i,j as 1 since the page mapping
constraint guarantees that at most one of p1i and p2i can be 1.

5.2.3 Linearizing population-list constraints

Constraints (4) and (5) are not linear. We apply the following
transformations to linearize them. First, note that the reuse distance
cannot be infinitely large except for the first reference to each
memory block. We ignore the relatively small number of references
which have an infinite reuse distance. For the remaining references,
suppose the largest reuse distance value is V and the main cache
size is S, let Kmain ≡ dV/Se. We transform Constraint (4) to

a1i,j ≤ (S − 1) ∗ (Kmain − y1i,j) (8)

y1i,j ≥ (Kmain − 1) ∗ h1i,j (9)

where y1i,j is an integer variable.
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We claim that Constraints (8) and (9) are equivalent to Con-
straint (4) for the following reason:

• Constraint (4) is equivalent to the following.

If a1i,j ≤ S, h1i,j ∈ {0, 1}.
If a1i,j > S, h1i,j = 0.

• Constraint (8) and Constraint (9) have the following implica-
tion.

If a1i,j ≤ S, to make Constraint (8) valid, we have y1i,j ∈
{0, 1, ..., Kmain −1}. If y1i,j ∈ {0, 1, ..., Kmain−2}, we
have h1i,j = 0; if y1i,j = Kmain − 1, we have h1i,j = 1
(Constraint (9)). So the solution space for h1i,j is {0, 1}.
If a1i,j > S, to make Constraint (8) valid, we have y1i,j ∈
{0, 1, ..., Kmain − t} where t ≥ 2. With Constraint (9),
h1i,j is 0.

Note that y1i,j will not appear in the objective function. If there is a
solution satisfying Constraint (4), we can find a solution satisfying
Constraint (8) and (9) with the same value of the objective function,
and vise versa. Therefore, Constraint (8) and Constraint (9) are
equivalent to Constraint (4).

Similarly, we transform Constraint (5) to

a2i,j ≤ (Smini − 1) ∗ (Kmini − y2i,j) (10)

y2i,j ≥ (Kmini − 1) ∗ h2i,j (11)

where Kmini ≡ dV/Sminie and y2i,j is another integer variable.
Note that Smini is the size of the mini cache.

5.2.4 The objective function

We first show how to compute the T (st) within a sub-trace st.
Since we have nDup(ai,j) population lists in the form of ai,j , the
number of hits in both the main cache and the mini cache equals
P

i

P

j

nDup(ai,j) ∗ (h1i,j + h2i,j). The number of noncacheable

references equals
P

i

P

j

nDup(ai,j) ∗ p3i. Hence, we have

T (st) =

L(st) ∗ Tmiss

− (Tmiss − Thit) ∗ (
X

i

X

j

nDup(ai,j) ∗ (h1i,j + h2i,j ))

− (Tmiss − Tnoncacheable) ∗ (
X

i

X

j

nDup(ai,j) ∗ p3i)

With T (st), we can derive the objective function as discussed
earlier in this section. The formulated ILP problem is to minimize
P

T (st) ∗ tripCount(st)/nIter(st) subject to constraints (1) (6)
(7) (8) (9) (10) and (11).

Suppose there are m virtual pages and n population lists. The
ILP problem has 3m + 4n variables and m + 6n constraints. The
objective function has 3n terms.

5.3 Classifying the Population Lists

There exist references which are always cache hits, no mat-
ter how the other pages are mapped, as long as their accessed
pages are not marked as noncacheable. We call such references
the short-references. For a reference r with a population list of
(k1, ck1

) ... (kτ , ckτ ), if
P

k=k1...kτ

ck < Smini , where Smini is

the size of the mini cache, r is definitely a short-reference. In the
ILP formulation for a short-reference ai,j that accesses to page Pi,
it is obvious that if p1i + p2i = 1, we have h1i,j + h2i,j = 1.
We can eliminate variables h1i,j h2i,j , as well as the associated
constraints. As a result, for a short-reference, we do not need

Benchmark Program Input parameters
Mediabench adpcm/rawcaudio <clinton.pcm >out.adpcm

adpcm/rawdaudio <clinton.adpcm >out.pcm
pegwit/encrypt -e my.pub pgptest.plain pegwit.enc

<encryption junk
pegwit/decrypt -d pegwit.enc pegwit.dec < my.sec

— matrix multiply (problem size of 397)
— compress input.log
— decompress -d input.log
SPEC2000 crafty crafty.in (test input)

gzip input.compressed 2
mcf inp.in (test input)

OLDEN treeadd 12
power —
mst 128
bisort 15000

Table 3. Test programs and input parameters

to record its population list. Instead, we record the number of
short-references in each page. Suppose page Pi has N1(i) short-
references. The objective function for this portion of references for
all pages can be written as:

(Tmiss − Thit) ∗
X

i

(N1(i) ∗ (p1i + p2i)) + (Tmiss

− Tnoncacheable) ∗
X

i

(N1(i) ∗ p3i)

Our experiment shows that 70% to 92% of references in the test
programs are short-references. This method significantly reduces
the size of population lists as well as the size of the ILP problem.

6. Experimental Results
Our experiments are performed on a Compaq iPAQ 3650 PDA
which has a 206MHZ Intel StrongARM SA-1110 processor and
32M RAM. The cache mapping is implemented through system
calls to the Linux kernel. We use ILOG/CPLEX [7], a general pur-
pose ILP solver, to solve the formulated ILP problem. Throughout
the experiment, we use GCC with the -O3 switch to compile the
program, and we do not apply any cache conscious data placement
optimization to the test program. Table 3 lists the test programs and
their input parameters.

Table 4 compares the time to find the result cache mapping be-
tween the heuristic method and the sampling method. The total time
column in this table includes the time to calculate the population
lists time1 and the time to solve the cache mapping problem time2.
We see that the sampling scheme shortens the time to find the cache
mapping significantly. For most the programs, the sampling method
reduces the time by an order of magnitude. For matrix-multiply, we
reduce the time from almost 8 hours to 19 minutes. The variables
# and constraints # columns list the number of variables and con-
straints in the ILP system for each test program, respectively.

We compare the program performance obtained by the whole-
trace heuristic method and the sampling method. Figure 8 shows
the normalized execution time. The right bars show the perfor-
mance improvements by the sampling method which ranges from
1% to 20% with the exception of program bisort whose per-
formance degrades by about 2%. The geometric mean of pro-
gram speedups for all the 14 test programs is 1.098. The perfor-
mance enhancement is quite close to that obtained by the full-
length memory-trace analysis which is shown by the left bar.

6.1 Results of Using Non-training Inputs

The performance data of the new cache mapping shown above were
obtained by applying the test programs on the same input files as
those used for profiling and trace sampling. We also apply the ob-
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program old heuristic sample-based
time1 time2 total time time1 time2 total time variables # constraints #

rawcaudio 3m26s 21m6s 24m32s 0.9s 31.1s 32s 4078 5998
rawdaudio 4m54s 32m50s 37m44s 1.2s 36.4s 38s 4114 6052
encrypt 1m42s 9m35s 11m17s 2.1s 1m32.8s 1m35s 5564 8234
decrypt 1m3s 5m10s 6m13s 2.3s 1m49.9s 1m52s 5620 8318
mm 36m58s 7h5m19s 7h42m 14.5s 18m22.7s 18m37s 7856 11196
compress 55s 4m8s 5m3s 2.3s 1m29.7s 1m32s 5452 7996
decompress 1m4s 5m8s 6m12s 3.7s 3m13.5s 3m17s 5944 8734
crafty 18m46s 4h9m11s 4h28m 11.4s 27m0.5s 27m12s 9515 14157
mcf 16m55s 2h51m27s 3h8m 9.2s 18m22.0s 18m31s 8796 12998
gzip 14m1s 1h58m3s 2h12m 13.4s 22m8.8s 22m22s 9157 13599
treeadd 17m32s 2h34m27s 2h52m 5.5s 4m52.3s 4m58s 6028 9000
mst 5m14s 34m58s 40m12s 2.1s 2m0.8s 2m03s 5745 8523
power 10m12s 1h32m48s 1h42m 8.7s 10m20.1s 10m29s 6913 10205
bisort 6m55s 1h5h1s 1h12m 4.3s 6m13.5s 6m18s 6447 19499

Table 4. Comparison of time spent for finding the cache mapping
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Figure 8. Execution time comparison between cache mapping by
the whole-trace method (the left bar) and by the sampling method
(the right bar).

Program Input parameters
adpcm/rawcaudio <small.pcm >out.adpcm
adpcm/rawdaudio <small.adpcm >out.pcm
pegwit/encrypt -e my.pub newfile.plain pegwit.enc

<encryption junk
pegwit/decrypt -d newfile.enc pegwit.dec < my.sec
matrix multiply (problem size of 697)
ncompress/compress input.combined
ncompress/decompress -d input.combined
crafty crafty.in (train input)
gzip input.combined 10
mcf inp.in (train input)
treeadd 20
mst 512
bisort 75000

Table 5. Test programs with different input parameters.

tained mapping to the programs with different input parameters.
Figure 9 shows those results and Table 3 lists the used input pa-
rameters. Program power is omitted from the table because it does
not have input parameters. We see that for all the test programs (ex-
cept gzip), the cache mapping obtained from the training input still
works when the inputs are different.
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Figure 9. Normalized execution time for different input files using
the cache mapping obtained from the sampling framework. The left
bar shows the performance using the same inputs while the right bar
shows the performance using different inputs.

7. Related Work
There exist extensive research work on cache bypass and the hori-
zontally partitioned caches [20, 11, 5, 16, 17, 15]. Most of the work,
however, uses hardware to control the cache mapping decision. The
cache mapping in our study is a software method and thus is differ-
ent from all the work cited above.

In our previous work [22], we proposed a heuristic which is
applied to the whole memory trace to improve cache mapping. The
heuristic method is sufficient for the evaluation purpose, but it is
not very useful in practice. In this work, using a sampling-based
method to obtain the smaller-sized but representative samples, we
transform the cache mapping problem to an ILP problem and solve
it optimally. This method is faster, by an order of magnitude, than
the whole-memory trace method.

Sampling is widely used in program performance analysis [12],
feedback-control optimization [1], and dynamic optimizations [18,
6]. Arnold and Ryder [1] propose a framework for fast sampling.
Their framework allows functions or loops to switch between the
sampling state and the non-sampling state. Hirzel and Chilimibi [6]
extend Arnold and Ryder’s framework by making it possible to take
longer consecutive samples. Since the sampling methods described
in these two frameworks are primarily used in online optimization,
the focus of their work is to reduce the cost of instrumented code.
The user still needs to specify what to sample, where to sample, as
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well as the sample rate. In contrast, we focus more on the quality
of the sampling. In addition, our framework automatically selects
sampled objects, sampled loops, and the sample rates.

Rubin et.al. [18] use memory sampling in data-layout optimiza-
tion. Their optimization mainly tries to rearrange the layout of data
objects in order to reduce the cache conflict misses. The cache map-
ping optimization does not change the layout of objects and it is
aimed at reducing capacity misses by smart page mapping.

8. Summary
In this work, we present an efficient scheme for cache mapping. We
propose a framework under which we select a number of loops for
sampling. These loops are selected automatically based on clock
profiling information. We formulate the optimal cache mapping
problem as an Integer Linear Programming (ILP) problem using
the sampled trace. Our experimental results show that using this
sampling framework is much faster to find the better cache map-
ping than the whole-trace analysis method. With this fast sampling
framework, we also re-evaluate the cache mapping scheme by us-
ing different set of inputs for our test programs.
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