
ASYNC Loop Constructs for Relaxed
Synchronization
(LCPC2008 preprint)

Russell Meyers and Zhiyuan Li

Department of Computer Science
Purdue University, West Lafayette IN 47906, USA,

{rmeyers,li}@cs.purdue.edu

Abstract. Conventional iterative solvers for partial differential equa-
tions impose strict data dependencies between each solution point and
its neighbors. When implemented in OpenMP, they repeatedly execute
barrier synchronization in each iterative step to ensure that data de-
pendencies are strictly satisfied. We propose new parallel annotations
to support an asynchronous computation model for iterative solvers. At
the outermost level, the ASYNC REDUCTION keyword is used to an-
notate the iterative loop as a candidate for asynchronous execution. The
ASYNC REGION may contain inner loops annotated by ASYNC DO or
ASYNC REDUCTION. If the compiler accepts the ASYNC REGION
designation, it converts the iterative loop into a parallel section executed
by multiple threads which divide the iterations of each ASYNC DO or
ASYNC REDUCTION loop and execute them without having to syn-
chronize through a conventional barrier. Comparing to directly imple-
menting asynchronous algorithm using P-threads or existing OpenMP
loop constructs, the iterative solver written with the new constructs gives
the compiler the flexility to decide whether to implement the annotated
candidates in the asynchronous manner. We present experimental results
to show the benefit of using ASYNC loop constructs in 2D and 3D multi-
grid methods as well as an SOR-preconditioned conjugate gradient linear
system solver.

1 Introduction

Many important applications use iterative solvers to solve partial differential
equations (PDE’s). It has been found for quite some time that there exist a
class of iterative solvers which are allowed to follow a loose data dependence
relationship between each data point and its neighbors [7, 3, 4]. Under such an
asynchronous computation model, the update of a data point does not need
to strictly depend on the most updated values of its neighbors. Instead, Some
older values of its neighbors can be used before the newest values become avail-
able. It may take more iterations for an asynchronous algorithm to converge or
to achieve the same numerical accuracy as its synchronous counterpart. How-
ever, when implemented on parallel systems, especially those of a large size,



2

the asynchronous algorithms suffer less from the interconnect latency than their
conventional counterparts.

Unfortunately, current parallel languages and language extensions (such as
OpenMP [5]) do not effectively support the asynchronous computation model.
When implemented with OpenMP parallel annotations, for example, an iterative
solver typically has a sequential outermost loop containing a number of paral-
lel inner loops. Each parallel loop annotation implies a barrier synchronization
point at the end of the loop, where all processors must meet before simultane-
ously proceeding to the next statement. Such barrier synchronization, executed
repeatedly in each iterative step, dictates the conventional strict synchronous
computation model, at the expense of performance penalty due to the inter-
connect latency. Barriers also severely limit the compiler’s ability to generate
efficient machine code.

In this paper, we propose three new loop annotations, called ASYNC DO,
ASYNC REDUCTION, and ASYNC REGION, respectively. At the outer-
most level, the ASYNC REGION keyword is used to annotate the iterative
loop as a candidate for asynchronous execution. If the compiler accepts the
ASYNC REGION designation, it converts the iterative loop into a parallel sec-
tion executed by multiple threads. Embedded in ASYNC REGION are inner
loops which may be annotated by ASYNC DO or ASYNC REDUCTION, pos-
sibly accompanied by ordinary OpenMP parallel DO loops and sequential loops.
If the ASYNC REGION designation is accepted by the compiler, the threads
will divide the iterations of each ASYNC DO or ASYNC REDUCTION loop
and execute them without having to synchronize through a conventional barrier.
The threads will also divide the iterations of an ordinary OpenMP parallel DO
loop, but they will synchronize through a barrier. An OpenMP parallel section
(such as parallel DO) embedded in ASYNC REGION does not cause spawning
a new set of threads, because ASYNC REGION at the outer level is already
executed by multiple threads.

Comparing to directly implementing asynchronous algorithm using P-threads
or existing OpenMP loop constructs, the iterative solver written with the pro-
posed new constructs gives the compiler the flexility to decide whether to imple-
ment the annotated candidates in the asynchronous manner. The programmer
does not need to commit the iterative solver to the asynchronous execution
model. We present experimental results to show the benefit of using ASYNC
loops in 2D and 3D multigrid methods as well as an SOR-preconditioned conju-
gate gradient linear system solver.

2 ASYNC Loops

ASYNC DO Loops ASYNC DO annotates a DO loop whose iterations can
be executed in parallel by multiple processors without barrier synchronization.
However, it is different from an OpenMP parallel DO with a nowait label, as will
be clear later. Its syntax, analogous to that of an OpenMP parallel DO loop, is
in the form of !$ASYNC DO parallel clause, where parallel clause takes the same



3

form and meaning as its counterpart in OpenMP sans the reduction clause [5].
Figure 1 shows an example on how to annotate parallel loops by ASYNC DO.
When the shown ASYNC DO is embedded in an ASYNC REGION accepted by
the compiler, it will be transformed by the compiler into an iteration-partitioned
loop shown in Figure 2. Notice the absence of barrier synchronization.

!$ASYNC_DO default(shared)

!$ private(i1,i2,i3,u1,u2)

do i3=2,n3-1

do i2=2,n2-1

do i1=1,n1

u1(i1) = u(i1,i2-1,i3)

> + u(i1,i2+1,i3)

> + u(i1,i2,i3-1)

> + u(i1,i2,i3+1)

u2(i1) = u(i1,i2-1,i3-1)

> + u(i1,i2+1,i3-1)

> + u(i1,i2-1,i3+1)

> + u(i1,i2+1,i3+1)

enddo

do i1=2,n1-1

r(i1,i2,i3) = v(i1,i2,i3)

> - a(0) * u(i1,i2,i3)

> - a(1) * (u(i1-1,i2,i3)

> + u(i1+1,i2,i3)

> + u1(i1))

> - a(2) * (u2(i1)

> + u1(i1-1)

> + u1(i1+1))

> - a(3) * (u2(i1-1)

> + u2(i1+1))

enddo

enddo

enddo

Fig. 1. An ASYNC DO loop inside
MG residual calculation subroutine

z_low = (my_id * bz(k)) + 1

z_high = (my_id + 1) * bz(k)

if(my_id .eq. 0) z_low = 2

if(my_id .eq. (total_threads - 1))

z_high = n3 - 1

do i3 = z_low, z_high

do i2=2,n2-1

do i1=1,n1

u1(i1) = u(i1,i2-1,i3)

> + u(i1,i2+1,i3)

> + u(i1,i2,i3-1)

> + u(i1,i2,i3+1)

u2(i1) = u(i1,i2-1,i3-1)

> + u(i1,i2+1,i3-1)

> + u(i1,i2-1,i3+1)

> + u(i1,i2+1,i3+1)

enddo

do i1=2,n1-1

r(i1,i2,i3) = v(i1,i2,i3)

> - a(0) * u(i1,i2,i3)

> - a(1) * (u(i1-1,i2,i3)

> + u(i1+1,i2,i3)

> + u1(i1))

> - a(2) * (u2(i1)

> + u1(i1-1)

> + u1(i1+1))

> - a(3) * (u2(i1-1)

> + u2(i1+1))

enddo

enddo

enddo

Fig. 2. A synchronization-relaxed loop
generated from ASYNC DO annota-
tion

ASYNC REDUCTION The ASYNC REDUCTION is supported by a re-
laxed barrier tree structure which allows a thread, depending on its thread ID,
to deposit its partial term of the reduction result in the tree and continue its exe-
cution without obtaining the newly computed value. Figure 3 shows an example
with eight threads. Threads are numbered 0 through 7 and every dot represents
a lock structure. Once a pair of threads arrive at the appropriate lock (if one gets
there first, it waits for the other), the left-sibling thread proceeds up the tree
with the new information deposited by both threads, and the other thread is
released and allowed to continue execution. Using this structure, we can greatly
reduce the amount of blocking time of threads.

The ASYNC REDUCTION annotation is analogous to an OpenMP par-
allel DO loop with a reduction clause, but with the relaxed barrier tree re-
placing the strict barrier. Figure 4 shows an example of a loop annotated by
ASYNC REDUCTION. When embedded in an ASYNC REGION accepted by
the compiler, this loop will be transformed into an iteration-partitioned loop with
a call to a runtime routine logbarrier which implements the relaxed barrier
tree.



4

0 1 2 3 4 5 6 7µ I µ I µ I µ I
s s s s0 2 4 6¡

¡µ
@

@I
¡

¡µ
@

@I
s s0 4¡

¡
¡

¡µ

@
@

@
@I
s0

Fig. 3. A relaxed barrier tree structure

!$ASYNC_REDUCTION(+:d)

do j=1, lastcol-firstcol+1

d = d + p(j)*q(j)

enddo

converted to

temp = 0.d0

do j = low_limit, high_limit

temp = temp + p(j)*q(j)

enddo

call logbarrier(my_id, temp, d, 0)

Fig. 4. A loop converted from
ASYNC REDUCTION

ASYNC REGION The ASYNC REGION directive defines the lexical scope
of the iterative solver and, by default, this scope has two barrier synchronization
points, one at the entrance and the other at the exit. Within this scope, parallel
threads partition the ASYNC DO and ASYNC REDUCTION loop iterations
by following the “owner computes” rule such that, every time they reenter these
loops, each thread will modify the same array sections as the last time.

Algorithm 1 provides a general template for writing an iterative solver us-
ing the asynchronous loops. The notation !$a parallel loop header in the algo-
rithm could mean !$ASYNC DO, !$ASYNC REDUCTION, or any conventional
OpenMP parallel construct. The iterative loop annotated by ASYNC REGION

Algorithm 1 A General Template of Using ASYNC Loops
1: !$ASYNC REGION
2: DO ITER = 1, number iter
3: !$a parallel loop header
4: a parallel loop body
5: . . .
6: !$a parallel loop header
7: a parallel loop body
8: . . .
9: !$a parallel loop header

10: a parallel loop body
11: . . .
12: END DO ITER

will be transformed by the compiler into an OpenMP parallel section (!$OMP
parallel) to be executed by a number of parallel threads. Within the asyn-
chronous region, an ASYNC DO loop is transformed by the compiler into
a DO loop whose iteration ranges are determined by the thread ID, as il-
lustrated previously in Figure 2. No barrier synchronization is inserted. An



5

ASYNC REDUCTION loop is transformed into a DO loop that computes a
partial reduction before invoking the relaxed barrier synchronization routine to
add the partial term to the final result, as illustrated in Figure 4. A conventional
OpenMP parallel DO or reduction loop will be transformed into a DO loop as
stipulated in the OpenMP standard, with conventional barrier synchronization
inserted. Sequential loops and statements within the ASYNC REGION will be
enclosed in a segment annotated by the !$OMP master directive to indicate that
they are executed by the master thread only. At this point it should become clear
to readers that one cannot implement asynchronous algorithms in OpenMP by
simply adding the nowait label to a parallel DO loop.

It is important for the compiler to align the iteration ranges of the DO loops
converted from the inner parallel loops (ASYNC or OpenMP) such that no two
threads write into the same array sections. This requires the compiler to perform
array data flow analysis which has been studied quite extensively by previous
work [8, 10, 11] and will be omitted in this paper due to space limitation. If the
compiler is unable to perform the necessary array dataflow analysis for a par-
ticular asynchronous region, the ASYNC REGION annotation will be ignored.
An ASYNC DO loop will be treated as an ordinary OpenMP parallel DO loop
and an ASYNC REDUCTION loop will be treated as an ordinary OpenMP
reduction loop.

3 Benchmark Study

In this section, we introduce two benchmarks, namely MG and preconditioned
CG, from the 2003 release of the NAS OpenMP parallel benchmarks (version 3.2)
[1, 9]. The MG program belongs to the class of iterative methods which use relax-
ation methods [12]. The CG program belongs to the class using Krylov subspace
methods [12]. The Krylov subspace methods are known to benefit greatly from
preconditioning, in terms of both numerical accuracy and computation efficiency.
Relaxation methods such as SOR have been found to be effective preconditioners,
We wrote a simple SOR preconditioner for CG.

MG Using ASYNC Loops The MG program implements a multigrid method
to solve the Poisson problem ∇u2 = v with periodic boundary conditions. The
benchmark places -1 and +1 values at twenty random grid points each, and
zeros elsewhere. Each iteration consists of a full V-cycle [12]. We also derived a
two-dimensional version of MG for a 2D grid size, but the algorithm remained
the same. The high level organization of MG in OpenMP can be illustrated
by the code skeleton in Algorithm 2. In the actual OpenMP code, the !$OMP
annotations are within the subroutines shown in the algorithm such that within
each subroutine call, one or more !$OMP parallel DO loops are executed, forcing
a strict data flow.

To relax the data flow constraints, we annotate the entire iterative solver by
ASYNC REGION (which will then be converted to an OpenMP parallel sec-
tion as discussed previously, suppose we decide that the asynchronous model is



6

Algorithm 2 Multigrid V-Cycle with Full Synchronization
1: DO iter = 1, number iter
2: for i = hmax...h0, i = i/2 do
3: !$OMP parallel do
4: Coarsen residual: ri = Ii

i/2r
i/2

5: end for
6: !$OMP parallel do
7: Zero: uh0 = 0
8: !$OMP parallel do
9: Smooth: uh0 = uh0 + Srh0

10: for i = 2...hmax/2, i = 2i do
11: !$OMP parallel do
12: Zero: ui = 0
13: !$OMP parallel do
14: Prolongate: ui = I

i/2
i ui/2

15: !$OMP parallel do
16: Calculate Residual: ri = ri −Aui

17: !$OMP parallel do
18: Smooth: ui = ui + Sri

19: end for
20: !$OMP parallel do
21: Prolongate: uhmax = I

hmax/2
hmax

uhmax/2

22: !$OMP parallel do
23: Calculate Residual: rhmax = rhmax −Auhmax

24: !$OMP parallel do
25: Smooth: uhmax = uhmax + Srhmax

26: END DO ITER

beneficial). A careful analysis of the numerical property of the solver suggests
that all but two of the synchronization points can be safely removed without
severely slowing the convergence. The necessary synchronization points occur
immediately after the prolongation operation, but before the residual calcula-
tion. Hence, we change all embedded OpenMP parallel DO loops to ASYNC DO
loops. As discussed previously, the ASYNC DO loops will result in a partition
of the parallel loop iterations, but without implied barrier synchronization. We
reinsert barriers immediately before the residual calculation. Figures 1 and 2 (in
Section 2) show details for the residual calculation loop. The high-level organi-
zation of the ASYNC REGION is shown in the code skeleton in Algorithm 3
below.

The reinserted synchronization points are necessary because, if stale values
are used from the interpolated grid, the residual will undoubtedly be higher.
Once this higher residual is applied to correct the grid, the difference (in norm)
of the current grid to the previous one will also be larger. This error will prop-
agate through each V-cycle iteration, so that the residual will continue to grow
indefinitely after a few iterations. The smoothing operation exists to even out
sharp differences in the residual, but the effects of a larger magnitude of residual



7

Algorithm 3 Multigrid V-Cycle with ASYNC DO loops
1: !$ASYNC REGION
2: DO iter = 1, number iter
3: for i = hmax...h0, i = i/2 do
4: !$ASYNC DO
5: Coarsen residual: ri = Ii

i/2r
i/2

6: end for
7: !$ASYNC DO
8: Zero: uh0 = 0
9: !$ASYNC DO

10: Smooth: uh0 = uh0 + Srh0

11: for i = 2...hmax/2, i = 2i do
12: !$ASYNC DO
13: Zero: ui = 0
14: !$ASYNC DO
15: Prolongate: ui = I

i/2
i ui/2

16: !$Barrier
17: !$ASYNC DO
18: Calculate Residual: ri = ri −Aui

19: !$ASYNC DO
20: Smooth: ui = ui + Sri

21: end for
22: !$ASYNC DO
23: Prolongate: uhmax = I

hmax/2
hmax

uhmax/2

24: !$Barrier
25: !$ASYNC DO
26: Calculate Residual: rhmax = rhmax −Auhmax

27: !$ASYNC DO
28: Smooth: uhmax = uhmax + Srhmax

29: END DO ITER

values in general will still exist. Our experiments without the reinserted barriers
have turned out poor numerical accuracies and hence confirmed the necessity of
these synchronization points.

3.1 SOR-preconditioned CG Using ASYNC Loops

A preconditioned conjugate gradient method is given in Algorithm 4 below [12].
Preconditioning a system of linear equations is a way to transform the original
system into one that is likely to be easier to solve with an iterative solver.
Both the efficiency and robustness of iterative techniques can be improved by
a good preconditioner. The number of iterations to execute CG are expected
to be reduced after preconditioning. The preconditoner M (in steps 1 and 6) is
chosen such that M−1 is a good approximation of A−1. Also, the system Mz = r
needs to be much easier to solve than the original system Ax = b, for example,
using Jacobi, Gauss-Seidel, or Successive Overrelaxation. Here, we apply the
preconditioner M to the system Ax = b from the left, i.e. M−1Ax = M−1b.



8

Notice in statement 6 of algorithm 4, we compute z = M−1r = M−1(b−Ax) =
M−1b−M−1Ax. Thus z represents the residual of the transformed system.

Algorithm 4 Preconditioned Conjugate Gradient
1: Compute r0 = b−Ax0, z0 = M−1r0, p0 = z0

2: for j = 0, 1, ... until convergence do
3: αj = (rj , zj)/(Apj , pj)
4: xj+1 = xj + αjpj

5: rj+1 = rj − αjApj

6: zj+1 = M−1rj+1

7: βj = (rj+1, zj+1)/(rj , zj)
8: pj+1 = zj+1 + βjpj

9: end for

The CG benchmark from NAS estimates the smallest eigenvalue in magni-
tude of a matrix A using the inverse power method with shifts. During each
iteration, a solution of a system of the form Ax = b is obtained by calling a CG
subroutine. Because here the CG method is being used as a solver inside of an-
other iterative method, it is invoked a fixed number of times. The input matrix
is of dimension 14000, and the conjugate gradient method is stopped when the
residual norm falls below 10−8. We implemented a point successive overrelax-
ation (SOR) scheme to serve as a preconditioner for CG. Because the structure
of the input matrix is symmetric positive definite but random, the point SOR
solver is an appropriate preconditioner. The preconditioner is stopped when the
residual norm is less than 10−6.

4 Experimental Results

We performed experiments by running the chosen benchmarks on a Sun E10000
which has 54 Ultrasparc II processors (each clocked at 400 Megahertz) and 56 GB
of memory. For each data set, tests were run on a differing number of processors,
ranging from 1 to 32 in powers of two. With the exception of the residual vs. the
number of iterations, all performance data reported here is an average over 10
runs. Since we are still exploring the range of applications for ASYNC loops, the
conversion from such loops to OpenMP codes is currently performed manually.

3D Multigrid We first use a 256 x 256 x 256 grid size with 4 iterations for
the MG benchmark, in order to be consistent with the original benchmark spec-
ification for class A problems. Figures 5(a)-5(c) compare the performance and
residual after executing four iterations, while figure 5(d) shows that both versions
approach convergence at the same rate in the number of iterations shown.

After just four iterations, a satisfactory residual has been reached. We see
that the speedup behavior of the relaxed version is superior to that of the orig-
inal OpenMP version, in particular with more than eight threads. In addition,



9

0

10

20

30

40

50

60

0 5 10 15 20 25 30 35

T
im

e 
in

 s
ec

on
ds

Number of Threads

Running time for 3D MG on Sun E10K

Original
Relaxed

(a)

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Threads

Speedup for 3D MG on Sun E10K

Original
Relaxed

(b)

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

8e-06

9e-06

1e-05

0 5 10 15 20 25 30 35

R
es

id
ua

l

Number of Threads

Residual for 3D MG on Sun E10K

Original
Relaxed

(c)

1e-07

1e-06

1e-05

0.0001

0.001

1 2 3 4 5 6

R
es

id
ua

l

Iteration

Convergence for 3D MG by iteration

Original
Relaxed

(d)

Fig. 5. Comparison between strict and relaxed data flow models with MG. (a) Run-
ning time using standard 3D grid (b) Parallel speedups (c) Final residual norms (d)
Convergence Rates

although the final residual values are slightly higher than that of the original ver-
sion, the residuals for the relaxed version are approximately of the same order
of magnitude in comparison.

2D Multigrid To further study the performance, we use a 512 x 512 grid size
for the two dimensional problem. Figures 6(a)-6(c) compare the performance and
residual after executing 30 iterations, and figure 6(d) shows that both versions
approach convergence at the same rate in the number of iterations given. The
results also show that the original version performs quite poorly in terms of
parallel speedup. The relaxed version clearly performs better.

SOR-preconditioned CG We tested the use of SOR as a preconditioner em-
bedded in the basic conjugate gradient method (see Algorithm 4). The SOR
preconditioner was run both in its original OpenMP version with strict data
flow and in the ASYNC DO version with relaxed data flow. Figures 7(a) and
7(b) show that the parallel speedups of the relaxed version are much improved
over the original version. It is not yet clear why the original version experiences



10

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

T
im

e 
in

 s
ec

on
ds

Number of Threads

Running time for larger 2D MG on Sun E10K

Original
Relaxed

(a)

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Threads

Speedup for larger 2D MG on Sun E10K

Original
Relaxed

(b)

0.00015

0.000155

0.00016

0.000165

0.00017

0.000175

0.00018

0.000185

0.00019

0.000195

0.0002

0 5 10 15 20 25 30 35

R
es

id
ua

l

Number of Threads

Residual for larger 2D MG on Sun E10K

Original
Relaxed

(c)

0.0001

0.001

0.01

0 5 10 15 20 25 30

R
es

id
ua

l

Iteration

Convergence for larger 2D MG by iteration

Original
Relaxed

(d)

Fig. 6. (a) Running time of MG using a 2D grid (b) Parallel speedup (c) Final residual
norms (d) Convergence rates

a jump in the running time for four threads. One might observe that the relaxed
data flow causes the preconditioner to converge in a greater number of iterations,
as figure 7(c) demonstrates. Even as such, the improvement in efficiency over the
original version is quite significant.

5 Related Work

To the best of our knowledge, this work is the first to propose parallel language
constructs to identify loops for execution based on asynchronous algorithms.
Although the asynchronous model could be implemented using P-threads or
existing OpenMP directives, it would not give the same flexility to the compiler
as our scheme does, and the way the program is composed would be more tedious
and more error-prone to modify. A considerable amount of prior work, on the
other hand, has been conducted on theories of asynchronous iterative algorithms
in the past decades [7, 3, 4]. Most publications seem to have focused on developing
general convergence criteria and tightening convergence conditions, although
several have devoted themselves to specific iterative methods such as Jacobi,
Gauss-Seidel and SOR [3, 2, 6]. We have not found prior experimentation with
mutigrid methods using asynchronous algorithms, which we have presented in



11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  5  10  15  20  25  30  35

T
im

e 
in

 s
ec

on
ds

Number of Threads

Runtime data for Preconditioned CG

Original
Relaxed

(a)

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35

S
pe

ed
up

Number of Threads

Speedup for Preconditioned CG

Original
Relaxed

(b)

 20

 22

 24

 26

 28

 30

 32

 34

 0  5  10  15  20  25  30  35

N
um

be
r 

of
 S

O
R

 it
er

at
io

ns

Number of Threads

Residual data for MG

Original
Relaxed

(c)

Fig. 7. Comparison of methods with SOR-preconditioned CG (a) Running times (b)
Parallel speedups (c) Number of iterations of first invocation of SOR preconditioner

this paper. Applying the general theory of asynchronous computation model to
a concrete iterative numerical method remains a nontrivial problem.

6 Conclusion

The number of processors in parallel computers have been steadily increased in
recent years. The largest computational clusters now boast over ten thousand
processors. Interprocessor data communication is therefore becoming a more
serious performance bottleneck. We have proposed three kinds of ASYNC loop
constructs to support the asynchronous computation model for iterative solvers,
which, when applied successfully, can significantly reduce data communication
overhead. The experimental results with 3D and 2D MG benchmarks and with
SOR-preconditioned CG benchmark show excellent improvement of the ASYNC
versions over the conventional OpenMP versions of these parallel programs in
terms of the parallel execution efficiency. Moreover, the convergence rate has
remained approximately the same. While these results are highly encouraging, we



12

observe that deciding which synchronization points to remove remain a nontrivial
task which involves careful consideration of the numerical properties of the given
iterative solver. We believe that the proposed new loop constructs make it easier
for programmers to implement and fine tune asynchronous algorithms.

For our future work, we will further investigate other asynchronous algo-
rithms and hope to see sufficient successes to motivate a full implementation of
the proposed ASYNC loops in a parallelizing compiler.

Acknowledgement

This work is sponsored in part by National Science Foundation through grants
ST-HEC-0444285 and CPA-0702245. The authors thank the reviewers for their
careful reviews and helpful suggestions. We also thank Ananth Grama for propos-
ing the use of relaxed barrier tree for reduction.

References

1. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi,
S. Fineberg, P. Fredrickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weerantunga. The NAS Parallel Benchmarks. Technical Report
RNR-94-007, NASA, March 1994.

2. R. H. Barlow and D. J. Evans. Parallel algorithms for the iterative solution to
linear systems. The Computer Journal, 25(1):56–60, 1982.

3. Gérard M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM,
25(2):226–244, 1978.

4. Dimitri P. Bertsekas and John N. Tsitsiklis. Convergence rate and termination of
asynchronous iterative algorithms. In ICS ’89: Proceedings of the 3rd international
conference on Supercomputing, pages 461–470, New York, NY, USA, 1989. ACM.

5. OpenMP Architecture Review Board. OpenMP Application Program Interface. 2.5
edition, May 1990.

6. Rafael Bru, Violeta Migallón, José Penadés, and Daniel B. Szyld. Parallel, Syn-
chronous and Asynchronous Two-stage Multisplitting Methods. Electronic Trans-
actions on Numerical Analysis, 3:24–38, 1995.

7. D. Chazan and W. L. Miranker. Chaotic relaxation. Linear Algebra and Its Ap-
plication, 2:199–222, 1969.

8. J. Gu and Z. Li. Efficient interprocedural array data-flow analysis for automatic
program parallelization. IEEE Trans. on Software Engineering, 26:244–261, 2000.

9. H. Jin, M. Frumkin, and J. Yan. The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance. Technical Report NAS-99-011, NASA, October
1999.

10. Sungdo Moon and Mary W. Hall. Evaluation of predicated array data-flow analysis
for automatic parallelization. SIGPLAN Not., 34(8):84–95, 1999.

11. Sungdo Moon, Mary W. Hall, and Brian R. Murphy. Predicated array data-flow
analysis for run-time parallelization. In International Conference on Supercomput-
ing, pages 204–211, 1998.

12. Yousef Saad. Iterative Methods for Sparse Linear Systems. Siam, second edition,
2003.


