
J. Parallel Distrib. Comput. 64 (2004) 740–746

ARTICLE IN PRESS
�Correspond

E-mail addr

li@cs.purdue.ed

0743-7315/$ - se

doi:10.1016/j.jp
A computation offloading scheme on handheld devices

Cheng Wang� and Zhiyuan Li

Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

Received 9 September 2003; accepted 22 October 2003
Abstract

In this paper, we present a computation offloading scheme on handheld devices. This scheme partitions an ordinary program into

a client–server distributed program, such that the client code runs on the handheld device and the server code runs on the server. Our

partition analysis and program transformation guarantee correct distributed execution under all possible execution contexts. We

give a polynomial time algorithm to find the optimal program partition for given program input data. We use an option-clustering

approach to handle different program partitions for different program execution options. Experimental results show significant

improvement of performance and energy consumption on an HP IPAQ handheld device through computation offloading.

r 2003 Published by Elsevier Inc.

Keywords: Task partition; Wireless network; Distributed computing; Data consistency; Edge profiling; Program transformation
1. Introduction

Computation offloading is important for handheld
devices. Certain applications are simply too time
consuming to run on handheld devices. Therefore, the
only feasible way to use those application programs is to
offload all or part of the computation to a more
powerful machine [10,6]. Recent years have seen wide-
spread deployment of wireless LAN in campuses, in
corporation buildings, and at other locations. In such
environment, handheld devices with wireless LAN
connection can access data in the user’s regular desktop
computer or a trusted server. Computation can be
offloaded to these machines. For devices with wide area
wireless connection like CDMA, the access to trusted
machines has a much wider range.

This paper presents a computation offloading scheme
on handheld devices. Our computation offloading
scheme consists of a compiler-based tool which parti-
tions an ordinary program into a client–server distrib-
uted program, such that the client code runs on the
handheld device and the server code runs on the server.
Our partition analysis and program transformation
guarantee correct distributed execution under all possi-
ble execution contexts.
ing author.

esses: wangc@cs.purdue.edu (C. Wang),

u (Z. Li).

e front matter r 2003 Published by Elsevier Inc.

dc.2003.10.005
We build a constraint system for our computation
offloading. Task mappings, data accesses and data
validity states are represented simultaneously in the
constraint formulation, which is a new approach to
global cost modeling for distributed computing. Besides
the computation cost and data communication cost, our
cost analysis also considers the cost for the run-time
bookkeeping which is necessary for correct distributed
execution.

We give a polynomial time algorithm to find the
optimal program partition for the given program input
data. For cases in which the optimal program partition-
ing varies with different execution options, we compute
optimal program partitions for a training set of
execution options and determine which partition to
use at run-time subject to the execution options.

We implement our computation offloading scheme in
GCC. Experimental results show that our computation
offloading scheme can significantly improve the perfor-
mance on an HP IPAQ 3970 handheld device. As a side
effect, the energy consumption on that handheld device
is reduced proportionally.
2. Computation offloading scheme

Our computation offloading scheme divides the whole
program computation into tasks. We do not restrict

ARTICLE IN PRESS
C. Wang, Z. Li / J. Parallel Distrib. Comput. 64 (2004) 740–746 741
tasks at any specific level. A task can be a basic block, a
loop, a function or a group of closely related functions.
We divide the tasks into server tasks and client tasks
such that server tasks run on the server and client tasks
run on the handheld device.

It is important to note that although we execute client
tasks and server tasks in a distributed way, we do not
seek to execute a client task and a server task
simultaneously. This is due to the significant computa-
tion speed gap between the two. Little can be gained in
reality by parallel execution in this manner. In the
absence of simultaneous tasks, program execution
simply follows the original sequential control flow.

To transform a normal program into a distributed
program for computation offloading, we must guarantee
the correct control and data flow relations in the original
program for all possible program execution contexts.
Difficulties arise when programs contain run-time
control and data flow information which is undecidable
at compile time.

We take an approach that makes use of both the static
information and the run-time information. Statically, we
produce an abstraction of the given program in which
all memory references are mapped to references to
abstract memory locations. The program abstraction
contains only statically available information. We then
perform partition analysis on the program abstraction
to statically determine the task allocations and data
transfers of abstract memory locations subject to the
control and data flow defined over the program
abstraction. Our program transformation will insert
efficient run-time bookkeeping codes for the correct
mapping between abstract memory locations and run-
time physical memory. The resulting distributed pro-
gram guarantees the correct control and data flow at
run-time.
3. Partition Analysis

3.1. Program abstraction

We build the directed control-flow graph CFG ¼
ðV ;EÞ for the program such that each vertex vAV is a
basic block and each edge e ¼ ðvi; vjÞAE represents the
fact that vj may be executed immediately after vi:

We abstract all the memory accessed (including code
and data) by a program at run time by a finite set of
typed abstract memory locations. The abstraction of run-
time memory is a common approach used by pointer
analysis techniques [2,11] to get conservative but safe
point-to relations. The type information is needed to
maintain the correct data endians and data addresses
during data transfer between the server and the
handheld device. Each memory address is represented
by a unique abstract memory location, although an
abstract memory location may represent multiple
memory addresses because a single reference in the
program may cause multiple memory references at run
time. We use D to denote the set of all abstract memory
locations d:

With point-to analysis, we conservatively identify the
references to abstract memory locations at each
program point. For example, to get the value of �x;
the program reads x as well as the abstract memory
locations which x points to. To write into �x; the
program reads x and writes all the abstract memory
locations which x points to.

3.2. The constraint system

Dynamically, each basic block v and each flow edge e

can have many execution instances. We define f ðvi; vjÞ as
the execution count for the flow edge e ¼ ðvi; vjÞ and gðvÞ
as the execution count for basic block v: The values of f

and g may vary in different runs of the same program
when using different input data. However, the following
constraint always holds:

Constraint 1. For any basic block viAV ;

gðviÞ ¼
X

e¼ðvi ;vjÞAE

f ðvi; vjÞ ¼
X

e¼ðvj ;viÞAE

f ðvj ; viÞ:
Since each task will be mapped either to the server or
to the client, but not both, the task mapping can be
represented by a boolean function M such that MðvÞ
indicates whether basic block v is mapped to server.
We define the M function for basic blocks because
the computation of a basic block has little variance.
All the instructions in a basic block always execute
together.

By program semantics, the mapping of certain basic
blocks may be fixed. For example, in interactive
applications, basic blocks containing certain I/O func-
tions are required to execute on the handheld device.
Moreover, to partition the computation at level higher
than a basic block, certain basic blocks are required to
be mapped together. For example, for function-level
partitioning, all the basic blocks in one function are
required to be mapped together. The following con-
straint reflects these requirements.

Constraint 2. If basic block v is required to execute on
the handheld, then MðvÞ ¼ 0: If basic block v is required
to execute on the server, then MðvÞ ¼ 1: If basic blocks
v1 and v2 are required to be mapped together, then

Mðv1Þ 3 Mðv2Þ:

We use two boolean variables to represent data access

information for abstract memory locations d such that
NsðdÞ indicate whether d is accessed on the server and

ARTICLE IN PRESS
C. Wang, Z. Li / J. Parallel Distrib. Comput. 64 (2004) 740–746742
NcðdÞ indicate whether d is not accessed on the
handheld. By definition, we have:

Constraint 3. if d is accessed within basic block v then
MðvÞ) NsðdÞ and NcðdÞ) MðvÞ:

Distributed shared memory (DSM) systems [1] keep
track of the run-time data validity states to determine
the data transfers at run time. We analyze data validity
states statically for the abstract memory locations to
determine the data transfers statically. Due to constraint
1, it is obvious that inserting data transfers on control
flow edges is always not worse, sometimes better, than
inserting them in basic blocks. We consider the validity
states of abstract memory location d before the entry
and after the exit of each basic block v such that:
Vsiðv; dÞ indicates whether the copy of d on server is
valid before the entry of v: Vsoðv; dÞ indicates whether
the copy of d on server is valid after the exit of v:
Vciðv; dÞ indicates whether the copy of d on client is not

valid before the entry of v: Vcoðv; dÞ indicates whether
the copy of d on client is not valid after the exit of v:

For data consistency, the local copy of d must be
valid before any read operation on d: After a write
operation on d; the copy of d on the current host
becomes valid and the copy of d on the opposite host
becomes invalid. If there is no write operation on d

within a basic block v; then the local copy of d is valid
after the exit of basic block v only if it is valid before the
entry of v: In cases where d is possibly or partially
written in a basic block, we conservatively require d to
be valid before the write. Otherwise, d may be
inconsistent after the write. The following constraint is
introduced for data consistency.

Constraint 4. If basic block v has a (possibly or definitely)
upward exposed read of d; then MðvÞ) Vsiðv; dÞ and
Vciðv; dÞ) MðvÞ: If d is (possibly or definitely) written
in basic block v; then Vsoðv; dÞ 3 MðvÞ and
MðvÞ 3 Vcoðv; dÞ: If d is definitely not written in basic
block v; then Vsoðv; dÞ) Vsiðv; dÞ and Vciðv; dÞ)
Vcoðv; dÞ: If d is possibly or partially written in basic
block v; then MðvÞ) Vsiðv; dÞ and Vciðv; dÞ)
MðvÞ:
3.3. Cost analysis

There are four kinds of costs in our computation
offloading scheme: computation cost for task execution,
scheduling cost for task scheduling, bookkeeping cost
for run-time bookkeeping, and communication cost for
data transfer.

If we associate a computation cost ccðvÞ for each
execution instance of basic block v running on the client,
and a computation cost csðvÞ for each execution instance
of basic block v running on server, we get the total
computation cost:
X

vAV

MðvÞcsðvÞgðvÞ þ :MðvÞccðvÞgðvÞ: ð1Þ

If we associate a scheduling cost cr for each instance of
task scheduling from the client to the server, and a
scheduling cost cl for each instance of task scheduling
from the server to the client, we get the total scheduling
cost

X

ðvi ;vjÞAE

:MðviÞMðvjÞcrf ðvi; vjÞ

þ :MðvjÞMðviÞclf ðvi; vjÞ: ð2Þ

Our program transformation discussed later performs
run-time bookkeeping for allocations and releases of
data accessed by both hosts. We assume each data release
corresponds to a previous data allocation, so we include
the release cost in the allocation cost. If we associate a
bookkeeping cost ca with each instance of data
allocation, and let AðvÞ denote the set of abstract
memory locations d that are allocated in basic block v;
we get the total bookkeeping cost

X

dAD;dAAðvÞ
:NcðdÞNsðdÞcagðvÞ: ð3Þ

We can derive the data transfer information from
data validity states. On each edge ðvi; vjÞ; if Vsoðvi; dÞ ¼
0 and Vsiðvj; dÞ ¼ 1; then the copy of d on the server is
invalid after the exit of vi but becomes valid before the
entry of vj: So there is a data transfer of d from the client
to the server on edge ðvi; vjÞ: Similarly, if Vcoðvi; dÞ ¼ 1
and Vciðvj ; dÞ ¼ 0; then there is a data transfer of d from
the server to the client on edge ðvi; vjÞ: If we associate a
communication cost cdðdÞ for each instance of data
transfer of d from the server to the client, and a
communication cost cuðdÞ for each instance of data
transfer of d from the client to the server, then the total
communication cost is

X

ðvi ;vjÞAE

:Vsoðvi; dÞVsiðvj ; dÞcuðdÞf ðvi; vjÞ

þ :Vciðvj; dÞVcoðvi; dÞcdðdÞf ðvi; vjÞ: ð4Þ

3.4. Partition algorithm

For the given program input data, edge profiling
techniques [3] can easily get f and g in formulas (1)–(4).
The optimal program partitioning problem can then be
expressed as

Problem 1. Find boolean values for M; Ns; Nc; Vsi; Vso;
Vci and Vco subject to constraints 2–4 and minimize the
sum of total cost (1)–(4).

Problem 1 can be reduced to a single-source single-
sink min-cut network flow problem [4] which can be

ARTICLE IN PRESS
C. Wang, Z. Li / J. Parallel Distrib. Comput. 64 (2004) 740–746 743
solved in polynomial time. It is possible that the optimal
program partitions vary with different program inputs.
Problem 1 can be treated as a parametric problem with
parameters f and g that satisfy constraint 1. However,
the parametric problem 1 can be reduced from a 2-path

problem [4] and is hence NP-hard. We omit the proofs of
these claims due to the space limit.

We use an option-clustering heuristic for the para-
metric problem 1. Our heuristic groups a training set of
options into a relatively small number of clusters and
prepares one partition for each cluster such that, for any
option in the training set, the cost difference between the
prepared partition and its optimal partition is within a
given error-tolerance ratio. For a program with r

independent options, all the possible program options
form an r-dimensional option space. We divide the
whole option space into subspaces according to the
clustering of the training set. At run time, we check to
see which subspace the option belongs to, and the
program will run based on the corresponding partition.
We omit the details in the paper due to the space limit.
4. Program transformation

The task execution control and data transfer are
implemented by message passing. At any moment, only
one host (active host) performs the computation. The
other host (passive host) waits in a message processing
function which acts in accordance to the incoming
messages. The active host sends a message to start a task
on the opposite host. Upon receiving the message, the
receiver becomes active by starting the execution of
corresponding task. Meanwhile, the sender becomes
passive by blocking its current task execution and
entering the message processing function. The active
host becomes passive by sending a message to the
opposite host indicating the termination of tasks. Upon
receiving the message, the passive host becomes active
by exiting the message processing function and resuming
the blocked task execution.

Two mechanisms (shown in Fig. 1(b)) dynamically
perform bookkeeping for the correct mapping between
abstract memory locations and their physical memory.
Program

Program Abstraction

Abstract

Analysis
Program Partitioning

Distributed Program

Transform

(a)

Fig. 1. Computation o
The registration mechanism keeps track of the local
mapping between abstract memory locations and their
corresponding physical memory with registration table.
Entries in the registration table are indexed by the
abstract memory location ID for lookup. Each entry in
the table contains a list of memory addresses for that
abstract memory location. The translation mechanism

keeps track of the mapping of the same data between
different hosts. Only the server has the translation
mechanism which translates the data representation
back and forth for the server and handheld device. For
translation of data addresses, we maintain a mapping
table on the server. Entries in the mapping table contain
the mapping of memory addresses for the same data on
the server and the handheld device. To reduce the run-
time overhead, the registration and translation mechan-
ism only apply to memory locations that are accessed on
both hosts. Both the registration table and the mapping
table are updated at run time only when new (stack or
heap) memory is allocated or released.

With the registration and translation mechanisms, we
can now transfer data safely between the server and
handheld device. We use two methods for data transfer,
namely the push method and the pull method. The push
method sends abstract memory locations to the opposite
host. The pull method lets the intended receiver make a
request for modified abstract memory locations from the
opposite host.
5. Experiments

The handheld device in our experiments is an HP
IPAQ 3970 Pocket PC which has a 400 MHz Intel
XScale processor. The Server is a P4 2 GHz Dell
Precision 340 machine. We run Linux on both machines.
The wireless connection is through a Lucent Orinoco
(WaveLan) Golden 11Mbps PCMCIA card inserted
into a PCMCIA expansion pack for the IPAQ. Besides
the program execution time, we also measure the
program energy consumption. We connect an HP
3459A high precision digital multimeter to measure the
current drawn by the handheld device during program
execution. In order to get a reliable and accurate
server program

register

serverclient

network
translateclient program

register

(b)

ffloading scheme.

ARTICLE IN PRESS
C. Wang, Z. Li / J. Parallel Distrib. Comput. 64 (2004) 740–746744
reading, we disconnect the batteries from both the IPAQ
and the extension pack and we use an external 5 V DC
power supply instead.

We implement our computation offloading scheme in
GCC. A pointer analysis similar to [2] is used to get the
point-to information. Such information is then used to
identify references to the abstract memory locations. We
partition the program in function level and restrict all
the I/O functions to execute on the handheld during the
computation offloading.

5.1. Cost model

In our experiments, we model the cost as the program
execution time during task partitioning. We estimate the
execution time of each instruction by averaging over
repeated execution of that instruction. We then get the
cost cs and cc for each basic block by adding the
execution time of the instructions in the same basic
block. For small data size, cd and cu are simply the
measured network latency time. For large data transfer,
we also consider the network transfer time which can be
calculated by the data size and network bandwidth. We
obtain other cost ca; cd and cu by physical measurement.
Each cost item is averaged over a large number of
synthesized workloads. In our experiments, with our
cost model, the difference of the whole program
Execution Time

0

20

40

60

80

100

120

140

 RASTA
(5)

RASTA-A
(5)

 EPIC
(5)

 EPIC
(1)

UNEPIC
(100)

 UNEPIC
(20)

T
im

e
(s

)

Original
Offloading

Fig. 2. Perfor

Energy Consumption

0

50

100

150

200

250

300

350

400

 RASTA
(5)

RASTA-A
(5)

 EPIC
(5)

 EPIC
(1)

UNEPIC
(100)

 UNEPIC
(20)

E
n

er
g

y
(J

)

Original
Offloading

Fig. 3. Energy co
execution time between the measured result and
estimated cost is in range of 10–30%. We will consider
more accurate cost models [7,5] in our future work.

5.2. Computation offloading result

Fig. 2 shows the performance for several programs.
We compare the results between two versions for each
program. One version is the original program running
completely on the handheld device. The other version is
partitioned between the handheld device and the server
which is obtained by applying our partition algorithm
for that particular execution. To generate the machine
code (for both the server and the handheld), all the
programs, including the transformed ones, are compiled
using the GCC compiler with the -O2 optimization level.
Fig. 3 shows the measured results of energy consump-
tion which we can see, are proportional to the
performance.

We should note that not all the options for these
programs can get benefits from computation offloading.
Here, we only show the results for a subset of options
that can benefit from computation offloading. In each
figure, we append the program names by the execution
option and by the number of repeated execution. The
program SUSAN performs photo processing. We run this
program using the option -s (smoothing) and -e
Execution Time

0

5

10

15

20

25

30

35

40

45

GNUPLOT
x*x-y*y eps

(20)

GNUPLOT
x*x-y*y X11

(20)

GNUPLOT
sin(x) eps

(20)

GNUPLOT
sin(x) X11

(20)

SUSAN-s
(20)

SUSAN-e
(20)

T
im

e
(s

)

Original
Offloading

mance.

Energy Consumption

0

20

40

60

80

100

120

140

GNUPLOT
x*x-y*y eps

(20)

GNUPLOT
x*x-y*y X11

(20)

GNUPLOT
sin(x) eps

(20)

GNUPLOT
sin(x) X11

(20)

SUSAN-s
(20)

SUSAN-e
(20)

E
n

er
g

y
(J

)

Original
Offloading

nsumption.

ARTICLE IN PRESS
C. Wang, Z. Li / J. Parallel Distrib. Comput. 64 (2004) 740–746 745
(recognizing edges). The program RASTA performs
speech recognition. It can generate results in two
formats: binary data (default) and ASCII data (option
-A). The program EPIC compresses graphics. Program
gnuplot runs interactively with a command interface,
and the options are specified for various commands. We
generate three-dimensional figures with the splot com-
mand, and x�x-y�y is the plotted function. The option
eps means generating an eps file, and X11 means
generating X11 events for display. For figures with the
same options, we use different input files.

It is difficult to measure the time spent on book-
keeping. We count the operations instead. Fig. 4 shows
the estimated bookkeeping overhead ratio for the test
programs. This figure only shows the results for
execution time. The results for energy consumption are
similar. The average run-time bookkeeping overhead is
about 13%.

We should note that optimal program partitions vary
with different program inputs. The optimal partition
for one option may slow down the program execution
for other inputs. Fig. 5(a) shows the program speedup
for different inputs of SUSAN using the program
partition got by the option -s. With our option-
clustering heuristic, we can group the program options
Program Speedup for Particular Partitioning

0

0.5

1

1.5

2

2.5

3

Different Input

S
p

ee
d

u
p

S
p

ee
d

u
p

(a) (b

Fig. 5. Experimental result

Overhead Ratio

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

su
sa

n-
s

su
sa

n-
e

ra
sta

ra
sta

-A
ep

ic
ep

ic

un
ep

ic

un
ep

ic

x*
x-

y*
y,

ep
s

x*
x-

y*
y,

X11

sin
(x

),
ep

s

sin
(x

),
X11

Other Cost Bookkeeping Cost

Fig. 4. Bookkeeping overhead.
into two clusters and prepare one partition for each
cluster. The resulting program speedup is shown in
Fig. 5(b).
6. Related work

Li et al. [9,8] propose a partition scheme for
computation offloading which results in significant
energy saving for half of the multimeter benchmark
programs. The scheme is based on profiling information
about computation time of procedures and inter-
procedural data communications. It minimizes the cost
and guarantees correct communication within a specific
execution context only. Their work does not study the
important issue of how to guarantee the correct
distributed execution under all possible execution
contexts. Neither does it consider the different partitions
for different program inputs.

Kremer et al. [6] introduce a compilation framework
for power management on handheld computing devices
through remote task execution. Their paper does not
address details about the data consistency issue. They
only consider the procedure calls in the main routine as
the candidates for remote execution and they evaluate
the profitability of remote execution for each individual
task separately. For tasks that share common data,
evaluating the profitability of remote execution of each
individual task separately may result in the overcount of
data communication cost. Using their approach, due to
the overcount of data communication cost, only 7 out of
the 12 testing programs in the previous section can get
benefits from computation offloading.
7. Conclusion and future work

In this paper, we have presented a computation
offloading scheme on handheld devices. Our computa-
tion offloading scheme guarantees the correct distrib-
uted execution under all possible execution contexts.
Program Speedup for Option Clustering

0

0.5

1

1.5

2

2.5

3

Different Input)

for option clustering.

ARTICLE IN PRESS
C. Wang, Z. Li / J. Parallel Distrib. Comput. 64 (2004) 740–746746
Our partition algorithm finds optimal program parti-
tioning for given program input data. We use a heuristic
method to deal with different program partitioning for
different execution options. Experimental results show
that our computation offloading scheme can signifi-
cantly improve the performance and energy consump-
tion on handheld devices. However, we believe our
computation offloading scheme can still be improved.
First, our cost model for execution time can be
improved. More accurate time estimation models [7,5]
may get better result. Second, the point-to analysis [2]
used in our experiment is control and flow insensitive,
we plan to implement more accurate analysis [11]. Last,
our computation offloading may be improved by
dynamically adapting the program partition to the
inputs and system information at run time. We plan to
integrate adaptive analysis in our scheme as the next
step.
References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R.

Rajamony, W. Yu, W. Zwaenepoel, Treadmarks: shared memory

computing on networks of workstations, IEEE Comput. 29 (2)

(1996) 18–28.

[2] L. Andersen, Program analysis and specialization for the C

programming language, Ph.D. Thesis, DIKU, University of

Copenhagen, 1994.

[3] T. Ball, J.R. Larus, Optimally profiling and tracing programs,

ACM Trans. Programming Languages Systems 1994, Vol. 16, No.

4, pp. 1319–1360.

[4] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms, and

Applications, Springer, London, 2001.

[5] J. Engblom, A. Ermedahl, Modeling complex flows for worst-case

execution time analysis, Proceedings of RTSS’00, 21st IEEE Real-

Time Systems Symposium, 2000, Orlando, FL, USA.

[6] U. Kremer, J. Hicks, J.M. Rehg, A compilation framework for

power and energy management on mobile computers, 14th

International Workshop on Parallel Computing (LCPC’01),

August 2001, Comberland Falls, KY, USA.

[7] Y.-T.S. Li, S. Malik, A. Wolfe, Efficient microarchitecture

modeling and path analysis for real-time software, IEEE Real-

Time Systems Symposium, 1996, Washington, DC, USA.

[8] Z. Li, C. Wang, R. Xu, Computation offloading to save energy on

handheld devices: a partition scheme, Proceedings of the
International Conference on Compilers, Architectures and

Synthesis for Embedded Systems, November 2001, Atlanta, GA,

USA.

[9] Z. Li, C. Wang, R. Xu, Task allocation for distributed multimedia

processing on wirelessly networked handheld devices, Proceedings

of 16th International Parallel and Distributed Processing Sympo-

sium, April 2002, Ft. Lauderdale, FL, USA.

[10] A. Rudenko, P. Reiher, G.J. Popek, G H. Kuenning, Saving

portable computer battery power through remote process execu-

tion, Mobile Comput. Comm. Rev. 2 (1) (January 1998) 19–26.

[11] R.P. Wilson, M.S. Lam, Efficient context-sensitive pointer

analysis for C programs, Proceedings of the ACM SIGPLAN

’95 Conference on Programming Language Design and Imple-

mentation (PLDI), June 1995, LaJolla, CA, USA.

Cheng Wang is a Ph.D. student and research assistant at the

Department of Computer Science in Purdue University. He received

a B.S. in Mathematics Science and an M.S. in Computer Science from

Fudan University of P.R. China in 1995 and 1998, respectively. His

research interests include compilation techniques for parallel comput-

ing, memory performance optimization, and compiler support for

power and energy managements on handheld and embedded systems

in distributed environments.

Zhiyuan Li is Associate Professor at the Department of Computer

Science in Purdue University. He received a B.S. in Mathematics from

Xiamen University of P.R. China in 1982, and an M.S. and a Ph.D.,

both in Computer Science, from University of Illinois, Urbana-

Champaign, in 1985 and 1989, respectively. Before he joined Purdue

University in 1997, he worked as a senior software engineer at Center

for Supercomputing Research and Development in University of

Illinois, Urbana-Champaign, and as Assistant Professor at the

Department of Computer Science, University of Minnesota, Minnea-

polis-St. Paul.

Li received a Research Initiation Award an Early-Faculty Career

Award from National Science Foundation (NSF) in 1992 and 1995,

respectively. He has served as a member of several NSF review panels

and program committees of several computer conferences, including

IEEE/ACM International Parallel and Distributed Processing sympo-

sium (IPDPS), ACM International Conference on Supercomputing

(ICS), International Conference on Parallel Processing (ICPP) and

SIGPLAN Symposium on Languages, Compilers, and Tools for

Embedded Systems (LCTES). He has also co-edited special issues for

journals such as IEEE Transactions on Parallel and Distributed

Systems and International Journal on Parallel Programming. Li’s

current research interests include compilers and run-time support for

parallel and distributed systems, for memory performance optimiza-

tion, and for energy-saving on handheld and embedded systems in

distributed environments.

	A computation offloading scheme on handheld devices
	Introduction
	Computation offloading scheme
	Partition Analysis
	Program abstraction
	The constraint system
	Cost analysis
	Partition algorithm

	Program transformation
	Experiments
	Cost model
	Computation offloading result

	Related work
	Conclusion and future work
	References

