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Abstract

Processors such as the Intel StrongARM SA-1110 and
the Intel XScale provide flexible control over the cache
management to achieve better cache utilization. Programs
can specify the cache mapping policy for each virtual
page, i.e. mapping it to the main cache, the mini-cache,
or neither. For the latter case, the page is marked as
noncacheable. In this paper, we use memory profiling to
guide such page-based cache mapping. We model the cache
mapping problem and prove that finding the optimal cache
mapping is NP-hard. We then present a heuristic to select
the mapping. Execution time measurement shows that our
heuristic can improve the performance from 1% to 21%
for a set of test programs. As a byproduct of performance
enhancement, we also save the energy by 4% to 28%.

Key words – handheld devices, cache mapping, multiple
caches, mini-cache, cache bypass

1 Introduction

The issue of reducing the average memory access time
continues to receive wide-spread attention. One of the
hardware approaches proposed in recent studies [20, 15, 24,
5] uses horizontally partitioned data caches. This approach
maintains multiple data caches at the same level in the cache
hierarchy. Different caches may have different structures.
There are several advantages to this approach:

• Different memory addresses may exhibit different
locality behaviors and some may have no locality at
all. By carefully mapping different data to different
subcaches, we may get a higher overall cache hit ratio.

• Smaller subcaches allow a faster CPU clock because
of the shorter cache hit time.

• On a partitioned cache, it is possible to probe just
one of the subcaches during a data access. This can
result in a substantial energy saving [15, 24, 1, 14],
which is especially important to handheld devices and
embedded systems.

Cache bypass is another technique to reduce the average
memory access time. It keeps non-reusable data items out of
the cache in order to use the cache space to retain reusable
data. For the data items exhibiting low locality, cache
bypass also reduces the amount of data fetched from the
main memory, because only the target data item, instead of
the whole cache line, needs to be transferred. A number of
hardware solutions [13, 23] have been proposed to monitor
the memory access patterns and to make bypass decisions.

Most of the hardware schemes mentioned above need
relatively expensive dedicated hardware, such as extra
tags [1], a nontemporal data detection unit [20], or a
Memory Address Table (MAT) [13], to detect memory
access patterns. The cost of the hardware prevents these
schemes from being used in the processors for current
handheld devices and embedded systems.

Processors such as the Intel StrongARM SA-1110 [10]
and the Intel XScale [11] use a less expensive technique by
allowing application programs or compilers to specify the
cache mapping policy for each virtual page. The processor
contains a relatively small-sized mini-cache in parallel with
the main data cache. Each page can be mapped to either the
main cache or the mini-cache, or marked as noncacheable
(for cache bypass). Intel Developer’s Manual [10] states
that the mini-cache is designed to prevent thrashing on
the main data cache. Its typical use is to store large data
structures such that accesses to these data structures do not
interfere with the data in the main data cache.

The support for multiple cache policies provides the
potential benefits of both the horizontally partitioned data
cache and the bypass cache. However, to take advantage
of this feature, one must carefully specify the cache policy



for the individual virtual page. We call the process of
specifying the mapping between the virtual pages and the
caches cache mapping. Although Intel gives guidelines for
cache mapping as mentioned above, applying them to real
programs faces several challenges: It is often difficult to
predict the cache reuse pattern in non-numerical programs.
Even the programmer may not predict the cache behavior
accurately. Moreover, the decision on cache mapping
cannot be made for a single data object in isolation without
considering other objects stored in the same page.

In this paper, we use memory profiling to study page-
level cache mapping. We model the cache mapping problem
and prove that its optimal solution is NP-hard. We present a
cache mapping heuristic and implement it for Compaq iPAQ
3650 handheld devices which use the Intel StrongARM SA-
1110 processor.

The rest of this paper is organized as follows: in
Section 2, we briefly review the cache system in Intel
StrongARM SA-1110 and discuss why a cache system
with multiple mapping policies can perform better than
traditional caches. In Section 3 we formalize the cache
mapping problem and prove it to be NP-hard. Section 4
gives a heuristic algorithm. The experimental results are
presented in Section 5. We review related work in Section
6 and conclude in Section 7.

2 Background

The Intel StrongARM SA-1110 processor [10] employs
two logically separate data caches, i.e. the main data cache
and the mini-cache. The 8K-byte main data cache is
32-way set associative with Round-Robin replacement. The
512-byte mini-cache is 2-way set associative with LRU
replacement. The cache line size is 32 bytes on both caches.
For each data cache access, both caches are probed in
parallel. However, a particular memory block can exist in
only one of the two caches at any time.

Both the main cache and the mini-cache are indexed
and tagged by virtual addresses. All memory blocks in
the same virtual page will be mapped to the same cache.
The mapping is controlled by the bufferable bit (B) and the
cacheable bit (C) in the page table entry in the MMU. If
B=1 and C=1, which is the default, the page is mapped to
the main data cache. If B=0 and C=1, it is mapped to the
mini-cache. If C=0, then the page is noncacheable and its
accesses bypass both caches. This mechanism provides the
compiler or the application programs the ability to control
page-to-cache mapping by modifying the B and C bits in the
MMU. Note that we need to flush the caches and the TLB
entries for consistency after changing the page mapping.

By carefully mapping different references to different
caches, we can achieve better cache utilization than tradi-
tional caches through better cache replacement. Assuming

all the caches are fully associative with LRU replacement,
consider the following trace where each variable represents
a memory block: x0 x1 x1 x2 x2 x0. If we have a
single cache of size smaller than or equal to 2 cache lines,
then a capacity miss will occur at block x0. In contrast, if
we have two independently indexed caches, each of which
has one cache line, then we can allocate x0 to one cache
and x1 and x2 to the other cache. No capacity miss occurs.

The idea of reducing capacity misses by selecting
memory references to bypass the cache can be illustrated
via the following example: x0 x1 x2 x0. In this
memory trace, there are no reuses for blocks x1 and x2. If
we let the references to these blocks bypass the cache, then
x0 can be reused for a cache size as small as one cache line.

3 The Optimal Cache Mapping

We define the CACHE-MAPPING problem as the
following: given a memory trace, determine the best
page-to-cache mapping such that the average memory
access time is minimized. Since we do not reduce the
number of references, the objective of minimizing the
average memory access time is the same as minimizing the
total memory access time, which can be expressed by the
following formula:

T = Thit in main ∗ Nmain ∗ hmain+
Tmiss in main ∗ Nmain ∗ (1 − hmain)+
Thit in mini ∗ Nmini ∗ hmini+
Tmiss in mini ∗ Nmini ∗ (1 − hmini)+
PNnoncacheable

i=1 (x + Si/B)

(1)

where Thit in main and Thit in mini denote access time
for a cache hit at the main cache and the mini-cache
respectively. Tmiss in main and Tmiss in mini denote the
average access time for a cache miss at the main cache and
the mini-cache respectively. The term x is the delay for
accessing the first byte of any data in the main memory,
B the memory bus bandwidth, and Si the data size for
the ith noncacheable memory access. Nmain and Nmini

are the total number of accesses to the main cache and the
mini-cache. Nnoncacheable is the number of noncacheable
accesses. hmain and hmini represent the hit ratios for the
main cache and the mini-cache.

Formally, the page-to-cache mapping is done by assign-
ing each virtual memory page to one of the three mutually
exclusive sets, Setmain, Setmini and Setnoncacheable.
Setmain contains the pages mapped to the main cache;
Setmini contains the pages mapped to the mini-cache and
Setnoncacheable contains the noncacheable pages.

We make the following assumptions to simplify the
CACHE-MAPPING problem:

• Thit in main = Thit in mini and Tmiss in main =
Tmiss in mini. Hence, we simply use the terms Thit



and Tmiss, respectively. The StrongARM SA-1110
processor probes both caches in parallel, so it is
necessary to have Thit in main = Thit in mini. Since
the main memory operation and the bus transmission
constitute the main part of the cache miss penalty,
Tmiss in main and Tmiss in mini are approximatively
equal.

• All the data items targeted by noncacheable accesses
are of the same size. This assumption is reasonable
for the SA-1110 processor even though the memory
system supports accesses in burst mode. This is
because, in compiler-generated code, the majority
of the loads and stores access one word at a time.
We denote the time to load or to store a single
noncacheable word by Tnoncacheable.

With these assumptions, we can simplify the memory
access time in Formula (1) to

T = Tmiss ∗ (Nmain + Nmini + Nnoncacheable)
−(Tmiss − Thit) ∗ (Nmain ∗ hmain + Nmini ∗ hmini)
−(Tmiss − Tnoncacheable) ∗ Nnoncacheable

(2)

Notice that, under the condition of Tnoncacheable =
Tmiss, T is minimized if and only if the total number of
hits, i.e. Nmain ∗ hmain + Nmini ∗ hmini, is maximized.
In the following, we shall first prove the problem of
maximizing the cache hits to be NP-hard. We then prove the
NP-hardness of the CACHE-MAPPING problem without
the condition of Tnoncacheable = Tmiss.

3.1 NP-hardness proof

Definition 1. MAX-HIT problem:
Instance: A main cache of size S, a mini-cache of size
Smini, each having either the LRU or the Round-Robin
replacement policy, a page size Sp, a set (P) of virtual
pages such that each page Pi ∈ P contains memory
blocks (i, 1), (i, 2), . . . , (i, Sp), and a sequence of memory
accesses A = a1, . . . , an, to the memory blocks introduced
above. The number of distinct memory blocks accessed in
the sequence is assumed to be greater than the size of each
cache.
Solution: a partition of pages in P into Setmain, Setmini

and Setnoncacheable, such that the total number of cache
hits of A is maximized.

Lemma 1: MAX-HIT is NP-hard in terms of the length of
the memory-access sequence if max(S, Smini) ≤ Sp − 1
and S 6= Smini.
Proof: We reduce MAX2SAT [8] to MAX-HIT. The
MAX2SAT problem is defined as: given a set of clauses,
each being a disjunction of at most two literals1, and

1
v and ¬v are two opposite literals of variable v.

an integer K, whether there is a truth assignment that
satisfies at least K of the clauses. Given an instance of
MAX2SAT, we construct a sequence of memory accesses
which consists of a prefix and a postfix. The prefix enforces
a one-to-one correspondence between the truth assignment
in the MAX2SAT and the page placement in MAX-HIT.
The postfix is transformed from the clauses of the given
MAX2SAT instance.

Throughout this proof, we use the notation A(i, b) to
represent a reference to the bth memory block in page Pi

(if b = 0, A(i, b) is null). The notation A[(i, b1), (i, b2)]
denotes the series of A(i, b1), A(i, b1 − 1), . . . , A(i, b2). If
b1 < b2, A[(i, b1), (i, b2)] is empty. Let N be the length (i.e.
the number of clauses) of the MAX2SAT instance. Without
loss of generality, we assume S > Smini.

We first construct the prefix. For each variable v in
MAX2SAT, we introduce 3 virtual pages, Pv , P¬v and Pv′′ .
The prefix is the concatenation of the following memory
accesses for each variables v:
A[(v ,S), (v , 1 )]A[(¬v ,S), (¬v , 1 )]A(v ′′, 1 ) . . . (repeat 2 ∗ N + 1 more

times)

By placing Pv′′ in Setmini (i.e. mapping it to the
mini-cache), either Pv or Pv′ in Setmain (i.e. mapping it
to the main cache) and the other page in Setnoncacheable,
the prefix has (2∗N +1)∗ (S +1) cache hits,the maximum
possible.

Table 1 defines the rules to transform a clause to the
memory accesses in the postfix. In the table, α and β
denote two literals of distinct variables in the clause2. α′

and β′ are the opposite literals respectively. For each clause
in the MAX2SAT instance, we apply one of the two rules
exactly once. Since S ≤ Sp − 1, we have at least S + 1
memory blocks in each virtual page. Given the cache sizes,
the memory accesses introduced for each clause have 2
potential cache hits (marked in bold). Therefore, the total
number of cache hits in the postfix is at most 2 ∗ N .

We obtain the whole memory access sequence by
appending the postfix to the prefix. In the optimal solution,
exactly one of the two pages associated with each variable
should be mapped to the main cache:

• Mapping Pv or Pv′ to the mini-cache will not produce
any hit in the mini-cache for the memory accesses in
prefix. As a result, only page Pv′′ should be mapped to
the mini-cache. Otherwise, we lose at least (2∗N +1)
hits.

• If there exists a variable v such that both Pv and P¬v

are in Setmain, the accesses to Pv and P¬v in the
prefix will be cache misses. By placing one of them
in Setnoncacheable, the cache hit count will increase
by at least (2 ∗ N + 1) ∗ S. In the postfix, while this

2
α ∨ α is reduced to α, and α ∨ ¬α is removed.



Table 1. Clause transformation rules under S ≤ Sp − 1

Clause Memory access sequence
α A[(α, S + 1 ), (α, 1 )] A(α,1)

α ∨ β A[(α, S + 1 ), (α, 1 )] A(α,1) A[(α′, S + 1 ), (α′, 2 )] A(β′, S + 1 ) A(α′, 1 )A[(β′, S ), (β′, 1 )] A(α′,1)

may force some accesses to become cache misses, the
decrease in cache hits is no more than 2 ∗ N .

• By the same argument, if there exists a variable v
such that both Pv and P¬v are in Setnoncacheable, by
placing one of them in Setmain, the total cache hit
count will be increased.

Therefore, we can build the following one-to-one
mapping between the truth assignment and the page
placement:

• Pv ∈ Setmain ⇔ v is true.

• P¬v ∈ Setmain ⇔ v is false.

Under this mapping, the transformation rules guarantee
that a satisfied clause will increase the cache hit count by
exactly 1, and an unsatisfied clause will not affect the cache
hit count:

• If α is true (which means Pα is in Setmain), the
memory access A(α,1) is a hit, but no other listed
accesses can be hits.

• If α is false (which means Pα′ is in Setmain), the
memory access A(α,1) will not be a cache hit.

– If β is true, Pβ′ is in Setnoncacheable, so
A(α′,1) is a hit.

– If β is false, Pβ′ is in Setmain, A(α′,1) is a
miss. The cache hit count will not increase.

With this property, it is easy to see that maximizing the
cache hit count is equivalent to maximizing the number of
satisfied clauses. An optimal MAX-HIT solution will derive
an optimal solution of the MAX2SAT.

Finally, the memory access length constructed in this
reduction is a polynomial function of N . Therefore,
MAX-HIT is NP-hard. �

Note that in the proof given above, we do not assume any
associativity property for the caches. The proof is valid for
directly-mapped, set-associative or full-associative caches.

Lemma 2: Lemma 1 remains correct if S = Smini.
Proof: We will use the following prefix,
A[(v ,S), (v ,1 )]A[(¬v ,S), (¬v ,1 )]A(v ′′, 1 )A[(v′′, S), (v′′, 1)]

. . . (repeat 2 ∗ N + 1 more times)

In the optimal mapping, Pv′′ will definitely be mapped to
one of the two caches. Exactly one of Pv and P¬v will be
mapped to the other cache. If Pv is mapped to the cache, v
is true, otherwise, v is false. �

Lemma 3: If max(S, Smini) ≥ Sp and the caches are
fully associative, MAX-HIT is still NP-hard in terms of the
length of the memory access sequence.
Proof: See [17]. �

Theorem 1: CACHE-MAPPING is NP-hard in terms of the
length of the memory access sequence.
Proof: Suppose Tmiss 6= Tnoncacheable. The optimal cache
mappings given in the proofs of Lemmas 1 through 3 remain
optimal, as long as we make the prefix sufficiently long.
We show how this is done in Lemma 1. In the prefix,
we repeat memory accesses to Pv and P¬v R more times,
instead of 2 ∗ N + 1 more times, where R is determined as
follows. Suppose we change the page mapping from the
optimal one in Lemma 1. This would increase T in the
prefix by at least R ∗ (Tnoncacheable − Thit). At the same
time, we may decrease T in the postfix by no more than
2(S +1)∗N ∗ (Tmiss−Tnoncacheable). Let R = 2(S +1)∗
N ∗ (Tmiss − Tnoncacheable)/(Tnoncacheable − Thit) + 1.
The optimal mapping in Lemma 1 will remain optimal for
CACHE-MAPPING. The number of satisfied clauses in
MAX2SAT equals the number of cache hits in the optimal
solution for CACHE-MAPPING. �

If we remove the mini-cache from CACHE-MAPPING,
the problem becomes how to optimally select the non-
cacheable virtual pages. With slight adjustments, the proofs
of Lemmas 1 through 3 and Theorem 1 remains valid. (In
the proof of Lemma 1, we simply remove the memory
accesses to A(v′′, 1) from the prefix.) Hence, this special
case of CACHE-MAPPING is also NP-hard.

4 A Heuristic Algorithm

Because the CACHE-MAPPING problem is NP-hard,
we develop a heuristic algorithm to obtain an approximate
solution in polynomial time.

To better illustrate the idea of the heuristic, we use
the following code example throughout this section. We



assume that the arrays in the example are allocated
contiguously in the memory, the start address of array A
is page aligned and the cache parameters are the same as
StrongARM SA-1110 (refer to Section 2).

int A[1024]; /* Page P1 */
int B[24]; /* Page P2 */
int C[1000];
int D[2300]; /* Page P3 P4 and P5 */
int E[1024]; /* Page P5 and P6 */

...
for(i=0;i<20;i++) {

for(j=0;j<1024;j++)
A[j] += i+j + B[j%24];

for(j=0;j<1024;j++)
A[j]+= D[j] +C[j%512];

}
for(i=1024;i<2048;i++)

E[i-1024] = D[i];

The heuristic uses a greedy strategy to try to fit the most
accessed pages into the caches. We visit each virtual page in the
decreasing order of their access counts. In the example code, the
page visit order is P1 P2 P3 P4 P5 P6. We start with the system’s
default mapping which maps all pages to the main cache. We
check to see whether we will move the visited page from the main
cache to the mini-cache or mark it as noncacheable. Initially, all
pages are marked as undecided. Once we mark a page as decided,
its mapping will not change any more.

When we pick the most accessed undecided page Pi for
mapping, we count the number of cache hits after taking one of
the following two actions:

1. Map Pi to the mini-cache.

2. Keep Pi in the main cache and map some other undecided
pages to the mini-cache. These candidates for mapping to
the mini-cache are picked according to their conflict weights
against page Pi, which will be explained later.

To count the cache hits, we assume the caches to be fully
associative and the replacement policy to be LRU. For each
memory reference, r, which accesses memory block a, we count
Rd, the number of distinct memory blocks which are mapped to
the same cache as a (under the current mapping) and which are
accessed between r and the most recent reference to a. If Rd is
smaller than the size of the cache to which a is mapped, then r is
a hit. Otherwise r is a miss. To make computation of Rd fast,
we preprocess the memory trace by keeping a page-population
list for each reference r. Each member in such a list is a pair
(k, ck), where k represents a virtual page referenced between r
and its most recent reference to the same memory address a. ck

is the number of distinct memory blocks in page k which are
referenced meanwhile. To compute Rd for r, under any given
page mapping, we just need to add up the reference counts of the
pages (in the page-population list) which are mapped to the same
cache as the page containing r. This takes O(m) time for each
reference r, where m is the number of pages. The preprocessing
has a one-time cost of O(nm), where n is the total number of the
memory references.

For each choice (Action 1 or Action 2) described above, we
not only count the total cache hits as the result, but also the cache
hit ratio for Pi and those candidate pages for moving to the mini-
cache. We favor the choice which results in a higher total number
of hits. However, before we finally commit to the page mapping
according to that choice, we examine the hit ratio for each of the
pages to be decided, to see whether it is below the noncacheable
threshold (which makes the page noncacheable). If the hit ratio,
h, for page p satisfies

h <
Tmiss − Tnoncacheable

Tmiss − Thit

then we have

Thit ∗N(p)∗h+Tmiss ∗N(p)∗ (1−h) > Tnoncacheable ∗N(p)

where N(p) is the number of memory access to page p. Hence, p
should be made noncacheable. If we determine that a candidate
page stays mapped to a cache, we commit its recent mapping
decision and mark it as decided. For our experimentation platform,
i.e. the Intel StrongARM SA-1110, we compute the noncacheable
threshold to be 0.28.

For Action 2 mentioned above, we pick a set of undecided
pages as candidates for mapping to the mini-cache. This set
is selected based on the conflict weights between Pi and those
candidate pages.

Let ai,j be the jth access in page i and let ri,j be the
most recent reference to the same memory block accessed by
ai,j . Rd(ai,j) is the number of distinct memory blocks accessed
between ai,j and ri,j . The conflict weight between page Pi and

page Pk is defined as Wi(Pk) ≡
P

j

R1(k,ai,j)

Rd(ai,j)
, where R1(k, ai,j)

is the number of distinct memory blocks in page Pk that are
referenced between ai,j and ri,j .

We rank all currently undecided pages by the decreasing order
of their conflict weights against Pi, and we try one by one to select
those to be mapped to the mini-cache. In the sample code, when
visiting page P1, we compute W1(P2) = 990, W1(P3) = 1187
and the conflict weights of other pages against P1 equal 0. Hence,
we will first map P3 to the mini-cache. If this move increases the
overall cache hits, then in the next step, we will try to map both P3

and P2 to the mini-cache. Otherwise, we will pull back P3 and try
to map P2 to the mini-cache. The decision made when we visit P1

is to map P1 to the main cache and P3 to the mini-cache. Their hit
ratios are both above the noncacheable threshold.

Our final mapping result is P1 and P2 to the main cache and
all the remaining pages to the mini cache. We reduce the cache
misses from 6862 (by the default mapping) to 3010.

The overall algorithm is presented in Figure 1. The input
of the heuristic is the memory trace. The complexity of
the algorithm is O(m3n) where m is the number of pages
and n is the number of memory accesses. Since, in each
step, the mapping changes only if the total memory access
time decreases, it is easy to see that our heuristic algorithm
will never generate a cache mapping worse than the default
mapping where all pages mapped to the main data cache.



Procedure Greedy cache mapping
Input: memory trace
Output: Setmain, Setmini and Setnoncacheable

Procedure:
Initialize Setmini = Setnoncacheable = ∅

Initialize Setmain = all pages; Mark all pages undecided
Sort pages by the page access count
For each undecided page Pi picked in decreasing order of the access count

Hits = the total hit count on both caches
Try putting Pi in Setmini

Compute try1 = the new total hit count on both caches
Mark page Pi as candidate
If (Hits < try1)

Hits = try1
Endif
Compute the conflict weights for Page Pi

For each undecided page Pj picked in decreasing order of Wi(Pj)
Try putting Pj in Setmini

Compute try2 = the new hit count on both caches
If (Hits < try2)

Put Pj in Setmini

Hits = try2
Mark page Pj as candidate

Endif
Endfor
If (Hits = try1)

Put Pi in Setmini

Endif
If (Hit ratio of a candidate page Pj < noncacheable threshold)

Move Pj to Setnoncacheable

Endif
Mark candidate page(s) as decided

Endfor
End

Figure 1. The heuristic algorithm

5 Experimental Results

We have implemented the cache mapping heuristic for
the Compaq iPAQ 3650 PDA, which has a 206MHz Intel
StrongARM SA-1110 processor and 32MB RAM. Since
changing the default mapping requires the modification of
the page table entry, we add a system call to the Linux
kernel on the iPAQ. This system call modifies the page
table entry for one virtual page and also maintains the
consistency of the caches. We insert a number of such
system calls in the original program to enforce the new
cache mapping determined by the heuristic. Notice that
the system call is inserted just once for each page that
has a non-default mapping. The run time overhead of
executing the instrumented code is less than 0.8% of the
total execution time for all the test programs. The memory
traces of the test programs are generated by a SimpleScalar
[3] based simulator. Throughout the experiment, we use
gcc with the -O3 switch to compile the program.

The programs used in the experiments are:
pegwit/decryption, pegwit/encryption,
ADPCM/rawcaudio, and ADPCM/rawdaudio from
MediaBench, mcf, crafty and gzip from SPEC2000
benchmark (the test input size), mm, a matrix-multiply
program (the problem size is 397), and ncompress, a
UNIX compression utility. We choose these programs
because they have relatively poor cache performance in

the iPAQ for the default mapping under gcc, where all
the virtual pages are mapped to the main data cache.
For programs (in MediaBench and SPEC2000) that have
good cache performance, the heuristic selects non-default
mapping for only a few rarely accessed pages. There is no
noticeable improvement or degradation for the new cache
mapping for these programs.

Figure 2(a) shows the measured execution time of test
programs after applying the new cache mapping. Since
the running time of different programs varies significantly,
we normalize it to the original program. The performance
improvements range from 1% to 21%. The harmonic mean
of the speedup is 1.12.

For a handheld device, it is important to find out whether
any performance gain comes at the cost of increased energy
consumption (due to the use of additional hardware units,
for example). In order to find out whether the new cache
mapping increases energy consumption, we measure the
energy saving in the new cache mapping. The experimental
settings for energy measurement are the same as described
in [16]. Figure 2(b) plots the energy consumed by each
program. The energy consumed by the original program
is used as the base for normalization. We see that the
new cache mapping reduces the energy consumption of the
handheld device by 4% to 28% for the listed test programs,
with a arithmetic mean of 16%.

As discussed in Section 4, the complexity of our heuristic
is relatively high. A simpler heuristic can be randomly
mapping virtual pages between the mini-cache and the
main cache in proportion to their sizes, and using the
noncacheable threshold to mark pages noncacheable. Real
measurements show that this random mapping increases
execution time over the default mapping by 6% to 180%
for the listed test programs.

5.1 Memory performance

We modify the SimpleScalar simulator to collect detailed
information on memory performance.

Table 2 presents the memory system statistics for the
default cache mapping with all pages mapped to the main
data cache. The column with the label of ld/st # shows
the number of loads and stores of the program. In the
following column we present the memory performance for
a 8KB 32-way set-associative cache with the Round-Robin
replacement policy (which is the configuration of the main
data cache in StrongARM SA-1110). The cache hit #
subcolumn shows the number of cache hits. The next two
subcolumns, main memory access # and main memory data
amount, show the total number of memory accesses and
total amount of data traffic to the main memory. The column
with label 16KB data cache shows similar information but
for a larger cache (a 16KB 32-way set-associative cache
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Figure 2. Normalized execution time and normalized energy consumption on the handheld device

Table 2. Memory system statistics (when only the main data cache is used)
8KB data cache 16KB data cache

ld/st # cache hit # main memory main memory cache hit # main memory main memory
program (×1000) (×1000) access # (×1000) data amount (MB) (×1000) access # (×1000) data amount (MB)
ADPCM/rawcaudio 40385 37356 3107 99.4 37978 2456 78.6
ADPCM/rawdaudio 50826 45744 5159 165.1 45947 4896 156.7
pegwit/encrypt 13024 10914 2160 69.1 11075 1978 63.4
pegwit/decrypt 7457 6204 1281 41.0 6293 1182 37.8
mcf 59630 45855 14866 475.7 48175 12448 398.3
mm 313491 242311 71181 2277.6 289397 24094 771.1
ncompress/compress 9791 5590 4277 136.9 5816 4050 129.6
ncompress/decompress 8261 5601 2698 86.3 6130 2149 68.8
crafty 19842 18235 1722 55.1 18718 1193 38.2
gzip 28893 23548 5573 178.3 24328 4755 152.1

Table 3. Memory system statistics (when the cache mapping determined by the heuristic is applied)
main cache mini-cache noncacheable cache total main memory

program access # hit # access # hit # access # data amount cache access # hit # access # data amount
(×1000) (×1000) (×1000) (×1000) (×1000) (MB) (×1000) (×1000) (×1000) (MB)

rawcaudio 38181 36539 2213 1936 0 0 40393 38475 1908 61.1
rawdaudio 47516 44380 3319 2659 0 0 50835 47039 3747 120.0
encrypt 12210 10952 33 18 781 3.1 12243 10970 2080 44.7
decrypt 7032 6224 17 9 407 1.6 7050 6233 1240 28.3
mcf 30794 28300 28785 20265 53 0.2 59580 48565 11871 378.4
mm 126741 126384 124554 124515 62199 248.8 251295 250899 62662 263.6
compress 6087 5375 624 455 3080 12.3 6711 5830 4011 42.1
decompress 5939 5458 545 441 1778 7.1 6484 5898 2383 26.4
crafty 17055 15674 2690 2655 97 0.2 19745 18329 1616 48.8
gzip 22989 21449 3839 2161 2066 8.3 26828 23610 5372 114.1

Table 4. The reduction of the amount of data accessed at the main memory

program total factor (2) factor (1) program total factor (2) factor (1)
rawcaudio 38.5% 3.3% 35.2% mm 88.8% 77.5% 11.3%
rawdaudio 27.3% 2.8% 24.5% compress 69.2% 63.8% 5.4%
encrypt 35.3% 32.8% 2.5% decompress 69.4% 58.7% 10.7%
decrypt 31.0% 28.8% 2.2% crafty 11.4% 6.1% 5.3%
mcf 20.5% 2.7% 17.8% gzip 35.9% 34.8% 1.1%



also with Round-Robin policy).
Table 3 presents the memory access statistics for the

new cache mapping. The parameters for the caches are the
same as the StrongARM SA-1110. The main cache and
mini-cache columns show the breakdown of the accesses
for two caches and the corresponding numbers of cache
hits. The cache total column is the combined cache access
count and number of cache hits for cacheable pages. The
noncacheable and main memory columns show the memory
access count and amount of accessed data for noncacheable
pages and for the main memory, respectively. Note that
since we have instrumented codes to enforce the new cache
mapping, the total number of accesses is slightly greater
than the number of loads and stores in Table 2.

Comparing Table 3 with Table 2, we see that the
new cache mapping can enhance the overall memory
performance through two factors: (1) increasing the overall
cache hits, and (2) saving the data amount by avoiding
fetching unused data. Both cache bypass and the use
of the mini-cache can contribute to factor (1). For
example, in rawcaudio, the heuristic places the input
and output buffers, which exhibit spatial locality only,
in the mini-cache. This way, we do not lose cache
hits for the accesses to the virtual pages containing the
input/output buffers, and the cache hits to other pages
increase. Program mm shows an example of using cache
bypass to increase overall hits. This program computes the
matrix multiplication of C = A * B. The heuristic places the
pages for array C into the mini-cache, marks the pages for
array B as noncacheable, and keeps the pages for array A
in the main cache. By doing this, we increase the number
of hits through the temporal reuse for the references in the
pages of array A, and the data transfer amount to the main
memory is also significantly reduced (by bypassing array
B). It is worth while to mentioning that the new cache
mapping determined by the heuristic increases the overall
cache hits for all the test program.

The increase of the overall hits also reduces the data
amount fetched from the main memory. However, if cache
bypass is heavily applied, factor (2) tends to be the bigger
component in the overall data amount reduction. Table 4
shows the composition of the reduction. The total column
shows how much the new mapping reduces the amount of
data accessed at the main memory, which is normalized
to data amount of the original program. The next two
columns show such reductions from factor (2) and factor
(1), respectively. We see that for encrypt, decrypt,
mm, compress, decompress, and gzip, a predominant
percentage of the reduction is from factor (2). This shows
that these programs benefit more from cache bypass, since
factor (2) is solely achieved from cache bypass.

We also perform experiments to understand whether the
improvements of hit ratios are the result of a relatively

larger cache (i.e. 8K+512 bytes), or the result of smart use
of the cache mapping method. We can compare Table 3
with the data of 16KB data cache column in Table 2.
Although with a much larger-sized cache (16KB), the hit
ratios for rawcaudio, rawdaudio and mcf are still
lower than achieved by the new mapping on the smaller
cache configuration of ( 8K + 512 bytes ).

This indicates the improvements are indeed from the new
cache mapping.

6 Related Work

Cache bypass and the horizontally partitioned caches
have been studied in [23, 13, 9, 20, 21, 22, 18]. Most
of these previous efforts focus on new cache designs at
the micro-architectural level. Our work in this paper
studies a software method to better utilize the caches on
a commercial system that are horizontally partitioned and
allow cache bypass. We have not found previous work that
addresses the same issue. To the best of our knowledge,
this is the first work to model the cache mapping problem at
virtual page level and report measurement result (both for
performance and for energy data).

Several authors have applied heuristics to memory traces
to determine memory allocation for data objects [4, 7, 6].
They rearrange the layout of data objects to reduce conflict
misses. (Optimal data layout is known to be NP-hard [19].)
Our scheme does not change the data layout and is aimed at
reducing capacity misses by smart page mapping.

Brehob et al. [2] prove that the optimal replacement for
Companion Cache Structure (CCS) is NP-hard. A CCS
consists of a main cache and a fully-associative companion
buffer (similar to the mini-cache). Cache bypass is allowed
for both caches in CCS. Their work is different from
this work in the following major aspects. First, they
assume ideal cache replacement, while we assume LRU
or Round-Robin replacement. Second, their proofs require
the companion buffer. In contrast, our proofs are always
valid, regardless the existence of the mini-cache. Third, the
cache mapping decision in our work is for each virtual page.
Their work can be viewed as a special case of the page size
equaling to one memory block. For other page sizes, their
proof is not usable.

In [12], Johnson and Hwu present polynomial-time
algorithms to obtain an upper bound of the hit ratio
improvements with cache bypassing. They assume,
however, that the system allows the bypass decision to
be made differently for different references to the same
memory address. This is in contrast to the bypass
mechanism on the StrongARM SA-1110 where the bypass
decision is statically made for each virtual page. Hence,
their reference marking method cannot be used.



7 Conclusions

In this paper, we have presented a model of the cache
mapping problem and prove that the optimal cache mapping
is NP-hard. A heuristic is given to select the cache mapping.
We implement the cache mapping heuristic for Compaq
iPAQ 3650 handheld devices running the Linux operation
system. Execution time measurement shows performance
enhancement up to 21% for a set of test programs. As a
byproduct of performance enhancement, we also save the
energy up to 28%.
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