
A Programming Environment with Runtime Energy
Characterization for Energy-Aware Applications

Changjiu Xian
Department of Computer

Science
Purdue University

West Lafayette, Indiana
cjx@cs.purdue.edu

Yung-Hsiang Lu
School of Electrical and
Computer Engineering
Purdue University

West Lafayette, Indiana
yunglu@purdue.edu

Zhiyuan Li
Department of Computer

Science
Purdue University

West Lafayette, Indiana
li@cs.purdue.edu

ABSTRACT
System-level power management has been studied extensively. For
further energy reduction, the collaboration from user applications
becomes critical. This paper presents a programming environment
to ease the construction of energy-aware applications. We observe
that energy-aware programs may identify different ways (called op-
tions) to achieve the desired functionalities and choose the most
energy-efficient option at runtime. Our framework provides a pro-
gramming interface to obtain the estimated energy consumption for
choosing a particular option. The energy is estimated based on
runtime energy characterization that records a set of runtime con-
ditions correlated with the energy consumption of the options. We
provide the procedure and general guidelines for using the environ-
ment to construct energy-aware programs. The prototype demon-
strates that (a) energy-aware applications can be programmed eas-
ily with our interface, (b) accurate estimates are achieved by in-
tegrating multiple runtime conditions, and (c) the framework can
make multiple devices collaborate for significant energy savings
(15% to 41%) with negligible time and energy overhead (<0.35%).

Categories and Subject Descriptors
C.4 [Performance of Systems]: design studies
General Terms
Design, Performance

Keywords
energy-aware application, programming environment, energy char-
acterization

1. INTRODUCTION
Reducing energy consumption is important for today’s computer
systems. Many energy conservation techniques have been proposed
from hardware level to operating system (OS) level [2]. For over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISLPED’07, August 27–29, 2007, Portland, Oregon, USA.
Copyright 2007 ACM 978-1-59593-709-4/07/0008 ...$5.00.

} else {

if (e1 < e2) {
execute option A

execute option B
}

e2=Query(B)
e1=Query(A)

e2=Query(B)
e1=Query(A)

A B(a) (b)

Figure 1: (a) Energy consumption of different execution paths.
(b) Pseudo-code of choosing options based on estimated energy
consumption.

a decade, power management studies have been focusing on accu-
rately predicting the idleness in workloads such that hardware com-
ponents can be shut down or slowed down to save energy. These
studies have been performed extensively and additional improve-
ments become difficult. For further significant energy reduction,
the collaboration from user applications becomes critical. Since
the idleness in workloads is ultimately determined by applications,
they can adjust their workloads to create more opportunities for
power management. Such applications are called energy-aware
applications. For example, a file-download program in a battery-
operated computer can download compressed files and then decom-
press them. This consumes less energy than downloading the un-
compressed files directly if the compression ratio is high and the
wireless channel is congested. For another example, web browsers
often cache data in a local disk. When the data are requested later,
they can be retrieved from the local disk if it is spinning. If the disk
is sleeping, retrieving the data from the server may be faster and
consume less energy than spinning up the disk. These options may
be specific to individual applications; according to the end-to-end
argument in system design [7], such functionalities should not be
placed into operating systems.
Existing studies [1, 5, 6, 10] are specific to individual programs

and difficult to generalize. In this paper, we present a programming
environment in which energy-aware programs can be constructed
more easily. An energy-aware program may identify different ways
(called options) to achieve desired functionalities and choose the
most energy efficient option. The energy consumption of different
options may vary depending on runtime conditions (e.g., the power
states of the hardware). Our framework provides an application
programming interface (API) for obtaining energy estimates of the
options at runtime to decide which option to choose, as illustrated
in Figure 1 (a). At the top, the program has two choices: A and
B. For the first example described earlier, option A downloads the
uncompressed files and option B downloads the compressed files

