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Abstract

Reducing memory-space requirement is important to many applications. For data-

intensive applications, it may help avoid executing the program out-of-core. For high-

performance computing, memory-space reduction may improve the cache hit rate as

well as performance. For embedded systems, it can reduce the memory requirement,

the memory latency and the energy consumption. This paper investigates program

transformations which a compiler can use to reduce the memory space required for

storing program data. In particular, the paper uses integer programming to model the

problem of combining loop shifting, loop fusion and array contraction to minimize the

data memory required to execute a collection of multi-level loop nests. The integer

programming problem is then reduced to an equivalent network flow problem which

can be solved in polynomial time.
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1 Introduction

Due to the speed gap between processors and memory, compiler techniques for efficient data

access have been under extensive investigation. Many program transformations developed

for program parallelization can be made useful for memory performance enhancement. In

this paper, we investigate program transformations which can be performed by the compiler

to reduce the memory space required for storing program data. In particular, we devise

a network flow model to perform optimal array contraction in order to minimize the data

memory required to execute a collection of multi-level loop nests. Reducing memory-space

requirement is important in several areas. For high-performance computing, it may improve

the cache hit rate as well as performance [1]. For data-intensive applications, it may help

avoid executing the program out-of-core. For embedded systems, it can reduce the physical-

memory requirement, the memory latency and the energy consumption [2, 3, 4].

The array contraction technique contracts multi-dimensional arrays to lower dimensions

such that the total data size is reduced. The opportunities for array contraction exist often

because the most natural way to specify a computational task may not be the most memory-

efficient. Furthermore, the programs written in array languages such as F90 and HPF are

often memory inefficient. Consider an extremely simple example (Example 1 in Figure 1(a)),

where array A is assumed dead after loop L2. After right-shifting loop L2 by one iteration

(c.f. Figure 1(b)), L1 and L2 can be fused (c.f. Figure 1(c)). Array A can then be replaced by

two scalars, a1 and a2, as Figure 1(d) shows. Later in this paper, our experimental data will

show that such a combination of loop shifting, loop fusion, and array contraction is quite

effective for memory-requirement reduction in a number of widely publicized benchmark
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programs. In this paper, we study how to optimally apply such a combination of program

transforms.

In a related paper [1], we used a loop dependence graph to describe the data dependences

which are critical to the legality and the optimality of array contraction. To build such a

graph, it takes time that is exponential in terms of the depth of loop nesting. Fortunately,

the loop nesting in practice is usually not very deep. We also showed how to formulate the

optimal array contraction problem as an integer programming problem. In this paper, we

shall develop a polynomial-time algorithm to solve such an integer programming problem.

We also address a number of issues concerning code generation.

In the rest of the paper, we first describe our program model (in Section 2). We then

formulate an integer programming problem (Section 3) and reduce it to a network flow

problem (Section 4) which can be solved in polynomial time. Afterwards, we discuss code

generation issues (Section 5) and experimental results (Section 6). We then compare with

related work (Section 7) and draw a conclusion (Section 8).

2 Problem Model and Loop Dependence Graph

We consider a collection of loop nests, L1, L2, . . ., Lm, m ≥ 1, as shown in Figure 2(a).

Each label Li denotes a tight nest of loops with indices Li,1, Li,2, . . ., Li,n, n ≥ 1, listed from

the outermost level to the innermost. (In the example in Figure 1(a), we have m = 2 and

n = 1.) Loop Li,j has the lower bound lij and the upper bound lij + bj − 1 respectively,

where lij and bj are loop invariants. As in previous related work, all loops at the same

level, j, are assumed to have the same trip count bj. For convenience, we use the notation

~b = (b1, b2, . . . , bn) throughout the paper. We assume that none of the given loops can be
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partitioned into smaller loops by loop distribution [5]. (Otherwise, we first apply maximum

loop distribution [5] to the given collection of loops.) It is only for the convenience of

discussion that we require each loop nest Li to be tightly nested. If a loop nest Li is not

tightly nested, we shall first apply the technique presented in this paper to its innermost

loop body that consists of a collection of tightly-nested loops. After fusing such a collection

of loops into a tight loop nest, we can work on the outer loop levels in Li in a similar way.

Currently, our program model does not cover non-rectangular loop nests. We will study how

to extend our program model in the future work.

The array regions referenced in the given collection of loops are divided into three cate-

gories. An input array region is upwardly exposed to the beginning of L1. An output array

region is live after Lm. A local array region does not intersect with any input or output array

regions. Obviously, only the local array regions are amenable to array contraction. Local

array regions can be recognized by applying existing dependence analysis, region analysis

and live analysis techniques [6, 7, 8, 9], which will not be reviewed in this paper. In the

example in Figure 1(a), A(1 : N) is the only local array region. Figure 3(a) shows a more

complex example which resembles one of the well-known Livermore loops. In this example,

where m = 4 and n = 2, each declared array is of dimension [1 : JN + 1, 1 : KN + 1].

ZA(2:JN,2:KN) and ZB(2:JN,2:KN) are local array regions.

To describe the dependence between a collection of loop nests, we extend the definitions

of the traditional dependence distance vector and the dependence graph [10]. Following

conventional notations [5, 11], given ~u = (u1, u2, . . . , un) and ~v = (v1, v2, . . . , vn), we write

~u + ~v = (u1 + v1, u2 + v2, . . . , un + vn), ~u − ~v = (u1 − v1, u2 − v2, . . . , un − vn), ~u � ~v

if ∃0 ≤ k ≤ n − 1, (u1, . . . , uk) = (v1, . . . , vk) ∧ uk+1 > vk+1, ~u � ~v if ~u � ~v or ~u = ~v, and
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~u > ~v if uk > vk (1 ≤ k ≤ n). We use abs(~u) to denote (|u1|, |u2|, . . . , |un|). Using these

notations, we introduce the following definitions.

Definition 1 Given a collection of loop nests, L1, . . ., Lm, as in Figure 2(a), if a data

dependence exists from the source iteration ~i = (i1, i2, . . . , in) of loop L1 to the destination

iteration ~j = (j1, j2, . . . , jn) of loop L2, we say the distance vector is ~j −~i = (j1 − i1, j2 −

i2, . . . , jn − in) for this dependence.

Definition 2 Given a collection of loop nests, L1, L2, . . ., Lm, as in Figure 2(a), a loop

dependence graph (LDG) is a directed multi-graph G = (V, E) such that each node in V

represents a loop nest Li, 1 ≤ i ≤ m. (We denote V = {L1, L2, . . . , Lm}.) Each directed

edge from Li to Lj in E represents a data dependence (flow, anti- or output dependence)

from Li to Lj. The edge e is annotated by a distance vector ~de.

In this paper, we assume constant dependence distance vectors. Certain non-constant

dependence distances can be replaced by constant ones [1]. If there exist non-constant

dependences which cannot be replaced, our technique will not be applied.

Existing techniques [5] can be utilized to construct the LDG. Despite the exponential

worst-case complexity, the determination of data dependences is quite efficient in practice.

Since this issue has been well studied, we do not discuss it further in this paper. Figure 3(b)

shows the loop dependence graph for the example in Figure 3(a). The array regions associated

with the dependence edges can be inferred from the program, and they are omitted in the

figure. For instance, the flow dependence from L1 to L3 with ~d = (0, 0) is due to array region

ZA(2 : JN, 2 : KN). In Figure 3(b), where multiple dependences of the same type (flow, anti-
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or output) exist from one node to another, all these dependences are represented by a single

arc. All associated distance vectors are then marked on this single arc.

3 An Integer Programming Problem

In this section, we model the problem of optimal array contraction (given the collection of

loop nests) as an integer programming problem. For this purpose, we first discuss the legality

for loop fusion and the method of loop shifting to ensure the legality. We then discuss the

minimum data size required to execute the collection of loop nests after loop shifting and

loop fusion. To ease the understanding of the underlying idea, we take an intermediate step

of program transformation, called loop coalescing, which coalesces a loop nest of multiple

levels into an equivalent single loop. However, we shall show later that we do not need to

actually coalesce the loops in order to obtain the optimal array contraction.

3.1 Loop Coalescing

Loop coalescing transforms a tight multi-level loop nest into a single loop. To analyze

the effect of loop coalescing, we define the coalescing vector ~s = (s1, s2, . . . , sn), where si

represents the number of times the innermost loop body of Li is executed within each Li,j

loop iteration. Thus, we have sn = 1, sh = sh+1bh+1, 1 ≤ h ≤ n − 1. For the loops in

Figure 3(a), we have ~s = (JN − 1, 1).

Given any iteration vector~i of loop nest Li in Figure 2(a), the corresponding loop iteration

index after loop coalescing equals~i~sT , the inner product of~i and ~s. We call this inner product

the coalesced index. Suppose ~i1 and ~i2 are two different iterations in a tight loop nest. In
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order for loop coalescing to be legal, the following equivalence must hold,

~i2 � ~i1 ⇔ ~i2~s
T > ~i1~s

T . (1)

Lemma 1 ∀~u s.t. abs(~u) < ~b, we have ~u � ~0 ⇔ ~u~sT > 0. Furthermore, ∀~u s.t. abs(~u) <

(~b + (0, . . . , 0, 1)), we have ~u � ~0 ⇒ ~u~sT ≥ 0.

Proof See Appendix A. 2

Since abs(~i2 − ~i1) < ~b holds, Lemma 1 immediately derives the equivalence property (1),

which means that loop coalescing preserves the execution order of all loop iterations and that

the mapping between ~i and its coalesced index is one-to-one. Furthermore, the coalesced

index values form a consecutive sequence, because the difference between the upper limit

and the lower limit, plus one, equals (~b − ~1)~s T + 1 = Πn
k=1bk, which is the total number of

instances of the innermost loop body before coalescing. Here, ~1 represents a vector with all

elements equal to 1. Given the coalesced index and the trip counts ~b, we can recompute ~i

using modulo and divide operations. (We omit the straightforward derivation details.)

3.2 Legality Condition for Loop Fusion

Loop fusion must not reverse the source and destination of any dependence [5]. Therefore

we have the following lemma.

Lemma 2 It is legal to fuse the collection of m loop nests in Figure 2(a) into a single loop

nest if and only if

~de � ~0, ∀e ∈ E. (2)

2
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If there exist data dependences which do not satisfy the condition stated above, we perform

loop shifting to satisfy the condition. We apply loop shifting to a loop Li,j by increasing

both the lower and the upper loop bounds by a shifting factor pij. Within the loop body,

we decrement the corresponding loop index variable by pij. For each of the m loop nests in

Figure 2(a), say Lj, we use the shifting vector ~pj = (pj1, pj2, . . . , pjn) to represent the shifting

factors at various loop levels. After applying a shifting vector to each of the given m loop

nests, the code takes the form shown in Figure 2(b). For any dependence edge e from Li to

Lj with the distance vector ~de = ~j −~i in Figure 2(a), the new dependence distance vector

after loop shifting equals (~j + ~pj) − (~i + ~pi) = ~pj − ~pi + ~de.

To ease the understanding of the problem formulation, we perform loop coalescing as an

intermediate program transformation between loop shifting and loop fusion. As the result

of loop coalescing, those m loop nests in Figure 2(b) become m single loops. For the data

dependence with a distance vector ~pj − ~pi + ~de, its coalesced dependence distance after loop

coalescing equals (~pj − ~pi + ~de)~s
T . Following Lemma 2, we immediately have the following

lemma.

Lemma 3 All the m loops after loop shifting and loop coalescing can be legally fused into a

single loop if and only if

(~pj + ~de − ~pi)~s
T ≥ 0, ∀e ∈ E from Li to Lj. (3)

The lower bound of the single fused loop equals the smallest lower bound among the m

coalesced loops, and the new upper bound equals the greatest upper bound among those

loops. We insert proper guards (i.e. IF statements) in the fused loop to ensure that no

extraneous loop iterations get executed.
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3.3 Minimizing the Array Size

We now analyze the array size required to execute the single fused loop after loop shift-

ing, loop coalescing and loop fusion. We make the following assumptions to simplify the

discussion.

Assumption 1 For each reference w which writes to a local array region, w writes to a

distinct array element in every iteration of the innermost loop body. All values written by w

are useful, meaning that each written value will be used by some read references in the given

set of loop nests.

Assumption 1 stated above implies that we exclude the cases in which w may not be executed

in certain iterations. For such cases, we may need to take the IF conditions into account in

order to determine the memory requirement. We also exclude the cases in which a reference

may write to local regions of an array in certain loop iterations and to non-local regions of the

same array in other iterations. Array contraction can still be performed in such cases, but

the minimum memory requirement must be calculated differently for the flow dependences.

Moreover, the transformed code will be more complex.

We now compute the minimum memory requirement for the given loop nesting. First,

we want to compute the minimum memory requirement to satisfy a single flow dependence

with w as the source and r as the read reference. Notice that if there exists an extremely

large shifting factor, then the coalesced distance may exceed Πn
k=1bk, which is the total

iteration count of the innermost loop body. Suppose w and r are in the same loop nest

before fusion and it is impossible for w to take place before r in the same iteration. In

this case, no additional array element is written by w before r occurs in the same iteration
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of the fused loop, hence no need for the extra memory location. Under Assumption 1, the

minimum memory requirement for this flow dependence equals either Πn
k=1bk or the coalesced

distance, whichever is smaller. In all other cases under Assumption 1, the minimum memory

requirement for the flow dependence equals either Πn
k=1bk or the coalesced distance plus one,

whichever is smaller. In order to distinguish these two cases in the mathematical framework

below, we designate an extension vector ~oe for each flow dependence e such that ~oe equals ~0

if r precedes w in the same loop body and ~oe equals (0, . . . , 0, 1) otherwise.

Next, we want to compute the minimum memory size required to satisfy all flow depen-

dences with w as the source. This equals the maximum value of the required memory size

for all flow dependences with w as the source.

Lemma 4 For a reference w in Li which writes to a local array region, under Assumption 1,

the memory required to satisfy all flow dependences which have w as the source equals

min(max{(~pj + ~de + ~oe − ~pi)~s
T |∀e from Li to Lj due to w}, Πn

k=1bk). (4)

We call (~de + ~oe) the extended dependence distance for the flow dependence edge e.

Lastly, we determine the minimum memory size required for all write references to local

array regions. To simplify the discussion, we make the following assumption, under which the

memory required for all write references is equal to the summation of the memory required

for each write reference.

Assumption 2 The local array regions written by different write references do not overlap.

All local array regions remain live until the end of the Lm loop nest (in Figure 2(a)).

We want to formulate the memory requirement minimization problem as a network flow

problem which can be solved in polynomial time [12]. However, the min operator in For-
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mula (4) makes the minimization problem complex. To remove such a min operator, we

make the following assumption,

Assumption 3 In G, the sum of the absolute values |dk| of all data dependence distances

at loop level k is smaller than the trip count bk.

Under Assumptions 1 to 3, the following theorem formalizes our problem of minimizing

the overall memory requirement.

Theorem 1 Given the m loop nests in Figure 2(a) and the loop dependence graph G, let τi

be the number of write references to local array regions in each loop nest Li. Let e represent

an arbitrary data dependence in E, say from Li to Lj, which may be a flow, anti-, or output

dependence. Let e1 represent an arbitrary flow dependence in E, say from Li to Lj, due to

a local array region written by a reference wi,k(1 ≤ k ≤ τi). Under loop shifting and loop

fusion, the minimum memory requirement is determined by the following formula.

Minimize Σm
i=1Σ

τi

k=1
~Mi,k~s

T (5)

subject to

(~pj + ~de − ~pi)~s
T ≥ 0, ∀e ∈ E from Li to Lj, and (6)

~Mi,k~s
T ≥ (~pj + ~de1

+ ~oe1
− ~pi)~s

T , ∀e1 ∈ E from Li to Lj due to wi,k, 1 ≤ k ≤ τi. (7)

Proof See [1]. 2

We call the problem defined in Theorem 1 as Problem 0. Given the shifting vectors,

the expression ~Mi,k~s
T in constraint (7) defines the minimum memory requirement among all

flow dependences originating from the same reference wi,k in Li which writes to a local array

region. According to Lemma 3, constraint (6) guarantees legal loop fusion after shifting
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and coalescing. The objective function (5) defines the minimum memory size required for

all write references. Thus, our array size minimization problem is to determine the shifting

vectors which satisfy the constraints stated in the theorem above such that the total memory

requirement is minimized.

According to the following lemma, loop coalescing is just an imagined intermediate

transformation used to formulate Problem 0. After solving Problem 0, we do not need to

actually perform it during code generation.

Lemma 5 For any set of shifting vectors which optimally solve Problem 0, we can find a

set of shifting vectors which allow legal fusion of the loop nests without coalescing and result

in the same minimum memory requirement.

Proof See [1]. 2

Next, we reduce Problem 0 to a minimum-cost network flow problem which can be

solved optimally in polynomial time.

4 Reducing to a Network Flow Problem

Constraint (6) in Theorem 1 can be transformed to

~pi~s
T − ~pj~s

T ≤ ~de~s
T , ∀e ∈ E from Li to Lj. (8)

Constraint (7) can be transformed to

~pj~s
T − (~pi + ~Mi,k)~s

T ≤ −( ~de1
+ ~oe1

)~sT , ∀e1 ∈ E from Li to Lj due to wi,k, 1 ≤ k ≤ τi. (9)

Formulae (8) and (9) bear a great similarity to the constraint in the dual problem of the

general network flow problem (see Ch. 9.4 by Ahuja et al. [13] for details.)

π(i) − π(j) − αij ≤ cij, (10)
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where cij are nonnegative constants, and αij ≥ 0, π(i) and π(j) are variables. This motivates

us to develop a sequence of transformations to reduce Problem 0 to a minimum-cost network

flow problem.

First, we transform Problem 0 to Problem 1 in order to reduce the number of con-

straints. We then unify the constraints by changing constraint (7) to the same form as

constraint (6). Moreover, we transform the underlying graph to a directed acyclic graph

(DAG). The resulting problem is called Problem 2. Since a minimum-cost network flow

problem must have a nonnegative cost [13], we transform Problem 2 to Problem 3 to

satisfy such a requirement. Finally, we reduce Problem 3 to Problem 4 which can be

solved using the existing minimum-cost flow algorithms [13]. We provide a method to use

the optimal solution of Problem 4 to compute an optimal solution of Problem 3, which

then leads to an optimal solution of Problem 0.

4.1 Removing Redundant Constraints

In this subsection, we simplify Problem 0 by removing redundant constraints which are due

to superfluous dependence edges. We simplify the loop dependence graph G to G0 = (V0, E0).

The graph G0 has the same set of nodes as G, but it may have fewer dependence edges. The

dependence edges in E0 can be divided into two categories, namely the L-edges and the

M-edges. The L-edges are used to determine the legality of loop fusion. The M-edges will

determine the minimum memory requirement. All M-edges correspond to flow dependences

in E. An L-edge, however, may correspond to a flow, an anti- or an output dependence in

E. It is possible for an edge in E0 to be classified both as an L-edge and an M-edge at the

same time. The simplification process is as follows.
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• Suppose there exist multiple flow dependences between a pair of nodes in V , and

suppose they are due to the same write reference. We keep only the one with the

lexicographically maximum extended dependence distance as an M-edge in E0. (In

Figure 3(b), the flow dependence from L1 to L3 marked by the distance vector (0, 1)

will be made an M-edge in E0.) To see why this is valid, consider two edges in E,

e1 and e2, both from node Li to node Lj such that ( ~de1
+ ~oe1

) � ( ~de2
+ ~oe2

). Note

that ~oe1
and ~oe2

may be identical or differ by (0, . . . , 0, 1). According to Assumption 3,

abs( ~de1
+ ~oe1

− ~de2
− ~oe2

) ≤ abs( ~de1
) + abs( ~de2

) + (0, . . . , 0, 1) < ~b + (0, . . . , 0, 1) holds.

From Lemma 1, we have (~pj + ~de1
+ ~oe1

− ~pi)~s
T ≥ (~pj + ~de2

+ ~oe2
− ~pi)~s

T . If ~Mi,k~s
T ≥

(~pj + ~de1
+ ~oe1

− ~pi)~s
T is true, then ~Mi,k~s

T ≥ (~pj + ~de2
+ ~oe2

− ~pi)~s
T must also be true.

• If there exist multiple dependences between any pair of distinct nodes in E, we keep

only the one with the lexicographically minimum distance as an L-edge in E0. (In

Figure 3(b), the dependence from L1 to L3 marked by the distance vector (0, 0) is

made an L-edge in E0.) To see why this is valid, again consider two edges in E, e1

and e2, both from node Li to node Lj (i 6= j) such that ~de1
� ~de2

. It is clear that if e2

satisfies constraint (6) in Theorem 1, then so does e1. We do not keep L-edges from a

node to itself since such dependences are preserved automatically after loop fusion.

Figure 3(c) shows the loop dependence graph G0 after simplification of Figure 3(b).

Based on the above analysis, we have the following Problem 1 which is equivalent to

Problem 0 but with fewer constraints:

Minimize Σm
i=1Σ

τi

k=1
~Mi,k~s

T (11)
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subject to

~pj~s
T + ~de~s

T − ~pi~s
T ≥ 0, ∀ L-edge e = 〈Li, Lj〉 ∈ E0, and (12)

~Mi,k~s
T ≥ ~pj~s

T +(~de + ~oe)~s
T − ~pi~s

T , ∀ M-edge e = 〈Li, Lj〉 ∈ E0 due to wi,k, 1 ≤ k ≤ τi. (13)

4.2 Creating a DAG

Given a loop dependence graph G0, we generate another graph G1 = (V1, E1) as follows.

• For each node Li ∈ G0, we create its corresponding node L̃i in G1. Furthermore, for

each node Li ∈ G0 such that Li has an outgoing M-edge and for each write reference

wi,k (1 ≤ k ≤ τi) in Li, we create a new node L̃i
(k)

in G1. This new node is called the

sink of L̃i due to wi,k.

• We annotate each node in G1 with a supply/demand value. For each node Li ∈ G0,

if Li has an outgoing M-edge, let the supply/demand of its corresponding node L̃i be

h(L̃i) = τi. For each write reference wi,k (1 ≤ k ≤ τi) in Li, we let h(L̃i
(k)

) = −1 for

the sink node. For each node Li ∈ G0 which does not have an outgoing M-edge, let

h(L̃i) = 0 for its corresponding node.

• Suppose an M-edge e = 〈Li, Lj〉 in G0 is due to the write reference wi,k and its distance

vector is ~de. We add an edge 〈L̃j, L̃i
(k)
〉 to G1 with the cost ~c′~sT , where ~c′ = −(~de + ~oe)

is called the cost vector of the edge.

• Suppose e = 〈Li, Lj〉 is an L-edge in G0 and its distance vector is ~de. We add an edge

〈L̃i, L̃j〉 to G1 with the cost ~c′~sT , where ~c′ = ~de is called the cost vector of the edge.

For the graph G0 in Figure 3(c), Figure 4(a) shows the transformed graph G1.
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Lemma 6 The graph G1 = (V1, E1) is a simple DAG.

Proof After making the simplification described in Section 4.1, G0 has such a property that,

between any pair of nodes, there exist at most one L-edge and at most one M-edge for each

write reference in the source node. The graph transformation from G0 to G1 discussed above

introduces additional nodes. As a result, self cycles are removed and there exist at most one

edge between any pair of nodes in G1. 2

After constructing G1, we define a variable vector ~q for each node vj ∈ V1 as follows.

• If vj is a “corresponding” node L̃i in G1, we define

~qj = ~pi. (14)

• If vj is a sink L̃i
(k)

, we define

~qj = ~Mi,k + ~pi. (15)

We define a new system, called Problem 2, over ~q, using the cost ~c′ij~s
T introduced above

for each edge e = 〈vi, vj〉 ∈ E1:

Maximize Σ
|V1|
i=1h(vi)~qi~s

T (16)

subject to

~qj~s
T − ~qi~s

T + ~c′ij~s
T ≥ 0, ∀e = 〈vi, vj〉 ∈ E1. (17)

Theorem 2 Problem 2 is equivalent to Problem 1.

Proof See Appendix B. 2
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4.3 Making the Cost Nonnegative

The cost ~c′ij~s
T of the transformed graph G1 may have a negative value. In order to derive

a network flow problem (c.f. Section 4.4), we transform G1 to G2 such that the cost for all

edges becomes nonnegative.

First, we determine the lexical height vector ~zj for each node vj ∈ G1, using the algorithm

in Figure 5, where the operator lex max stands for the lexicographical maximum.

Lemma 7 ∀〈vi, vj〉 ∈ E1, (~zj − ~zi + ~c′ij)~s
T ≥ 0.

Proof See Appendix C. 2

We rename a variable vector

~yi = ~qi − ~zi. (18)

Clearly ~qi~s
T = ~yi~s

T + ~zi~s
T . The constraint (17) becomes

~qj~s
T − ~qi~s

T + ~c′ij~s
T = ~yj~s

T − ~yi~s
T + (~zj − ~zi + ~c′ij)~s

T ≥ 0, ∀e = 〈vi, vj〉 ∈ E1. (19)

The objective function (16) becomes

Σ
|V1|
i=1h(vi)~qi~s

T = Σ
|V1|
i=1h(vi)~yi~s

T + Σ
|V1|
i=1h(vi)~zi~s

T . (20)

For each edge 〈vi, vj〉 ∈ E1, we define a new cost which equals ~cij~s
T , where ~cij = ~zj − ~zi + ~c′ij.

This cost is nonnegative for all edges. After this new cost assignment, we rename the graph

to G2 = (V2, E2) and define the following system (called Problem 3) over G2:

Maximize Σ
|V2|
i=1h(vi)~yi~s

T (21)

subject to

~yj~s
T − ~yi~s

T + ~cij~s
T ≥ 0, ∀e = 〈vi, vj〉 ∈ E2. (22)
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The equivalence between Problem 3 and Problem 2 is obvious from the discussions above.

In our example in Figure 4(a), the graph G1 is transformed to graph G2 shown in

Figure 4(b), where ~z(L̃1) = ~z(L̃2) = (0, 0), ~z(L̃3) = ~z(L̃4) = (1, 0), ~z(L̃1
(1)

) = (1, 2) and

~z(L̃2
(1)

) = (1, 1). Note that ~z(vi) is a more explicit notation for ~zi. Likewise, ~p(vi) (or ~q(vi))

is a more explicit notation for ~pi (or ~qi).

4.4 A Network Flow Problem

We now reduce Problem 3 to a network flow problem, Problem 4, which can be solved by

existing algorithms. We then show the equivalence between Problem 3 and Problem 4.

Problem 4 is defined by (23)-(25) below:

Minimize Σe=〈vi,vj〉∈E2
(f(e) ~cij~s

T ) (23)

subject to

Σe=〈vi ,.〉∈E2
f(e) − Σe=〈.,vi〉∈E2

f(e) = h(vi), 1 ≤ i ≤ |V2|, and (24)

f(e) ≥ 0, ∀e ∈ E2. (25)

In order to use the existing minimum-cost flow algorithms, the following requirements

must be met [13]:

1. All data (the cost ~cij~s
T , the supply/demand value h(vi) and the flow f(e)) are integral.

2. The graph G2 is directed.

3. The supply/demand values satisfy the condition Σ
|V2|
i=1h(vi) = 0 and Problem 4 has a

feasible solution.

4. All costs ~cij~s
T are non-negative.
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Problem 4 obviously satisfies requirements (2) and (4). Both the supply/demand h(vi)

and the flow f(e) are integer numbers, which meet requirement (1). However, the cost

is represented as an inner product of ~cij and ~s, which may contain symbolic terms if ~s has

symbolic terms. Later in this subsection, we shall discuss how to deal with symbolic terms in

~s when solving Problem 4. From the construction of G1 and G2, we see that Σ
|V2|
i=1h(vi) = 0.

Problem 4 meets requirement (3) if we can show that it has a feasible solution.

We construct a feasible solution for Problem 4 as follows. Recall that G1 and G2 have

the identical nodes, edges and supply/demand values. For each node Li ∈ G0 and for each

write reference wi,k (1 ≤ k ≤ τi) in loop Li, suppose Li has one or more outgoing M-edges

due to wi,k. We arbitrarily pick one, say 〈Li, Lj〉. Let L̃j be the corresponding node of Lj in

G2 and let
˜

L
(k)
i be the sink of Li in G2 due to wi,k. When we assign the flow values in G2,

we let f(〈L̃i, L̃j〉) = 1 and f(〈L̃j, L̃i
(k)
〉) = 1. For the remaining edges in G2 which do not

get flow values as described above, we let their flow values f(e) to be 0. Clearly, such a flow

assignment satisfies constraints (24) and (25). Hence, it is a feasible solution for Problem 4.

Problem 4 can be solved by existing algorithms with pseudo-polynomial or polynomial

time complexity [13]. These include the successive shortest path algorithm, the double scaling

algorithm and the enhanced capacity scaling algorithm, among others. As an example,

Figure 6 shows the enhanced capacity scaling algorithm (Section 10.7 by Ahuja et al. [13],

page 389). The main idea of this algorithm is to identify and augment along edges with

sufficient large flow values, in order to reduce the number of flow augmentation in residual

networks. According to Ahuja et al. [13], the outer while loop iterates O(|V2|log|V2|)

times. It takes time O(|E2|) to update abundant components and reinstate the imbalance

property in each outer while iteration. The total number of iterations for the inner while
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loop is O(|V2|
2log|V2|). The overall complexity for this algorithm is O((|E2|log|V2|)(|E2| +

|V2|log|V2|)).

The enhanced capacity scaling algorithm has two steps which involve the costs ~cij~s
T . One

of the steps computes the shortest path using the reduced costs, ~cij~s
T − ~πi~s

T + ~πj~s
T , as the

edge lengths. The other step computes πi which is also represented as the inner product of

a certain vector and ~s. In these two steps, in case ~s contains symbolic terms, the normal

computation can still be applied, by using ~u1~s
T + ~u2~s

T = ( ~u1 + ~u2)~s
T , for example. If

we want to compare ~u1~s
T with ~u2~s

T , we can simply compare ~u1 with ~u2, but at the same

time we generate a condition abs( ~u1 − ~u2) < ~b. This condition, according to Lemma 1, will

guarantee ~u1~s
T > ~u2~s

T ⇔ ~u1 � ~u2. The compiler can generate two versions of code, one

for the original loop nest and the other for applying array contraction. The version that

applies array contraction is executed at run time if all the conditions generated such (for

cost comparison) hold. Such a treatment for comparison may potentially miss more memory

minimization opportunities than a more precise comparison method. Nonetheless, we expect

our methods to cover most cases in practice, since the dependence distances are usually much

smaller than the loop iteration counts.

In this paper, we do not explore the details of the enhanced capacity scaling algorithm

or any other network algorithms. The readers are referred to Ahuja et al. [13] for further

details. Next, we show that Problem 3 is equivalent to Problem 4.

20



4.4.1 Solving Problem 3 via Problem 4

First, we show that the objective value of Problem 3 is no greater than that of Problem 4.

This is because, after multiplying both sides of equation (24) by ~yi~s
T and adding all |V2|

equations together, we have

Σ
|V2|
i=1h(vi)~yi~s

T

= Σ
|V2

i=1(Σe=〈vi,.〉∈E2
f(e) − Σe=〈.,vi〉∈E2

f(e))~yi~s
T

= Σe=〈vi ,vj〉∈E2
f(e)(~yi~s

T − ~yj~s
T ).

Combining this with formulas (22) and (25), we have

Σ
|V2|
i=1h(vi)~yi~s

T ≤ Σe=〈vi,vj〉∈E2
f(e) ~cij~s. (26)

Next, we show that given an optimal solution f ∗(e) for Problem 4 we can find proper val-

ues of ~y∗
i which satisfy constraint (22) and the equality Σ

|V2|
i=1h(vi)~y∗

i ~s
T = Σe=〈vi,vj〉∈E2

f ∗(e) ~cij~s.

Thus, ~y∗
i will be optimal for Problem 3. To show this, given any optimal solution f ∗(e) of

Problem 4, we take the following steps to build the residual network [13], denoted by G′
2,

for the network G2:

• For each node vi in G2, we also make it a node vi in G′
2.

• For each edge e = 〈vi, vj〉 ∈ E2, we also make it an edge in G′
2 and mark it by the

distance ~cij~s
T .

• If f ∗(e) > 0, e = 〈vi, vj〉 ∈ E2, we add an edge 〈vj, vi〉 and mark it by the distance

− ~cij~s
T in G′

2.

• We add a new node S to G′
2 with the supply/demand value 0. For each node vi in G2

which does not have predecessors, we add an edge 〈S, vi〉 to G′
2 with the distance 0
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and with the flow value 0. (The node S is added to G2 to facilitate the shortest path

algorithm in the work below, which does not affect the optimality of Problem 3.)

In order to obtain an optimal solution for Problem 3, we want to calculate the shortest

path from S to each of the remaining nodes in G′
2. This requires the graph to contain no

cycle that has a negative total distance. The following lemma shows that G′
2 satisfies such

a requirement.

Lemma 8 The residual network G′
2 has no cycles with negative total distance.

Proof See Appendix D. 2

We calculate the shortest path from S to each of the remaining nodes in G′
2. Suppose we

have the shortest distance value ~xi~s
T for each node vi in G′

2 except S. Whenever necessary,

we formulate conditions similar to those in requirement (1) of Problem 4, which will be

checked at run time in order to obtain valid results. For example, the following inequality

must hold for every edge 〈vi, vj〉,

abs(~xj − (~xi + ~cij)) <~b. (27)

If this inequality cannot be verified for any edge before run time, then we must insert it in

the program as a condition to be checked at run time. If the condition is not met, then the

program must not execute the version of code which has the arrays contracted. Next, we

prove that

~y∗
i = −~xi (28)
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is a solution to Problem 3 and the objective value of Problem 3 equals that of Problem 4.

To prove this, we first observe that the following constraint

(−~xj~s
T ) − (−~xi~s

T ) + ~cij~s
T ≥ 0 (29)

is clearly satisfied because of the shortest distance property for the edge e = 〈vi, vj〉. Hence,

−~xj is a feasible solution to Problem 3. Second, if f ∗(e) > 0, then the inequality

(−~xi~s
T ) − (−~xj~s

T ) + (− ~cij~s
T ) ≥ 0 (30)

holds because of the shortest distance property for the edge 〈vj, vi〉. Combining inequalities

(29) and (30), the following equality (31) must hold.

(−~xj~s
T ) − (−~xi~s

T ) = − ~cij~s
T if f ∗(e) > 0. (31)

With the above facts established, we get

Σ
|V2|
i=1h(vi)~y∗

i ~s
T

= Σe=〈vi,vj〉∈E2
f ∗(e)(~y∗

i ~s
T − ~y∗

j~s
T )

= Σe=〈vi,vj〉∈E2
f ∗(e)((−~xi~s

T ) − (−~xj~s
T ))

= Σe=〈vi,vj〉∈E2
f ∗(e) ~cij~s

T ,

which proves the equivalence between Problem 3 and Problem 4.

4.5 Solving Problem 0

Figure 7 lists the algorithm to compute a set of optimal shifting vectors for array contraction,

namely for Problem 0. We illustrate this algorithm through Example 2 in Figure 3, where

~s = (JN − 1, 1).

1. Assumptions 1 and 2 hold for local array regions ZA(2 : JN, 2 : KN) and ZB(2 : JN, 2 :

KN). In order to satisfy Assumption 3, the condition (3, 4) < ~b must be checked at

run time.
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2. By utilizing a network flow algorithm described by Ahuja et al. [13], we get an optimal

solution for Problem 4 defined over the graph in Figure 4(b):

f(〈L̃1, L̃3〉) = f(〈L̃2, L̃4〉) = f(〈L̃3,
˜

L
(1)
1 〉) = f(〈L̃4,

˜
L

(1)
2 〉) = 1, the rest of the flow values

being 0. The optimal objective function value is (1, 0)~sT . Note that the condition

(1, 0) <~b must hold in order for this result to be valid.

3. Utilizing the equivalence between Problem 3 and Problem 4, we compute the

optimal solution for Problem 3 in Figure 4(b). We have ~yi = (1, 0) for L̃1 and

~yi = (0, 0) for all the other nodes. The optimal objective function is (1, 0)~sT . The

condition (1, 0) < ~b must hold in order for this result to be valid.

4. We compute the optimal solution for Problem 2 in Figure 4(a) based on equations (18)

and (20). We get ~q(L̃1) = (1, 0), ~q(L̃2) = (0, 0), ~q(L̃3) = ~q(L̃4) = (1, 0), ~q(L̃1
(1)

) = (1, 2)

and ~q(L̃2
(1)

) = (1, 1). The optimal value for the objective function (16) is (3, 3)~sT .

5. We compute the optimal solution for Problem 1 (and hence Problem 0) based on

formulas (14) and (15). We have ~p(L1) = (1, 0), ~p(L2) = (0, 0), ~p(L3) = ~p(L4) = (1, 0),

~M1,1 = (0, 2) and ~M2,1 = (1, 1).

6. The conjunction of all the conditions in steps 1-3 can be written as (3, 4) < ~b. This

condition will be checked at run time. If it is true, the transformed code will be

executed. Otherwise, the original code is executed.

Given G = (V, E), it takes O(n|E|) time to simplify Problem 0 to Problem 1. For

the transformed LDG G1 = (V1, E1), both |V1| ≤ |V | + |E| and |E1| ≤ |E| hold. It takes
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O(n|E1|) time to transform G0 to G1 and to transform G1 to G2. As mentioned before,

polynomial-time algorithms exist for solving Problem 3 and Problem 4 [13].

5 Code Generation

In this section, we discuss several issues concerning code generation based on the solution

computed by the scheme we presented in Section 4.5 for Problem 0.

First of all, we need to determine an optimal solution which does not require loop

coalescing. As stated in Lemma 5, we can always find such an optimal solution (using

the method described in its proof). We then apply loop shifting and loop fusion based on

this optimal set of shifting factors.

In the given collection of loops, it is possible for a reference r to access both local regions

and non-local regions of any array. Only the local array regions will be contracted. We must

create two copies of r, one to access the non-local array regions and the other to the local

array regions. Correspondingly, we generate two branches in an IF statement such that the

local array regions and the non-local array regions are referenced in different branches. The

IF condition verifies whether the current loop index values make r refer to the local or the

non-local regions.

An array may consist of both local array regions and non-local array regions. If we

contract one or more local array regions of an array, we separate these regions from the rest

by creating new arrays, some for the contractable local regions and the rest for the remaining

array regions. For each contractable local array region R written by a reference wi,k, we take

the value of ~Mi,k~s
T from the optimal solution for Problem 0 defined by constraints (5)-(7).
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We create a one-dimensional array R′ with a size of ~Mi,k~s
T . The array regions which are not

contracted are also renamed to additional new arrays. The original array is removed.

There exist various ways to declare the lower bound of the new array R′ for each contracted

local array region and to generate the new array subscripts. We do not cover all details in

this paper, since the exact treatment depends on the subscript patterns. Instead, we discuss

a common case in which the write reference writes adjacent memory locations in consecutive

loop iterations under the unit stride. For such a common case, we let R′ have the lower

bound of 1. We then replace each reference to R by a reference to R′. The reference to R′

has a new array subscript which equals the linearized expression of the old subscript for the

local array region R, modulo the size of R′, plus 1. (For certain array subscript patterns of

R, it may be possible to adjust the lower bound of R′, and hence the array subscripts, to

make the address computation simpler. Furthermore, if ~Mi,k~s
T is a small known constant,

we can create several scalar variables instead of a single array, as in Example 1 in Figure 1.

We also omit further details.)

To illustrate the code generation, take Example 2 in Figure 3. Loop shifting is applied

to the loop nests using the optimal shifting factors computed in Section 4.5. The loop

nests are then fused. Next, we split the arrays into local and non-local array regions. Two

new arrays ZA0 and ZB0 are created for the non-local array regions ZA(1, 2 : KN) and

ZB(2 : JN,KN + 1), respectively. We use ZA′(2 : JN, 2 : KN) and ZB′(2 : JN, 2 : KN) to

represent the contractable local array regions for ZA(2 : JN, 2 : KN) and ZB(2 : JN, 2 : KN)

respectively. The local array region ZA′ is then contracted to an array ZA1 of size two. For

the local array region ZB′, we create a new contracted array ZB1(1 : JN). The references

to the old local array regions are replaced by references to the new local array regions, as
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shown in the transformed code in Figure 8. Notice that the statements in the original loops

L3 and L4 have two versions in the new code, because array references to ZA and ZB refer

to both local and non-local array regions.

6 Experimental Results

We have implemented our memory reduction technique in a research compiler, Panorama

[8]. Panorama is a source-to-source translator for Fortran F77 programs, which implements

automatic parallelization in addition to a number of loop transformation techniques, in-

cluding loop fusion, loop shifting, loop tiling, and so on. We implemented a network flow

algorithm, enhanced capacity scaling algorithm [13], to solve Problem 4. To measure its

effectiveness, we applied our memory reduction technique to 20 benchmark programs. We

measured the program execution speed on a SUN UltraSPARC II uniprocessor workstation

and on a MIPS R10K processor within an SGI Origin 2000 multiprocessor. In this paper, we

show the memory reduction rate and the performance results on the UltraSPARC II. More

experimentation details, including the R10K results, can be found in related papers [1, 12].

Table I lists the benchmarks used in our experiments, their descriptions and their input

parameters. These benchmarks are chosen because they either readily fit our program model

or they can be transformed by known compiler algorithms [1] to fit. In this table, “m/n”

represents the number of loops in the loop sequence (m) and the maximum loop nesting

level (n). Note that the array size and the iteration counts are chosen arbitrarily for LL14,

LL18 and Jacobi. To differentiate the different versions of the program swim from SPEC95

and SPEC2000, we denote the SPEC95 version by swim95 and the SPEC2000 version by

swim00. Program swim00 is almost identical to swim95 except for its larger data size. For
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combustion, we increase the array size (N1 and N2) from 1 to 10 to make the execution last

for at least several seconds. Programs climate, laplace-jb, laplace-gs and all the Purdue

set problems are from an HPF benchmark suite maintained by Rice University [14, 15]. All

these benchmarks are written in F77 except lucas which is in F90. We manually apply

our technique to lucas. Among these 20 benchmark programs, our algorithm finds that

loop shifting is not needed to fuse the target loops in the purdue-set programs, lucas, LL14,

climate and combustion. For each of the benchmarks in Table I, all m loops are fused

together. For swim95, swim00 and hydro2d, where n = 2, only the outer loops are fused.

For all other benchmarks, all n loop levels are fused.

To produce the machine codes, we use the native compiler, Sun WorkShop 6 update 1,

to compile both original programs and transformed programs compiled by Panorama at the

source level. For the original tomcatv code, we use the compiler flag “-fast -xchip=ultra2

-xarch=v8plusa -xpad=local:23”. For all versions of swim95 and swim00, we use the flag

“-fast -xchip=ultra2 -xarch=v8plusa -xpad=common:15”. For all versions of combustion,

we simply use “-fast” because it produces better-performing codes than using other flags.

For all other codes, we use the flag “-fast -xchip=ultra2 -xarch=v8plusa -fsimple=2”.

Figure 9 compares the code sizes and the data sizes of the original and the transformed

codes. Each benchmark program has two vertical bars, the left for the original programs

and the right for the programs transformed by our technique. We compute the data size by

adding the size of global data in common blocks and the size of local data defined in the main

program and other subroutines/functions invoked at runtime. The data size of each original

program is normalized to 100. The actual data size varies greatly for different benchmarks,

which are listed in the table associated with the figure. The data size of each transformed
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program, and the code sizes for both original and transformed programs, are computed as a

percentage to the data size of the corresponding original program. For mg and climate, the

memory requirement differs little before and after the program transformation. This is due

to the small size of the contractable local array. For all other benchmarks, our technique

reduces the memory requirement considerably. The arithmetic mean of the reduction rate,

counting both the data and the code, is 49% for all benchmarks. For several small purdue

benchmarks, the reduction rate is almost 100%. As Figure 9 shows, the code sizes remain

almost the same before and after transformation for the tested 20 benchmarks.

Figure 10 shows the normalized execution time for the 20 test programs. On average, our

technique achieves a speedup of 1.73 over the original code. Among all the benchmarks listed

above, only combustion, purdue-07 and purdue-08 fit the program model in previous

work [2]. In those cases, the previous algorithm [2] will derive the same result as ours. For

the rest of the cases, the previous algorithm [2] does not apply. Therefore, there is no need

to list those results.

We also measured the impact of our technique on compile time. It takes Panorama less

than 2 seconds to run all its passes on each of the test programs. Our technique, including

loop dependence graph building and code generation, often takes one-tenth to one-fifth of

the total time consumed by Panorama. If loop shifting is not needed for loop fusion, then the

native compiler compiles the transformed source codes faster than the original program. This

is because the transformed program contains fewer loops. On the other hand, if loop shifting

is applied, then another transformation called loop peeling often follows after the loops are

fused. Loop peeling strips off a few loop iterations, forming new loop nests sometimes. With

loop peeling, IF statements might be removed from the fused loop body, making the main
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loop nests better for optimization and potentially run faster. The increased number of loop

nests, however, may increase the time consumed by the native compiler. For example, on

the UltraSPARC II, tomcatv compile time is increased by 50%. The maximum compile time

increase is for swim95 with 200% where procedure inlining also contributes certain compile

time increase.

Several transformations, such as loop interchange, circular loop skewing [5], loop distri-

bution, etc., are performed during source-to-source translation to make loop nests satisfy

our assumptions [1]. In Panorama, we keep a copy of the original loop nesting while the

transformations are applied. If none of the transformations succeed in making the loop

nesting satisfy our assumptions, Panorama restores the original loop nesting. Nonetheless,

it is useful to evaluate the potential performance impact of such transformations, assuming

that we do not restore the original loop nesting. For example, loop interchange is performed

on tomcatv to increase opportunities for loop fusion. Such a loop interchange, however, will

make spatial locality suffer in tomcatv because the array accesses are no longer in the unit

stride. Our experiment performed on the UltraSPARC II shows that, if we do not follow the

loop interchange by array contraction, the code runs five times as slow as the original code.

On the other hand, circular loop skewing alone does not seem to have a direct impact on the

performance. This loop transformation is performed on both swim95 and swim00 to remove

several dependences between adjacent loop nests which have long backward dependence

distances. If we do not follow circular loop skewing by array contraction, the performance

is almost the same as the original program. Loop distribution performed at the source

level also seems to have insignificant performance impact. This is because most production

compilers for high performance computers are able to fuse those loops which are created by
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loop distribution. For example, for LL18, if we disable the loop fusion feature of the native

compiler on the UltraSPARC II, the program with loops distributed will perform worse by

five percent than the original code. However, if we do not disable the loop fusion feature, the

program with loops distributed performs the same as the original code. The native compiler

fuses the loops back before generating the machine code.

It is possible for our array contraction technique to bring no benefit or even a slowdown

to the program. For example, as Figure 10 shows, our technique has negligible performance

impact on lucas. This is because array contraction is applicable to only a subset of the

loops in the program. This subset consumes a small portion of the total execution time.

The execution time of both purdue-13 and laplace-gs is increased by as little as 2%. In

purdue-13, there are two loops before our transformation, one with just one basic block and

the other with a loop-variant condition inside the loop body. The first loop can be software

pipelined and the second cannot. The fused loop, which contains a loop-variant condition

inside the loop body, cannot be software pipelined. For the same reason, laplace-gs gets

an insignificant amount of performance penalty by array contraction.

7 Related Work

Among the related previous work, the one closest to ours is conducted by Fraboulet et al [2].

They present a network flow algorithm for memory reduction based on a retiming theory

[16]. Given a perfect nest, the retiming technique shifts a number of iterations either to

the left or to the right for each statement in the loop body. Different statements may have

different shifting factors. However, this optimal algorithm does not apply to a collection of

multi-level loop nests. It assumes a single-level loop whose data dependences have constant
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distances. For a tight loop nest of multiple levels, they present a heuristic which handles

one level at a time, which in general may not be optimal. We should also mention that their

memory requirement model does not apply when the dependence distances exceed certain

values or when the loop body contains guards as the result of loop shifting before loop

fusion. In another contribution, Fraboulet et al. present an integer programming algorithm

to minimize memory space for a collection of loops [3]. Their algorithm, however, does

not perform loop shifting as illustrated in Figure 1(b), and hence is unable to minimize

memory requirement where shifting is required. We have presented in this paper a method

to overcome these difficulties by combining loop shifting, loop fusion and array contraction.

We set up a network flow problem which, through an elaborative series of steps, models the

effect of such a combination.

Loop fusion has been studied extensively in various contexts which are different from

ours. To name a few, Kennedy and McKinley prove that maximizing data locality by loop

fusion is NP-hard [17]. Singhai and McKinley present parameterized loop fusion to improve

parallelism and cache locality simultaneously [18]. Manjikian and Abdelrahman present a

shift-and-peel technique to increase opportunities for loop fusion [19].

Gao et al. combine loop fusion and array scalarization to improve register utilization [20].

They do not consider contracting to low-dimensional arrays or using loop shifting. Lim et

al. combine loop blocking, loop fusion and array scalarization to exploit parallelism [21].

They do not apply loop shifting during their optimization. Cociorva et al. use loop tiling to

help balance the storage usage and the amount of computation [22]. Their method does not

apply loop shifting before loop fusion. In our work, we do not analyze how array contraction

affects the amount of computation. Instead, we let the later optimization passes, such as
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invariant code motion, to further improve the transformed code to reduce computation.

Pike and Hilfinger present a framework for loop tiling and array contraction [23]. Their

technique can also apply loop shifting before loop fusion. They conduct extensive trial runs

of the program which enumerate a large number of parameters for loop transformations.

They then select the parameter values which result in the best performance. When the

range of parameter values is wide, the enumeration approach may be too tedious and time

consuming to conduct. In such cases, we believe that our technique is more suitable, since

it determines the transformation parameters at compile time, depending primarily on static

program analysis.

Compared to our previous work [12], the optimization problem is formulated in a sub-

stantially better way in this paper. We improve our previous discussion on the network flow

solution by presenting a complete solution which includes several intermediate steps and by

explicitly providing a method to solve the original optimization problem.

8 Conclusion

In this paper, we have presented a technique to reduce the virtual-memory space required

to execute a collection of multi-level loop nests. Our technique combines loop shifting, loop

fusion and array contraction. We reduce the memory reduction problem to a network flow

problem which can be solved optimally in polynomial time. A code generation guideline is

also presented. We conduct experiments on 20 benchmarks. Our experimental results show

that our memory reduction technique reduces memory consumption by 49% on average,

counting both code and data sizes. The code size remains almost the same as before the

transformation.
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Appendix A: Proof of Lemma 1

In the first part of the lemma, we have abs(~u) < ~b. If ~u = ~0, we immediately have ~u~sT = 0.

Suppose ~u � ~0. We prove ~u~s T > 0 as follows. Since abs(~u) < ~b, we have ~u ≥ ~v =

(0, . . . , 0, 1, 1 − bk+1, . . . , 1 − bn), 1 ≤ k ≤ n, assuming the first non-zero element in ~u is the

kth element. Since ~u−~v ≥ ~0, we have ~u~s T −~v~s T = (~u−~v)~s T ≥ 0, hence ~u~s T ≥ ~v~s T . Since

~v~s T = sn > 0, we have ~u~s T > 0.

Similarly, we can prove that ~u ≺ ~0 ⇒ ~u~s T < 0. Therefore, if ~u~s T > 0, then ~u � ~0 must

be true. The first part of the lemma is proved.

Next, we prove the second part of the lemma, in which we have abs(~u) < ~b + (0, . . . , 0, 1).

If ~u = ~0, we immediately have ~u~sT = 0.

Suppose ~u � ~0. We prove ~u~s T ≥ 0 as follows. Since abs(~u) < ~b + (0, . . . , 0, 1), we have

~u ≥ ~v = (0, . . . , 0, 1, 1− bk+1, . . . ,−bn), 1 ≤ k ≤ n, assuming the first non-zero element in ~u

is the kth element. Since ~u−~v ≥ ~0, we have ~u~s T −~v~s T = (~u−~v)~s T ≥ 0, hence ~u~s T ≥ ~v~s T .

Since ~v~s T = 0, we have ~u~s T ≥ 0.

Appendix B: Proof of Theorem 2

We have
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Σ
|V1|
j=1h(vj)~qj~s

T

= Στi>0(τi~qi~s
T − Στi

k=1((
~Mi,k + ~qi)~s

T )) + Στi=00

= −Σm
i=1Σ

τi

k=1
~Mi,k~s

T .

Hence the maximum of the objective function (16) is equivalent to the minimum of the

objective function (11). For each edge e1 = 〈L̃i, L̃j〉 in E1, the inequality (17) is equivalent

to

~pj~s
T − ~pi~s

T + ~de~s
T ≥ 0, (32)

where e is an L-edge in E0 from Li to Lj. Inequality (32) is equivalent to (12). For each

edge e1 = 〈L̃j, L̃i
(k)
〉 in E1, the inequality (17) is equivalent to

~Mi,k~s
T + ~pi~s

T − ~pj~s
T − (~de + ~oe)~s

T ≥ 0, (33)

where e is an M-edge in E0 from Li to Lj due to the write reference wi,k. Inequality (33) is

equivalent to (13).

Appendix C: Proof of Lemma 7

Suppose ~zj = ~zt− ~c′tj where 〈vt, vj〉 ∈ E1. If t = i, (~zj − ~zi + ~c′ij)~s
T = 0 holds. Otherwise, with

t 6= i, ~zj − ~zi + ~c′ij = ~zt − ~zi − ~c′tj + ~c′ij. From Figure 5, ~zt (or ~zi) is equal to the negation of the

summation of the cost vectors along a path from certain node in V1 without any predecessors

to vt (or vi).

First, assume vj is not a sink node. According to Lemma 6, after cancelling the cost

vectors for common edges in these two paths, ~zt − ~zi − ~c′tj + ~c′ij will be a summation of the

cost vector, or the negation of cost vector, of some distinct edges in E1. Note that each such
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cost vector is equal to either one of original dependence distance vectors in E or its negation.

According to Assumption 3, abs(~zj − ~zi + ~cij) <~b holds.

Now, assume vj is a sink node. Note that an M-edge and an L-edge in E1 could correspond

to the same edge in E in the simplification process of Section 4.1. Suppose vt stands for L̃t

and vj for L̃j
(k)

. If the edges 〈L̃j, L̃i〉 and 〈L̃i, L̃j
(k)
〉, and the edges 〈L̃j, L̃t〉 and 〈L̃t, L̃j

(k)
〉, all

correspond to different original edges in E, considering the fact that the extension vectors for

the original dependence edges in E which are used to compute ~c′tj and ~c′ij may be different,

similarly to the argument for the case where vj is not a sink node, we have abs(~zj − ~zi + ~cij) <

~b + (0, . . . , 0, 1).

If the edges 〈L̃j, L̃i〉 and 〈L̃i, L̃j
(k)
〉 correspond to the same original edge in E, say e1, we

want to prove that ~de1
appears at most once in the computation of ~zj − ~zi + ~c′ij if we convert

back all distances in E1 to those in E by reversing the transformation in Sections 4.1 and 4.2.

• If the edge 〈L̃j, L̃i〉 is in the path to compute ~zt, according to the algorithm in Figure 5,

the same edge must be in the path to compute ~zi. So they will cancel each other in

computing ~zt − ~zi. The e1 appears only once as the form of ~c′ij.

• If the edge 〈L̃j, L̃i〉 is in the path to compute ~zi but not ~zt, −~zi + ~c′ij will cancel each

other’s distance value for that L-edge. The negation of the possible extension vector

associated with e1 (in E0) will not be canceled out, however.

• If the edge 〈L̃j, L̃i〉 is not in the path to compute either ~zt or ~zi, the e1 will appear only

once as the form of ~c′ij.

If the edges 〈L̃j, L̃t〉 and 〈L̃t, L̃j
(k)
〉 correspond to the same original dependence edge in E,
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similar argument can be applied such that this original edge appears at most once in the

computation of ~zj − ~zi + ~c′ij.

For all other edges in the computation of ~zj − ~zi + ~c′ij, similar to the case where vj is

not a sink node, their corresponding original edges in E appear at most once. Therefore,

abs(~zj − ~zi + ~cij) <~b + (0, . . . , 0, 1) holds for the case where vj is a sink node.

From Figure 5, it is clear that ~zj − ~zi + ~c′ij � ~0 holds for e = 〈vi, vj〉 ∈ E1. According to

Lemma 1, (~zj − ~zi + ~c′ij)~s
T ≥ 0 holds.

Appendix D: Proof of Lemma 8

Otherwise, we can argment flow value by 1 along the cycle, which has a total negative

distance, to get a less objective value for Problem 4 [13]. Note that augmenting flow value

on an edge 〈vi, vj〉 of G′
2 which has negative cost is equivalent to reducing the same amount

of flow value on the edge 〈vj, vi〉 of G2 which has a positive cost. After augmentation,

• the constraint (24) still holds because for each node in the cycle, flow value is added to

both in-edge and out-edge in G′
2. If both in-edge and out-edge have the non-negative

(or negative) costs, the flow value will be added to both the in-edge and the out-edge of

G2. If one of the edges has non-negative cost and the other has negative cost, the total

flow value for both in-edges and out-edges will remain the same as before augmentation

in G2. In both cases, the constraint (24) holds after augmentation.

• the constraint (25) still holds because for any edge 〈vi, vj〉 in the cycle, if the cost is

non-negative, the flow value will be increased for that edge, still non-negative. If the

cost for the edge is negative, based on our construction of G′
2, the flow value for the
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edge 〈vj, vi〉 is positive. The flow value augmentation by 1 on the edge 〈vi, vj〉 means to

reduce the flow value on 〈vj, vi〉 by 1. The resulted flow value will still be non-negative.

• the objective function value in (23) will be reduced because the cycle has a negative

total cost.

This contradicts the fact that f ∗(e) is optimal. Thus, there exists no cycles with negative

total cost in G′
2.
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L1: DO I = 1, N
A(I) = E(I) + E(I − 1)

END DO
L2: DO I = 1, N

E(I) = A(I)
END DO

DO I = 1,N
A(I) = E(I) + E(I − 1)

END DO
DO I = 2,N + 1

E(I − 1) = A(I − 1)
END DO

(a) (b)
DO I = 1, N + 1

IF (I.EQ.1) THEN
A(I) = E(I) + E(I − 1)

ELSE IF (I.EQ.(N + 1)) THEN
E(I − 1) = A(I − 1)

ELSE
A(I) = E(I) + E(I − 1)
E(I − 1) = A(I − 1)

END IF
END DO

a2 = E(1) + E(0)
DO I = 2,N

a1 = a2
a2 = E(I) + E(I − 1)
E(I − 1) = a1

END DO
E(N) = a2

(c) (d)

Figure 1: Example 1

L1 : DO L1,1 = l11, l11 + b1 − 1
DO L1,2 = l12, l12 + b2 − 1

. . .
DO L1,n = l1n, l1n + bn − 1

. . .
Li : DO Li,1 = l21, l21 + b1 − 1

DO Li,2 = l22, l22 + b2 − 1
. . .

DO Li,n = l2n, l2n + bn − 1
. . .
Lm : DO Lm,1 = lm1, lm1 + b1 − 1

DO Lm,2 = lm2 , lm2 + b2 − 1
. . .

DO Lm,n = lmn, lmn + bn − 1

L1 : DO L1,1 = l11 + p11, l11 + p11 + b1 − 1
DO L1,2 = l12 + p12, l12 + p12 + b2 − 1

. . .
DO L1,n = l1n + p1n, l1n + p1n + bn − 1

. . .
Li : DO Li,1 = li1 + pi1, li1 + pi1 + b1 − 1

DO Li,2 = li2 + pi2, li2 + pi2 + b2 − 1
. . .

DO Li,n = lin + pin, lin + pin + bn − 1
. . .
Lm : DO Lm,1 = lm1 + pm1, lm1 + pm1 + b1 − 1

DO Lm,2 = lm2 + pm2, lm2 + pm2 + b2 − 1
. . .

DO Lm,n = lmn + pmn, lmn + pmn + bn − 1

(a) (b)

Figure 2: The loop nests before and after loop shifting
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L1: DO K = 2,KN
DO J = 2, JN

ZA(J, K) = ZP(J − 1,K + 1) + ZR(J − 1, K − 1)
END DO
END DO

L2: DO K = 2,KN
DO J = 2, JN

ZB(J, K) = ZQ(J − 1, K) + ZZ(J, K)
END DO
END DO

L3: DO K = 2,KN
DO J = 2, JN

ZP(J, K) = ZP(J, K) + ZA(J, K)
−ZA(J − 1, K) − ZB(J,K) + ZB(J, K + 1)

END DO
END DO

L4: DO K = 2,KN
DO J = 2, JN

ZQ(J,K) = ZQ(J, K) + ZA(J,K)
+ZA(J − 1, K) + ZB(J,K) + ZB(J, K + 1)

END DO
END DO

(a)

L1 L2

L3 L4

(0,0)
(0,1)

( 0,0)
(-1,0)

( 0,0)
(-1,0)

(0,0)
(0,1)

(1
,-

1)

(0
,-

1)

(0
,0

)

(0
,0

)

L1 L2

L3 L4

(0,0)
(0,1)

(0,0)
(0,1)

( 0,0)
(-1,0)

( 0,0)
(-1,0)

(b)

(c)

Figure 3: Example 2 and its original and simplified loop dependence graphs
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Figure 4: The transformed graphs (G1 and G2) for Figure 3(c) (~s = (JN − 1, 1))
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Input: G1 = (V1, E1).
Output: The lexical height vector ~zj for each node vj ∈ V1.
Procedure:

for (each node vj in V1 following a topological order) do

if (vj has no predecessors) then

~zj := ~0
else

~zj := lex max{~zi − ~c′
ij
|∀~vi which is a predecessor of ~vj}

end if

end for

Figure 5: Computing the lexical height vector for each node in G1

Input: G2 = (V2, E2).
Output: Optimal solution for Problem 4 with flow values x.
Procedure:

Set xij := 0(∀〈vi , vj〉 ∈ E2), πi := 0 and ei := h(vi) (∀vi ∈ V2).
Set ∆ := max{|ei||∀vi ∈ V2}.
// Initially, all edges in E2 are nonabundant edges.
while (the residual network G′

2
contains a node vi with ei > 0) do

if (max{ei|∀vi ∈ V2} ≤ (∆/(8|V2 |))) then

∆ := max{ei|∀vi ∈ V2}.
end if

for (each nonabundant edge 〈vi, vj〉) do

if (xij ≥ 8∆|V2|) then

Designate edge 〈vi, vj〉 as an abundant edge.
end if

end do

// An abundant component is a strongly connected component of G2 with all edges being abundant edges.
// Imbalance property states that for each abundant component, each nonroot node has a zero imbalance
// and a root node can have an excess or a deficit.
Update abundant components and reinstate the imbalance property.
while (G′

2
contains a node vk with |ek| ≥ (|V2| − 1)∆/|V2|) do

Select a pair of nodes vk and vl satisfying the property that (i) either ek > (|V2| − 1)∆/|V2| and el < −∆/|V2|,
or (ii) ek > ∆/|V2| and el < −(|V2| − 1)∆/|V2|.

Considering reduced costs ~cij~s
T − ~πi~s

T + ~πj~s
T as edge lengths, compute shortest path distance d(.)

in G′

2
from node vk to all other nodes.

πi := πi − di,∀vi ∈ E2.
Augment ∆ units of flow along the shortest path in G′

2
from node vk to vl.

end do

∆ := ∆/2.
end do

Figure 6: Enhanced capacity scaling algorithm

Input: A collection of loop nests and its LDG G = (V, E).
Output: A set of optimal shifting vectors ~pi(i = 1, . . . ,m), and conditions to be checked at run time.
Procedure:

Verify Assumptions 1-3 and generate necessary condition for Assumption 3.
Transform the original Problem 0 successively to Problem 3.
Formulate Problem 4 and solve it using existing network-flow algorithms [13].
Compute an optimal solution for Problem 3 based on Formula (28).
Compute an optimal solution for Problem 2 based on Formulas (18) and (20).
Compute an optimal solution for Problem 1 (and Problem 0) based on Formulas (14) and (15).
Compute the final condition, under which the transformed code will be executed, by combining all conditions for

Assumption 3 and Problems 3 and 4.

Figure 7: Algorithm 1: computing optimal shifting vectors

44



REAL*8 ZA0(2 : KN), ZA1(1 : 2), ZB0(2 : JN),ZB1(1 : JN)
. . .
DO K = 2, KN + 1

DO J = 2,JN
T1 = MOD((JN − 1) ∗ (K − 2) + J − 1,JN) + 1 /* for old ZB′(J, K) */
T2 = MOD((JN − 1) ∗ (K − 3) + J − 1,JN) + 1 /* for old ZB′(J, K − 1) */
T3 = MOD((JN − 1) ∗ (K − 2) + J − 2, 2) + 1 /* for old ZA′(J − 1, K) */
T4 = MOD((JN − 1) ∗ (K − 2) + J − 1, 2) + 1 /* for old ZA′(J, K) */
IF (K.EQ.2) THEN

ZB1(T1) = ZQ(J − 1, K) + ZZ(J, K)
ELSE IF (K.EQ.(KN + 1)) THEN

ZA1(T4) = ZP(J − 1, K) + ZR(J − 1, K − 2)
IF (J.EQ.2) THEN

ZP(J, K − 1) = ZP(J, K − 1) + ZA1(T4) −ZA0(KN) − ZB1(T2) + ZB0(J)
ZQ(J,K − 1) = ZQ(J, K − 1) + ZA1(T4) +ZA0(KN) + ZB1(T2) + ZB0(J)

ELSE
ZP(J, K − 1) = ZP(J, K − 1) + ZA1(T4) −ZA1(T3) − ZB1(T2) + ZB0(J)
ZQ(J,K − 1) = ZQ(J, K − 1) + ZA1(T4) +ZA1(T3) + ZB1(T2) + ZB0(J)

END IF
ELSE

ZA1(T4) = ZP(J − 1, K) + ZR(J − 1, K − 2)
ZB1(T1) = ZQ(J − 1, K) + ZZ(J, K)
IF (J.EQ.2) THEN

ZP(J, K − 1) = ZP(J, K − 1) + ZA1(T4) −ZA0(K − 1) − ZB1(T2) + ZB1(T1)
ZQ(J,K − 1) = ZQ(J, K − 1) + ZA1(T4) +ZA0(K − 1) + ZB1(T2) + ZB1(T1)

ELSE
ZP(J, K − 1) = ZP(J, K − 1) + ZA1(T4) −ZA1(T3) − ZB1(T2) + ZB1(T1)
ZQ(J,K − 1) = ZQ(J, K − 1) + ZA1(T4) +ZA1(T3) + ZB1(T2) + ZB1(T1)

END IF
END IF

END DO
END DO

Figure 8: The transformed code for Figure 3(a) after memory reduction

Table I: Test programs
Benchmark Name Description Input Parameters m/n

LL14 Livermore Loop No. 14 N = 1001, ITMAX = 50000 3/1
LL18 Livermore Loop No. 18 N = 400, ITMAX = 100 3/2
Jacobi Jacobi Kernel w/o convergence test N = 1100, ITMAX = 1050 2/2

tomcatv A mesh generation program from SPEC95fp reference input 5/1
swim95 A weather prediction program from SPEC95fp reference input 2/2
swim00 A weather prediction program from SPEC2000fp reference input 2/2
hydro2d An astrophysical program from SPEC95fp reference input 10/2

lucas A primality test from SPEC2000fp reference input 3/1
mg A multigrid solver from NPB2.3-serial benchmark Class ‘W’ 2/1

combustion A thermochemical program from UMD Chaos group N1 = 10, N2 = 10 1/2
purdue-02 Purdue set problem02 reference input 2/1
purdue-03 Purdue set problem03 reference input 3/2
purdue-04 Purdue set problem04 reference input 3/2
purdue-07 Purdue set problem07 reference input 1/2
purdue-08 Purdue set problem08 reference input 1/2
purdue-12 Purdue set problem12 reference input 4/2
purdue-13 Purdue set problem13 reference input 2/1
climate A two-layer shallow water climate model from Rice reference input 2/4

laplace-jb Jacobi method of Laplace from Rice ICYCLE = 500 4/2
laplace-gs Gauss-Seidel method of Laplace from Rice ICYCLE = 500 3/2
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LL14 LL18 Jacobi tomcatv swim95
96 11520 19360 14750 14794

swim00 hydro2d lucas mg combustion
191000 11405 142000 8300 89

purdue-02 purdue-03 purdue-04 purdue-07 purdue-08
4198 4198 4194 524 4729

purdue-12 purdue-13 climate laplace-jb laplace-gs
4194 4194 169 6292 1864

Figure 9: Memory sizes before and after transformation
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Figure 10: Performance comparison with the original inputs
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