
High-Level Information – An Approach for Integrating
Front-End and Back-End Compilers

Sangyeun Cho, Jenn-Yuan Tsaiy, Yonghong Songz, Bixia Zheng, Stephen J. Schwinn�,
Xin Wang, Qing Zhao, Zhiyuan Liz, David J. Lilja�, and Pen-Chung Yew

Dept. of Comp. Sci. and Eng. yDept. of Comp. Sci. zDept. of Comp. Sci �Dept. of Elec. and Comp. Eng.
Univ. of Minnesota Univ. of Illinois Purdue University Univ. of Minnesota

Minneapolis, MN 55455 Urbana, IL 61801 West Lafayette, IN 47907 Minneapolis, MN 55455

http://www.cs.umn.edu/Research/Agassiz

Abstract

We propose a new universal High-Level Information
(HLI) format to effectively integrate front-end and back-end
compilers by passing front-end information to the back-end
compiler. Importing this information into an existing back-
end leverages the state-of-the-art analysis and transforma-
tion capabilities of existing front-end compilers to allow the
back-end greater optimization potential than it has when re-
lying on only locally-extracted information. A version of the
HLI has been implemented in the SUIF parallelizing com-
piler and the GCC back-end compiler. Experimental results
with the SPEC benchmarks show that HLI can provide GCC
with substantially more accurate data dependence informa-
tion than it can obtain on its own. Our results show that
the number of dependence edges in GCC can be reduced by
an average of 48% for the integer benchmark programs and
an average of 54% for the floating-point benchmark pro-
grams studied, which provides greater flexibility to GCC’s
code scheduling pass. Even with the scheduling optimiza-
tion limited to basic blocks, the use of HLI produces mod-
erate speedups compared to using only GCC’s dependence
tests when the optimized programs are executed on MIPS
R4600 and R10000 processors.

1 Introduction

Existing compilers for automatically parallelizing appli-
cation programs are often divided into two relatively in-
dependent components. The parallelizing front-end of the
compiler is often a source-to-source translator that typically
is responsible for performing loop-level parallelization op-
timizations using either automatic program analysis tech-

niques, or user-inserted compiler directives. This front-end
then relies on an optimizing back-end compiler to perform
the machine-specific instruction-level optimizations, such
as instruction scheduling and register allocation.

This front-end/back-endseparation is common due to the
complexity of integrating the two, and because of the dif-
ferent types of data structures needed in both components.
For example, the front-end performs high-level program
analysis to identify dependences among relatively coarse-
grained program units, such as subroutines and loop iter-
ations, and performs transformations on these larger units.
Because it operates at this coarse level of parallelism gran-
ularity, the front-end does not need detailed machine infor-
mation. Not incorporating machine-specific details into the
front-end eliminates the time and memory space overhead
required to maintain this extensive information. The back-
end, however, needs machine details to perform its finer-
grained optimizations.

The penalty for this split, though, is that the back-end
misses potential optimization opportunities due to its lack
of high-level information. For example, optimizations in-
volving loops, such as scalar promotion or array privati-
zation [11], are difficult to perform in the back-end since
complex loop structures can be difficult to identify with the
limited information available in the back-end, especially
for nested loops. Furthermore, the scope of the optimiza-
tions the back-end can perform, such as improving instruc-
tion issuing rates through architecture-aware code schedul-
ing [7, 10, 12, 16], is limited to only short-range, local trans-
formations. Another consequence of this split is that it is not
uncommon for transformations performed in the front-end
to be ignored, or even undone, in the back-end.

The types of high-level information that could be used
by the back-end to enhance its optimization capabilities in-
clude the details of loop-carried data dependences, infor-

mation about the aliasing of variable names, the results of
interprocedural analysis, and knowledge about high-level,
coarse-grained parallelization transformations. While this
information could be easily passed from the front-end to
the back-end in a completely integrated compiler, it is un-
fortunately very difficult to build an entire compiler from
scratch. To be competitive, the new compiler must incorpo-
rate the state-of-the-art in both the front-end and the back-
end, which is a massive undertaking.

Instead of building a completely new compiler, we note
that the necessary information can be readily extracted from
an existing parallelizing front-end compiler and passed in a
condensed form to an existing optimizing back-end com-
piler. In this paper, we propose a new universal High-Level
Information (HLI) format to pass front-end information to
the back-end compiler. Importing this information into an
existing back-end leverages the state-of-the-art analysis and
transformation capabilities of existing front-end compilers
to allow the back-end greater optimization potential than it
has when relying on only locally-extracted information.

In the remainder of the paper, Section 2 presents the for-
mal definition of the HLI format, showing what information
is extracted from the front-end and how it is condensed to
be passed to the back-end. Section 3 then describes our
implementation of this HLI into the SUIF front-end paral-
lelizing compiler [26] and the GCC back-end optimizing
compiler [22]. Experiments with the SPEC benchmark pro-
grams [23] and a GNU utility are presented in Section 4.
Related work is discussed in Section 5, with our results and
conclusions summarized in Section 6.

2 High-Level Information Definition

A High-Level Information (HLI) file for a program in-
cludes information that is important for back-end optimiza-
tions, but is only available or computable in the front-
end [24]. As shown in Figure 1, an HLI file contains a
number of HLI entries. Each HLI entry corresponds to a
program unit in the source file and contains two major ta-
bles – a line table and a region table, as described below.

��� Line table

The purpose of the line table is to build a connection be-
tween the front-end and the back-end representations. After
generating the intermediate representation (IR), such as ex-
pression trees or instructions from the source program, a
compiler usually annotates the IR with the corresponding
source line numbers. If both the front-end and the back-end
read the program from the same source file, the source line
numbers can be used to match the expression trees in the
front-end with the instructions in the back-end.

HLI FILE

FUNCTIONFUNCTIONFUNCTION

Line

item
item
item
item

Line

item
item
item
item

Line Table

Region Region Region

item
item

item
item

Alias

class
class

class
class

aliasaliasclass

class
class

class
class

LCDD

lcdd lcdd

class
class

Func Call Ref/Mod

Equivalent Access

Region Table

call call

class
class

class

Figure 1. Top-level layout of an HLI file.

To reduce the amount of information that must be passed
from the front-end to the back-end, the HLI focuses on only
certain operations, such as memory accesses and function
calls. These operations are called items in the HLI repre-
sentation.1 In the line table, each line entry corresponds to
a source line of the program unit in the source file, and in-
cludes an item list for the line. The front-end also assigns
each item a unique identification number (ID) that is used
by the region table to address these items. In the item list,
each item entry consists of an ID field and a type field. The
ID field stores a unique number within the scope of the pro-
gram unit that is used to reference the item. The type field
stores the access type of the item, such as load, store, func-
tion call, etc.

Groups of items from the front-end are mapped to the
back-end instructions by matching their source line num-
bers. However, this mapping information may not be pre-
cise enough to map items inside a group (i.e. a single source
line) from the front-end to the back-end. To perform precise
mapping, the front-end needs to know the instruction gener-
ation rules of the back-end and the order of items associated
with each source line. Specifically, the order of items listed
in the line table must match the order of the items appearing
in the instruction list in the back-end.

��� Region table

To simplify the representation of the high-level informa-
tion while maintaining precise data dependence information
for each loop, we represent the high-level information of a
program unit with scopes of regions. A region can be a

1An item may also represent an equivalent access class or a whole re-
gion, as discussed in Section 2.2.

program unit or a loop and can include sub-regions. The
basic idea of using region scopes in the HLI is to partition
all of the memory access items in a region into equivalent
access classes and then describe data dependences and alias
relationships among those equivalent access classes with re-
spect to the region.

The region table of a program unit stores the high-level
information for every region in the program unit. Each re-
gion entry has a region header describing the ID, type, and
scope of the region. In addition to the region header, each
region entry holds four sub-tables: (1) an equivalent access
table, (2) an alias table, (3) a loop-carried data dependence
(LCDD) table, and (4) a function call REF/MOD table. In
the following subsections, we describe each of these tables
associated with each region.

2.2.1 Equivalent access table

A region can contain a large number of memory access
items. Recording all of the data dependences and alias rela-
tionships between every pair of memory access items would
result in a huge amount of data. In fact, many memory ac-
cess items in a region may refer to the same memory lo-
cation since the same variable may be referenced multiple
times in a region. Such memory access items can thus be
grouped into a single equivalent access class.

The equivalent access table of a region partitions all
memory access items inside the region, including those
items enclosed by its sub-regions, into equivalent access
classes. The region table includes a number of different
equivalent access classes. Each equivalent access class has
a unique item ID, which can be used to represent all of the
memory access items belonging to the class. The members
of an equivalent access class can be either memory access
items immediately enclosed by the region that are not en-
closed by any sub-region, or the equivalent access classes
of its immediate sub-regions. Equivalent access classes of
immediate sub-regions are used to represent the memory ac-
cess items that are enclosed by the sub-regions. The equiva-
lent access classes defined in a region must be mutually ex-
clusive so that every memory access item inside the region,
including those enclosed by its sub-regions, is represented
by exactly one equivalent access class in the region.

Typically, the memory access items of an equivalent ac-
cess class are considered to be definitely equivalent. How-
ever, the front-end compiler might want to group memory
access items from different equivalent access classes in sub-
regions that may access the same memory location into a
single equivalent access class to reduce the amount of high-
level information that must be passed to the back-end. In
this case, the memory access items of an equivalent access
class may not always access the same memory location. To
distinguish this case, every equivalent access class has an

eq_acc_class
(maybe)

alias

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

12:

13:
14:
15:

16:
17:
18:

19:
20:
21:

21:

23:
24:

25:
26:

b[0]
{6}

a[i]
{1}

b[i]
{2}

a[0..9]
{ , }

sum
{3, }

b[0..9]
{ , , }

sum
{13,14}

 a[i]
{4,5,15, }

 a[i]
{10,11}

 b[j]
{7,8,12}

b[j−1]
 {9}

eq_acc_class
(definitely)

lcdd
dist =1

Region 3:
for (i)

Region 4:
for (j)

Region 2:
for (i)

b[0..9]
{ , }

Region 1:
foo ()

Equivalent access table

int a[10];
int b[10];
int sum;

foo () /* region 1*/
{
 int i, j;

 for (i = 0; i < 10; i++) /* region 2 */
 {
 a[i] = 0;
 {1} /* item 1 */
 b[i] = i;
 {2}
 }

 sum = 0;
 {3}
 for (i = 0; i <10; i++) /* region 3 */
 {
 a[i] = a[i] + b[0];
 {4} {5} {6}
 for (j = 1; j < 10; j++) /* region 4 */
 {
 b[j] = b[j] + b[j−1];
 {7} {8} {9}
 a[i] = a[i] + b[j];
 {10} {11} {12}
 }
 sum = sum + a[i];
 {13} {14} {15}
 }
}

Figure 2. The structure of the regions and
equivalent access classes for an example
program.

equivalent access type field, whose value can be definitely
equivalent or maybe equivalent. The property of “maybe
equivalence” will propagate along the corresponding equiv-
alent access classes in enclosing regions.

If a region is a loop, its equivalent access table only
describes the equivalent access relationships among mem-
ory access items or sub-region equivalent access classes
WITHIN a single loop iteration. Also, when referred to
by the alias table and by the LCDD table of the region, an
equivalent class represents only the memory locations ac-
cessed in one loop iteration. However, when referred to by
an outer region, the equivalent class represents all of the
memory locations that will be accessed by the whole loop.

Figure 2 demonstrates the region structure of a procedure
and its equivalent access tables. The outermost region of
the procedure is Region 1, which represents the whole pro-
cedure. Region 1 has two immediate sub-regions (Regions

2 and 3) that represent the two i loops in the procedure.
The second i loop (Region 3) has an inner j loop, which is
represented by Region 4. In the equivalent access table of
Region 1, all memory access items in the procedure are par-
titioned into three equivalent access classes: sum, a[0..9],
and b[0..9]. From the viewpoint of Region 1, every mem-
ory access item inside the procedure is represented by ex-
actly one of those equivalent access classes. For example, in
Region 1, item 11 (a[i]) inside the j loop is represented by
the equivalent access class of a[0..9]. As mentioned above,
equivalent access classes use the IDs of sub-regions’ equiv-
alent access classes to refer to the items residing in their
sub-regions. For example, the equivalent access class of
sum in Region 1 uses the equivalent access class of sum de-
fined in Region 3 to refer to memory access items 13 and 14
enclosed by Region 3.

2.2.2 Alias table

The alias table describes the possible alias relationships
among the equivalent access classes of a region. Two or
more equivalent access classes are said to be aliased if they
may access the same memory location at run time. If two
equivalent access classes are aliased, all of the memory ac-
cess items represented by the two equivalent access classes
are also aliased. Each alias entry in the alias table consists
of a set of equivalent access classes that the front-end has
determined to be aliased. The equivalent access classes in
the alias table must be equivalent access classes that are de-
fined at the current region. Since the alias table only de-
scribes the alias relationships among the equivalent access
classes within a loop iteration, data dependences caused by
equivalent access classes in different loop iterations will be
described in the LCDD table.

In Figure 2, equivalent access classes b[0] and b[0..9] in
Region 3 may access the same memory location. Thus, the
alias table of Region 3 will include an entry indicating that
these two equivalent access classes are aliased.

2.2.3 Loop-carried data dependence (LCDD) table

If the region is identified as a loop, the LCDD table will
list all of the LCDDs caused by the loop. Loop-carried data
dependences are represented by pairs of equivalent access
classes defined at the region. Each pair specifies a data de-
pendence arc caused by the loop. The data dependence type
can be definite or maybe. In addition, each dependence pair
includes a distance field. To simplify the representation of
the dependence distance, the direction of a dependence is
always normalized to be ‘�’ (forward), that is, from an ear-
lier iteration to a later iteration.

For the example shown in Figure 2, the only LCDD is
between equivalent access classes b[j] and b[j-1] in Region
4. The distance of the LCDD is one.

2.2.4 Function call REF/MOD table

The function call REF/MOD table of a region describes the
side effects caused by function calls on the equivalent ac-
cess classes of the region. If a function call is immediately
enclosed by the region, the function call REF/MOD table
will use the function call item ID defined in the line table to
refer to the function call and will list the equivalent access
classes that may be referenced or modified by the called
function. For function calls inside a sub-region, the function
call REF/MOD table will use the sub-region ID to represent
all of the function calls and will list the equivalent access
classes that may be referenced or modified by the function
calls inside the sub-region. With this table, the front-end
can pass interprocedural data-flow information to the back-
end to enable the back-end to move instructions around a
function call, for instance.

3 Implementation Issues

A version of the HLI described in the previous sec-
tion has been implemented in the SUIF parallelizing com-
piler [26] and the GCC back-end compiler [22]. This sec-
tion discusses some of the implementation details.2 Note,
however, that the HLI format is platform-independent, and
many of the implemented functions are portable to other
compilers [21]. Figure 3 shows an overview of our HLI
implementation in the SUIF compiler and GCC.

��� Front�end implementation

The HLI generation in the front-end contains two ma-
jor phases – memory access item generation (ITEMGEN)
and HLI table construction (TBLCONST). The ITEMGEN

phase generates memory access items and assigns a unique
number (ID) to each item. The memory access items for a
source line, ordered by the ID, can be one-to-one matched to
the memory reference instructions in the GCC RTL chain3

for the same line. These items are annotated in the SUIF
expression nodes to be passed to the TBLCONST phase.

The TBLCONST phase first collects the memory access
item information from the SUIF annotation to produce the
line table for each program unit. It then generates informa-
tion for the equivalent access table, alias table, and LCDD
table for each region. Because it is both back-end compiler
and machine dependent, separating the HLI generation into
these two phases allows us to reuse the code for TBLCONST

across different back-end compilers or target machines.

2Readers are referred to [4] for a more complete description.
3RTL (Register Transfer Language) is an intermediate representation

used by GCC that resembles Lisp lists [22]. An RTL chain is the linked
list of low-level instructions in the RTL format.

Figure 3. Overview of the HLI implementation using the SUIF front-end and GCC back-end compilers.

3.1.1 Memory access item generation (ITEMGEN)

The ITEMGEN phase traverses the SUIF internal represen-
tation (IR) to generate memory access items. It passes this
memory access item information to the TBLCONST phase
by annotating the SUIF IR. To guarantee that the mapping
between the generated memory access items and the GCC
RTL instructions is correct, the RTL generation rules in
GCC must be considered in the HLI generation by SUIF.

Most of the memory access items correspond to variable
accesses in the source program. However, when the opti-
mization level is above -O0, GCC assigns a pseudo-register
for a local scalar variable or a variable used for temporary
computation results. An access to this type of variable does
not generate a memory access item. Since GCC does not as-
sign pseudo-registers to global variables and aggregate vari-
ables, they generate memory access items.

There are some memory access items produced in GCC
that do not correspond to any actual variable accesses in the
source program. These memory accesses are used for pa-
rameter and return value passing in subroutine calls. The
actual number of parameter registers available is machine
dependent. For each subroutine, GCC uses the parameter
registers to pass as many parameters as possible, and then
uses the stack to pass the remaining parameters. Hence, at a
subroutine call site, if a memory value is passed to the sub-
routine via a parameter passing register, a memory read is
used to load the value into the register. If a register value is
passed to the subroutine via the stack, however, a memory
write is generated to store the value to the stack. Similarly,
at a subroutine entry point, if a memory value is passed into
the subroutine via a register, a memory write is generated to
store the value. If a register value is passed into the subrou-
tine via the stack, though, a memory read is again used to
load the value from the memory to the register.

A subroutine return value can also generate memory ac-
cesses that do not correspond to any variable accesses in the
source program. One register is available to handle return
values. When the returned value is a structure, the address
of the structure is stored in that register at the subroutine
call site. In this case, the return statement generates a mem-

ory write to store the return value to the memory location
indicated by the value return register. If the return value is a
scalar, the value return register directly carries the value, so
no memory access is generated.

3.1.2 HLI table construction (TBLCONST)

The HLI table construction phase traverses the SUIF IR
twice. The first traversal creates a line table for each rou-
tine by collecting the memory access item information from
the SUIF annotations. It also creates a hierarchical region
structure for each routine and groups all the memory access
items in a region into equivalent access classes.

The second traversal of the IR visits the hierarchical re-
gion structure of each routine in a depth-first fashion. At
each node, it gathers the LCDD information for each pair
of equivalent access classes and calculates the alias relation-
ship between each pair of equivalent access classes. All of
the information propagates from the bottom up. If the SUIF
data dependence test for a pair of array equivalent access
classes in a region returns zero distance, the two equivalent
access classes are merged. Otherwise, the test results are
stored into the LCDD table. Then, all the pointer references
that may refer to multiple locations are determined. An alias
relationship is created between the equivalent access class
for each pointer reference and the equivalent access class to
which the pointer reference may refer. Next, the equivalent
access class information and alias information is propagated
to the immediate parent region. At the completion of these
two phases, the HLI is ready to be exported to the back-end.

��� Back�end implementation

3.2.1 Importing and mapping HLI into GCC

The HLI file is read on demand as GCC compiles a program
function by function. This approach eliminates the need to
keep all of the HLI in memory at the same time, reliev-
ing the memory space requirements on the back-end. The
imported information is stored in a separate, generic data
structure to enhance portability. Mapping the items listed
in the line table onto memory references in the GCC RTL

chain is straightforward since the ITEMGEN phase in the
front-end (Section 3.1.1) follows the GCC rules for mem-
ory reference generation. A hash table is constructed as the
mapping procedure proceeds to allow GCC quick access to
the HLI. A memory reference in GCC, or other back-end
compilers, can be represented as a 2-tuple: (IRInsn, Ref-
Spec), where IRInsn specifies an RTL instruction and Ref-
Spec identifies a specific memory access among possibly
several memory accesses in the instruction. The hash table
forms a mapping between each item and the corresponding
(IRInsn, RefSpec) pair.

Figure 4. Using call REF/MOD information to
aid GCC’s CSE optimization.

3.2.2 Using HLI

Information in the HLI can be utilized by a back-end com-
piler in various ways. Accurate data dependence informa-
tion allows aggressive scheduling of a memory reference
across other memory references, for example. Additionally,
LCDD information is indispensable for a cyclic scheduling
algorithm such as software pipelining [15]. In loop invari-
ant code removal, a memory reference can be moved out of
a loop only when there remains no other memory reference
in the loop that can possibly alias the memory reference.
High-level program structure information, such as the line
type and the parent line, may provide hints to guide heuris-
tics for efficient code scheduling.

To provide a common interface across different back-
ends, the stored HLI can be retrieved only via a set of query
functions. There are five basic query functions that can be
used to construct more complex query functions [5]. There
are another set of utility functions that simplify the imple-
mentation of the query and maintenance functions (Sec-
tion 3.2.3) by hiding the low-level details of the target com-
piler. Two examples are given in this section to show how
the query functions can be used in GCC.

In GCC’s Common Subexpression Elimination (CSE)

pass, subexpressions are stored in a table as the program
is compiled, and, when they appear again in the code, the
already calculated value in the table can directly replace the
subexpression. Without interprocedural information, how-
ever, all the subexpressions containing a memory reference
will be purged from the table when a function call appears in
the code since GCC pessimistically assumes that the func-
tion can change any memory location. In Figure 4, an HLI
query function to obtain call REF/MOD information is used
to remedy the situation by selectively purging the subex-
pressions on a function call.

The example in Figure 5 shows how the HLI provides
memory dependence information to the instruction sched-
uler. It is used in Section 4.2 to measure the effectiveness
of using HLI to improve the code scheduling pass.

Figure 5. Using equivalent access and
alias information for dependence analysis in
GCC’s instruction scheduling pass.

3.2.3 Maintaining HLI

As GCC performs various optimizations, some memory ref-
erences can be deleted, moved, or generated. These changes
break the links between HLI items and GCC memory ref-
erences set up at the mapping stage, requiring appropriate
actions to reestablish the mapping to respond to the change.
Further, some of the HLI tables may need updating to main-
tain the integrity of the information. Typical examples of
such optimizations include:

� The CSE pass, where an item may be deleted. The
corresponding HLI must then be deleted.

� In the loop invariant removal optimization, an item
may be moved to an outer region. The HLI item must
be deleted and inserted in the outer region. All the HLI
tables must be updated accordingly.

� In loop unrolling, the loop body is duplicated and pre-
conditioning code is generated. The entire HLI com-
ponents (tables) must be reconstructed using old infor-
mation, and the old information must be discarded.

Figure 6. Updating the LCDD information for
loop unrolling.

The HLI maintenance functions have been written to
provide a means to update the HLI in response to these
changes [5]. The functions allow a back-end compiler to
generate or delete items, inherit the attributes of one item
to another, insert an item into a region, and update the HLI
tables. Changes such as the CSE or loop invariant code re-
moval call for a relatively simple treatment – either delet-
ing an item, or generating, inheriting, moving, and deleting
an item. Loop unrolling, however, requires more complex
steps to update the HLI. First, new items need be gener-
ated as the target loop body is duplicated multiple times.
The generated items are inserted in different regions, based
on whether they belong to the new (unrolled) loop body or
the preconditioning code. Data dependence relationships
between the new items are then computed using the infor-
mation from the original loop. An example of updating the
HLI tables for the loop unrolling pass is given in Figure 6.

4 Benchmark Results

��� Program characteristics

Table 1 lists all of the benchmark programs, both integer
and floating-point, showing the number of lines of source
code, the HLI size in KBytes, and the ratio of the HLI size
to the code size. This ratio shows the average number of
bytes needed for the HLI for each source code line. We have
only a few integer programs due to current implementation
limitations of the SUIF front-end tools.4

In general, this table shows that a floating-point program
requires more space for the HLI than an integer program,

4Our implementation uses the SUIF parser twice (see Figure 3). After
the program foo.c is compiled and optimized by SUIF, the optimized C file
foo.opt.c is generated. This code is then used as the input to the HLI gen-
eration and GCC. When foo.opt.c is fed into the SUIF parser again for the
HLI generation, it causes unrecoverable errors in some cases. We are cur-
rently developing a front-end compiler that will eliminate such difficulties.

Code size HLI size HLI per
Benchmark Suite (# of lines) (KB) line (bytes)

wc GNU 972 11 12
008.espresso CINT92 37074 613 17
023.eqntott CINT92 6269 99 16

129.compress CINT95 2235 21 10
mean � � � 13

015.doduc CFP92 25228 1310 53
034.mdljdp2 CFP92 6905 121 18

048.ora CFP92 1249 29 24
052.alvinn CFP92 475 7 15

077.mdljsp2 CFP92 4865 109 23
101.tomcatv CFP95 780 17 22
102.swim CFP95 1124 76 69
103.su2cor CFP95 6759 239 36
107.mgrid CFP95 1725 35 21
141.apsi CFP95 21921 442 21

mean � � � 27

Table 1. Benchmark program characteristics.

implying that the former tends to have more memory ref-
erences per line. The relatively large HLI size per source
code line in 015.doduc and 102.swim is mainly due to a
large number of items in nested loops, which cause the alias
table and the LCDD table to grow substantially.

��� Aiding GCC dependence analysis

Instruction scheduling is an important code optimization
in a back-end compiler. With this optimization, instructions
in a code segment are reordered to minimize the overall ex-
ecution time. A crucial step in instruction scheduling is
to determine if there is a dependence between two mem-
ory references when at least one is a memory write. Accu-
rately identifying such dependences can reduce the number
of edges in the data dependence graph, thereby giving the
scheduler more freedom to move instructions around to im-
prove the quality of the scheduled code.

HLI can potentially enhance the GCC instruction
scheduling optimization by providing more accurate mem-
ory dependence information when GCC would otherwise
have to make a conservative assumption due to its simple
dependence analysis algorithm. For the programs tested,
Table 2 shows the total number of dependence queries (i.e.
do A and B refer to the same memory location?) made in
the first instruction scheduling pass of GCC, the average
number of queries for each source code line, the number of
times the GCC analyzer answers yes (meaning that it must
assume there is dependence), the number of times HLI an-
swers yes, and lastly, the number of times both GCC and
HLI answer yes. Since the values in the table correspond
to the number of dependence edges inserted into the DDG,

Total # # of tests GCC HLI “Combined” Reduction Speedups
Benchmark of tests per line result result result (on R4600) (on R10000)

wc 113 0.12 40 (35%) 20 (18%) 20 (18%) 50% 1.00 1.00
008.espresso 4166 0.11 2615 (63%) 1316 (32%) 1006 (24%) 62% 1.00 1.00
023.eqntott 399 0.06 249 (62%) 191 (48%) 120 (30%) 52% 1.01 1.05

129.compress 274 0.12 56 (20%) 39 (14%) 37 (14%) 34% 1.06 1.07
mean � 0.10 � (41%) � (25%) � (21%) 48% 1.00 1.03

015.doduc 10992 0.44 7712 (70%) 3293 (30%) 2855 (26%) 63% 1.00 1.03
034.mdljdp2 3013 0.44 1753 (58%) 393 (13%) 265 (9%) 85% 1.08 1.42

048.ora 363 0.29 52 (14%) 79 (22%) 34 (9%) 35% 1.00 1.00
052.alvinn 48 0.10 47 (98%) 20 (42%) 20 (42%) 57% 1.01 1.02

077.mdljsp2 2854 0.59 1765 (62%) 413 (14%) 271 (9%) 85% 1.19 1.59
101.tomcatv 286 0.37 191 (67%) 29 (10%) 14 (5%) 93% 1.00 1.01
102.swim 872 0.78 833 (96%) 83 (10%) 80 (9%) 90% 1.03 1.04
103.su2cor 4192 0.62 3549 (85%) 1602 (38%) 1453 (35%) 59% 1.02 1.08
107.mgrid 517 0.30 368 (71%) 330 (64%) 311 (60%) 15% 1.00 1.01
141.apsi 22347 1.02 8031 (36%) 6375 (29%) 5399 (24%) 33% 1.00 1.01

mean � 0.42 � (59%) � (26%) � (19%) 54% 1.03 1.11

Table 2. Using the HLI in GCC’s dependence checking routines can substantially reduce the number
of dependence arcs that must be inserted into the DDG. The resulting speedups on MIPS R4600 and
MIPS R10000 are also shown.

the smaller the number, the more accurate the correspond-
ing analyzer. The “Reduction” column shows the reduction
in the number of dependence edges for each program due to
the use of the HLI.

The result shows that using HLI can reduce the num-
ber of dependence edges, by an average of 48% for the
integer programs and 54% for the floating-point programs.
Four floating-point programs – 034.mdljdp2, 077.mdljsp2,
101.tomcatv, and 102.swim – exhibited a reduction of over
80% in the number of dependence edges. These results con-
firm that the data dependence information extracted by the
front-end analysis is very effective in disambiguating mem-
ory references in the back-end compiler.

Note that the numbers in the HLI result and “Combined”
result columns in Table 2 are not the same in most of the
cases. This difference means that there is room for addi-
tional improvement in the HLI. Current shortcomings in
generating the HLI include – (1) the implemented front-
end algorithms, such as the array data dependence analy-
sis and the pointer analysis, are not as aggressive as possi-
ble, and (2) there are miscellaneous GCC code generation
rules that the current HLI implementation has not consid-
ered. Ignoring these rules produces unknown dependence
types between some memory references. The values of the
HLI result are expected to become smaller as more aggres-
sive front-end algorithms are developed and the current im-
plementation limitations are overcome.

��� Impact on program execution times

To study the performance improvement attributable to
using HLI in GCC’s instruction scheduling optimization
pass, execution times of the benchmark programs, compiled
both with and without HLI, were measured on two real ma-
chines. One machine uses a pipelined MIPS R4600 proces-
sor with 64 MB of main memory. The other is a MIPS
R10000 superscalar processor that contains a 32 KB on-
chip data cache, a 32 KB on-chip instruction cache, a 2 MB
unified off-chip second-level cache, and 512 MB of inter-
leaved main memory. All the programs were compiled with
GCC version 2.7.2.2 with the -O2 optimization flag. Each
program execution used the “reference” input. The input to
the program wc is 62 MB of C source codes. The last two
columns in Table 2 summarize the results.

Three programs achieved a noticeable speedup of 5% or
more on the R4600, with five programs (including the pre-
vious three) achieving similar results on the R10000. Two
programs, 034.mdljdp2 and 077.mdljsp2, obtained remark-
able speedups of over 40% on the R10000. Note that a large
reduction in dependence edges, as shown in Table 2, does
not always result in a large execution time speedup, as can
be seen in 101.tomcatv, for instance. This is partly due to
a limitation of the GCC instruction scheduler which sched-
ules instructions only within basic blocks.

The integer programs achieved relatively small speedups
compared to the floating-point programs. It is known that
the basic blocks in integer programs are usually very small,

containing only 5 – 6 instructions on average, and it is likely
that each basic block contains few memory references. This
is indirectly evidenced by comparing the number of depen-
dence queries made per line (Table 2). Typically, an integer
program requires fewer than half the number of dependence
tests needed by a floating-point program.

Comparing the different processor types, the R10000
produces speedups equal to or higher than the correspond-
ing speedup on the R4600 since the R10000, a four-issue
superscalar processor, is more sensitive to the memory per-
formance, and a load instruction in the load/store queue will
not be issued to the memory system until all the preceding
stores in the queue are known to be independent of the load.
As a result, the impact of compile-time scheduling is more
pronounced in the R10000 than the R4600.

5 Related Work

Traditionally, parallelizing compilers and optimizing
compilers for uniprocessors have been largely two sepa-
rate efforts. Parallelizing compilers perform extensive ar-
ray data dependence analysis and array data flow analysis
in order to identify parallel operations. Based on the re-
sults, a sequential program is transformed into a parallel
program containing program constructs such as DOALL.
Alternatively, the compiler may insert a directive before a
sequential loop to indicate that the loop can be executed
in parallel. Several research parallelizing Fortran compil-
ers, including Parafrase [14], PFC [1], Parafrase-2 [18], Po-
laris [3], Panorama [11], and PTRAN [19], and commercial
Fortran compilers, such as KAP [13] and VAST [25], have
taken such a source-to-source approach.

Computer vendors generally provide their own compil-
ers to take a source program, which has been parallelized
by programmers or by a parallelizing compiler, and gen-
erate multithreaded machine code, i.e., machine code em-
bedded with thread library calls. These compilers usually
spend their primary effort on enhancing the efficiency of the
machine code for individual processors. Once the thread as-
signment to individual processors has been determined, par-
allelizing compilers have little control over the execution of
the code by each processor.

Over the past years, both machine independent and ma-
chine specific compiler techniques have been developed to
enhance the performance of uniprocessors [17, 6, 12, 7, 16].
These compiler techniques rely primarily on dataflow anal-
ysis for symbolic registers or simple scalars that are not
aliased. Advanced data dependence analysis and data flow
analysis regarding array references and pointer dereferences
are generally not available to current uniprocessor compil-
ers. The publically available GCC [22] and LCC [9] com-
pilers exemplify the situation. They both maintain low-level
IRs of the input programs, keeping no high-level program

constructs for array data dependence and pointer-structure
analysis.

With the increased demand for ILP, the importance of
incorporating high-level analysis into uniprocessor compil-
ers has been generally recognized. Recent work on pointer
and structure analysis aims at accurate recognition of aliases
due to pointer dereferences and pointer arguments [8, 27].
Experimental results in this area have been limited to re-
porting the accuracy of recognizing aliases. Compared with
these studies, this paper presents new data showing how
high-level array and pointer analysis can improve data de-
pendence analysis in a common uniprocessor compiler.

There have been continued efforts to incorporate unipro-
cessor parameters and knowledge about low-level code gen-
eration strategies into the high-level decisions about pro-
gram transformations. The ASTI optimizer for the IBM XL
Fortran compilers [20] is a good example. Nonetheless, the
register allocator and instruction scheduler of the uniproces-
sor compiler still lacks direct information about data depen-
dences concerning complex memory references.

New efforts on integrating parallelizing compilers with
uniprocessor compilers also have emerged recently. The
SUIF tool [26], for instance, maintains a high-level inter-
mediate representation that is close to the source program
to support high-level analysis and transformations. It also
maintains a low-level intermediate representation that is
close to the machine code. As another example, the Polaris
parallelizing compiler has recently incorporated a low-level
representation to enable low-level compiler techniques [2].
Nonetheless, results showing how high-level analysis bene-
fits the low-level analysis and optimizations are largely un-
available today. Our effort has taken a different approach
by providing a mechanism to transport high-level analysis
results to uniprocessor compilers using a format that is rel-
atively independent of the particular parallelizing compiler
and the particular uniprocessor compiler.

6 Conclusions and Future Work

Instead of integrating the front-end and back-end into a
single compiler, this paper proposes an approach that pro-
vides a mechanism to export the results of high-level pro-
gram analysis from the front-end to a standard back-end
compiler. This high-level information is transferred using
a well-defined format (HLI) that condenses the high-level
information to reduce the total amount of data that must be
transferred. Additionally, this format is relatively indepen-
dent of the particular front-end and back-end compilers.

We have demonstrated the effectiveness of this approach
by implementing it into the SUIF front-end and the GCC
back-end compilers. Our experiments with the SPEC
benchmarks show that using this information in the code
scheduling pass of GCC substantially reduces the number

of dependence arcs that must be inserted into the data de-
pendence graph. The increased flexibility provided by this
reduction allowed the code scheduler to improve execution
time performance by up to 59% compared to using only the
low-level information normally available to the back-end.

We believe that the HLI mechanism proposed in this pa-
per makes it relatively easy to integrate any existing front-
end parallelizing compiler with any existing back-end com-
piler. In fact, we are currently developing a new front-end
parallelizing compiler5 that will use the HLI mechanism
to export high-level program information to the same GCC
back-end implementation used in these experiments.

Acknowledgment

This work was supported in part by the National Science Foun-
dation under grant nos. MIP-9610379 and CDA-9502979; by the
U.S. Army Intelligence Center and Fort Huachuca under contract
DABT63-95-C-0127 and ARPA order no. D346, and a gift from
the Intel Corporation. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessar-
ily representing the official policies or endorsements, either ex-
pressed or implied, of the U.S. Army Intelligence Center and Fort
Huachuca, or the U.S. Government. Stephen Schwinn is currently
with the IBM Corp., Rochester, MN.

References

[1] J. R. Allen and K. Kennedy. “Automatic Translation of FOR-
TRAN Programs to Vector Form,” ACM Trans. on Prog.
Lang. and Sys., 9(4): 491 – 542, Oct. 1987.

[2] E. Ayguade et al. “A Uniform Internal Representation for
High-Level and Instruction-Level Transformations,” TR
1434, CSRD, Univ. of Illinois at Urbana-Champaign, 1994.

[3] W. Blume et al. “Parallel Programming with Polaris,” IEEE
Computer, pp. 78 – 82, Dec. 1996.

[4] S. Cho, J.-Y. Tsai, Y. Song, B. Zheng, S. J. Schwinn, X. Wang,
Q. Zhao, Z. Li, D. J. Lilja, and P.-C. Yew. “High-Level Infor-
mation – An Approach for Integrating Front-End and Back-
End Compilers,” TR #98-008, Dept. of Computer Sci. and
Eng., Univ. of Minnesota, Feb. 1998.

[5] S. Cho and Y. Song. “The HLI Implementor’s Guide (v0.1),”
Agassiz Project Internal Document, Sept. 1997.

[6] F. C. Chow. A Portable Machine-Independent Global Opti-
mizer – Design and Measurements, Ph.D. Thesis, Stanford
Univ., Dec. 1983.

[7] J. C. Dehnert and R. A. Towle. “Compiling for the Cydra 5,”
J. of Supercomputing, 7(1/2): 181 – 227, 1993.

[8] M. Emami, R. Ghiya and L. J. Hendren. “Context-Sensitive
Interprocedural Points-to Analysis in the Presence of Func-
tion Pointers,” Proc. of the ACM SIGPLAN ‘94 Conf. on
PLDI, pp. 242 – 256, June 1994.

5See http://www.cs.umn.edu/Research/Agassiz/.

[9] C. Fraser and D. Hanson. A Retargetable C Compiler: Design
and Implementation, Benjamin/Cummings Publishing Com-
pany, Inc., Redwood City, CA, 1995.

[10] J. R. Ellis. Bulldog: A Compiler for VLIW Architectures,
MIT Press, Cambridge, Mass., 1986.

[11] J. Gu, Z. Li, and G. Lee. “Experience with Efficient Array
Data Flow Analysis for Array Privatization,” Proc. of the 6th
ACM SIGPLAN Symp. on PPOPP, June 1997.

[12] W. W. Hwu et al. “The Superblock: An Effective Technique
for VLIW and Superscalar Compilation,” J. of Supercomput-
ing, 7(1/2): 229 – 248, 1993.

[13] KAP User’s Guide, Tech. Report (Doc. No. 8811002), Kuck
& Associates, Inc.

[14] D. J. Kuck et al. “The Structure of an Advanced Vectorizer
for Pipelined Processors,” Proc. of the 4th Int’l Computer
Software and Application Conf., pp. 709 – 715, Oct. 1980.

[15] M. Lam. “Software Pipelining: An Effective Scheduling
Technique for VLIW Machines,” Proc. of the ACM SIGPLAN
’88 Conf. on PLDI, June 1988.

[16] P. G. Lowney et al. “The Multiflow Trace Scheduling Com-
piler,” J. of Supercomputing, 7(1/2): 51 – 142, 1993.

[17] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation, Morgan Kaufmann Publishers, 1997.

[18] C. D. Polychronopoulos et al. “Parafrase-2: An Environment
for Parallelizing, Partitioning, Synchronizing and Scheduling
Programs on Multiprocessors,” Proc. of the ICPP, Aug. 1989.

[19] V. Sarkar. The PTRAN Parallel Programming System, Par-
allel Functional Programming Languages and Compilers, B.
Szymanski, Ed., ACM Press, pp. 309 – 391, 1991.

[20] V. Sarkar. “Automatic Selection of High-Order Transforma-
tions in the IBM XL FORTRAN Compilers,” IBM J. of Re-
search and Development, 41(3): 233 – 264, May 1997.

[21] S. J. Schwinn. “The HLI Interface Specification for Back-
End Compilers (v0.1),” Agassiz Project Internal Document,
Sept. 1997.

[22] R. M. Stallman. Using and Porting GNU CC (version 2.7),
Free Software Foundation, Cambridge, MA, June 1995.

[23] The Standard Performance Evaluation Corporation,
http://www.specbench.org.

[24] J.-Y. Tsai. “High-Level Information Format for Integrating
Front-End and Back-End Compilers (v0.2),” Agassiz Project
Internal Document, March 1997.

[25] VAST-2 for XL FORTRAN, User’s Guide, Edition 1.2, Tech.
Report (Doc. No. VA061), Pacific-Sierra Research Co., 1994.

[26] R. P. Wilson et al. “SUIF: An Infrastructure for Research
on Parallelizing and Optimizing Compilers,” ACM SIGPLAN
Notices, 29 (12): 31 – 37, Dec. 1994.

[27] R. P. Wilson and M. S. Lam. “Efficient Context-Sensitive
Pointer Analysis for C Programs,” Proc. of the ACM SIG-
PLAN ‘95 Conf. on PLDI, pp. 1 – 12, June 1995.

