
Compiler Algorithms for Event Variable Synchronization

Zhiyuan Li�

Center for Supercomputing Research and Development

University of Illinois at Urbana�Champaign

��� Talbot Lab�� ��	 S� Wright St�� Urbana� IL 
����

li�csrd�uiuc�edu

May ��� �

�

Abstract

Event variable synchronization is a well�known mecha�
nism for enforcing data dependences in a program that
runs in parallel on a shared memory multiprocessor�
This paper presents compiler algorithms to automati�
cally generate event variable synchronization code� Pre�
viously published algorithms dealt with single parallel
loops in which dependence distances are constant and
known by the compiler� However� loops in real appli�
cation programs are often arbitrarily nested� Moreover�
compilers are often unable to determine dependence dis�
tances� In contrast� our algorithms generate synchro�
nization code based directly on array subscripts and do
not require constant distances in data dependences� The
algorithms are designed for arbitrarily nested loops� in�
cluding triangular or trapezoidal loops�

� Introduction

On shared memory multiprocessors� the performance of
scienti�c and engineering programs can often be im�
proved by running DO loop iterations in parallel� Some
recent simulation studies report tremendous potential
parallelism in many application programs� However�
the studies also report frequent data dependences across
execution threads which must be preserved by means
of synchronization �Kum��� CSY�	
� Most commercial
shared memory multiprocessors provide synchronization
mechanisms to preserve data dependences between par�
allel loop iterations� Many of those mechanisms are ei�
ther equivalent or close to the event variable synchro�
nization described in the widely circulated PCF docu�

�This work is supported by the Department of Energy

Grant DOE DE�FG�����ER������

ment �For��
� Implementation of the event variable syn�
chronization is straightforward on virtually any shared
memory multiprocessor�

Manually inserted synchronization code is error�
prone� Recently� Callahan� Kennedy� and Subhlok pro�
posed a static analysis to detect errors in user�inserted
synchronization code �CKS�	
� In this paper� we de�
scribe a method that generates event variable synchro�
nization automatically� Midki� and Padua presented
compiler algorithms to generate event posts and waits in
single parallel loops� assuming that all data dependences
have known constant distances �MP��
� However� more
powerful algorithms are needed because loops in real
application programs are often arbitrarily nested and
compilers are often unable to determine dependence
distances �SLY�	
� We make two contributions toward
meeting this need
 First� we present algorithms to deal
with arbitrarily nested loops� including the triangular or
trapezoidal loops� in which the lower and upper bounds
of inner loops may vary with the index value of the
outer loops� Second� our algorithms do not require con�
stant dependence distances� Instead� we generate syn�
chronization code based directly on array subscripts and
loop bounds� Of course� we only generate synchroniza�
tion for a dependence that is proved or assumed to ex�
ist between parallel loop iterations by data dependence
analysis �WB��� AK��
�

� Background and Assumptions

Program constructs

Given an arbitrary nest of DO loops� a compiler may
decide to parallelize all loops or serialize some of the
loops� Our task is to generate the necessary synchro�
nization code to support the intended parallelism and
to guarantee the correct computation results�

Data dependences between di�erent loop iterations
are called loop carried dependences �AK��
� We make
two assumptions to ensure that explicit synchronization

�



is needed only for loop carried dependences
 First� the
processors executing a parallel loop may exit only after
all iterations are completed� and second� statements in
the same iteration of a parallel loop execute sequentially
in their original order�

We restrict the loop bounds to the singly indexed
form such that each bound expression can be written as
a� i� b� where i is the index variable of an outer loop
and a and b are invariant expressions� We believe this
form is general enough to cover most cases in practical
programs� However� we do allow arbitrary loop bound
expressions if all loop carried dependences in those loops
are due to a class of array references which will be de�
scribed later in Section �� Without loss of generality�
we assume loop increments of one and that the lower
bound of a loop can never be greater than the upper
bound� Statements in the DO loop nest are assumed to
be do� enddo� if� and assignments�

Event variable synchronization

Event variable synchronization uses two operations�
post and wait� on a logical variable called an event
variable� The operation post�ev� sets the event vari�
able ev to true� the operation wait�ev� busy�waits un�
til ev becomes true� A data dependence in a parallel
loop is enforced by executing a post after the depen�
dence source and a wait before the dependence sink�
The initial value of an event variable is assumed to be
false�

A data dependence may be a �ow dependence� which
requires a read reference to follow a write reference� an
anti dependence� which requires a write reference to fol�
low a read reference� or an output dependence� which
requires a write reference to follow another write ref�
erence �Kuc��
� If one reference depends on another�
we call the former dependence sink and the latter the
dependence source� In the sample loop in Figure ��a��
a standard data dependence analysis will report a loop
carried �ow dependence from the A�I��I��I�� reference�
the source� to the A�I��I���� reference� the sink� How�
ever� more information is needed in order to synchronize
the dependent references if the doubly nested loops are
to be executed in parallel� First� because the A�I��I����
reference should not wait in all loop iterations� a condi�
tion must be checked in each iteration to see if a wait

must really be executed� �Executing unnecessary wait

may cause deadlock�� We call this condition the mask
predicate� which is tested by the if statement in Figure
��b�� Second� it must be determined which instance of
the A�I��I��I�� reference should be followed by which
instance of the A�I��I���� reference� We call such a cor�
respondence between two dependent references a con�
tact� which should be maintained by indexing the event
array correctly in post and wait as in Figure ��b�� In

DO I� � �� N DOALL I� � �� N

DO I� � I���� N�� DOALL I� � I���� N��

�� � A�I��I�	�
 IF ��I��EQ�I���


A�I��I��I�
 � �� �AND� �I��GE��



ENDDO WAIT�EV�I�	I����I�	�



ENDDO �� � A�I��I�	�


A�I��I��I�
 � ��

POST�EV�I��I�



ENDDO

ENDDO

�a
 �b


Figure �
 An Example of Mask Predicates and Contacts

the rest of this paper we discuss how to formulate mask
predicates and contacts and how to use them to gener�
ate event variable synchronization automatically�

� Enhanced data dependence informa�

tion

Mask predicates and contacts

We explained in the last section that mask predicates
and contacts are two pieces of essential information that
are not available from standard data dependence anal�
ysis� To facilitate further discussion� we de�ne them
formally in the following�

Given a loop nest L which has singly indexed loop
bounds as de�ned in Section �� we consider a �poten�
tial� loop carried data dependence� �� from an array
reference R� to another array reference R�� Since the
references may be nested in di�erent loops� we use dif�
ferent names for their loop indices
 i�� i�� � � � � il� for the
l� loops enclosing R�� and j�� j�� � � � � jl� for the l� loops
enclosing R�� Fixing a value for each index ik within its
loop bound� we have an instance of R� which is denoted
by R�hi�� i�� � � � � il�i� Similarly� we denote an instance
of R� by R�hj�� j�� � � � � jl�i�

De�nition The mask predicate of � is a
predicate F��j�� j�� � � � � jl�� which is true if and
only if j�� j�� � � � � jl� are within loop bounds and
R�hj�� j�� � � � � jl�i depends on some instances of R��
When no confusion results� we write F instead of F��

De�nition A contact of � is a vector �e�� e�� � � � � el���
where ek is an integer linear expression in indices
j�� j�� � � � � jl� � such that if F�j�� j�� � � � � jl�� is true� then
R�hj�� j�� � � � � jl�i depends on R�he�� e�� � � � � el�i�

Example For the dependence from A�I��I��I�� to
A�I��I���� in Figure ��a�� we have F � �I� � I� �
�� � �I� � ��� The only contact of the dependence is
�I� � I� � �� I� � ���

�



A dependence may have multiple contacts� The fol�
lowing de�nes a precedence relation between two con�
tacts�

De�nition A contact �e�� e�� � � � � el�� of � from
R� to R� precedes another contact �h�� h�� � � � � hl�� if
R�he�� e�� � � � � el�i precedes R�hh�� h�� � � � � hl�i in the se�
rial execution of L�

De�nition The closest contact of � is the contact
that is preceded by all other contacts�

Suppose R� and R� are written as A���� ��� � � � � �m�
and A���� ��� � � � � �m�� where �k and �k are integer lin�
ear expressions in the loop indices� If dependence � ex�
ists� then some values of i�� i�� � � � � il� and j�� j�� � � � � jl�
must satisfy a set of constraints


�k�i�� i�� � � � � il�� � �k�j�� j�� � � � � jl�� ���

ukip�k� � vk � ik � u�kip��k� � v�k ���

�ukjq�k� � �vk � jk � �u�kjq��k� � �v�k ���

�i� � j�� � �i� � j�� � �i� � j�� � � � � �

�i� � j�� � � � � � �ilc�� � jlc��� � �ilc � jlc�� ���

where lc is the number of loops common to R� and R��
k � �� �� � � � �m� and uk� vk� �uk� and �vk are all integer
invariants in L� We call eqs� ��� the subscript equa�
tions� ineqs� ��� and ��� the loop bound constraints� and
formula ��� the precedence constraints� Note that outer
loop indices may appear in inner loop bounds� Hence�
u� � �u� � v� � �v� � 	� and p� q� �p� and �q are mappings
such that p�k�� q�k�� �p�k�� �q�k� � k�

If the compiler decides to serialize at the kth loop
level� � � k � lc� then the term in formula ��� that
contains the factor �ik � jk� should be removed�

From the formulas in ������ one can see that data
dependences could be arbitrarily complex if we consider
arbitrary array subscripts� In this paper� we require
R� to have a diagonalizable coe�cient matrix� which
is de�ned below� We believe this de�nition is general
enough for most cases that occur in practical programs�
As for R�� we allow arbitrary linear subscripts�

Coe�cient matrix

De�nition Consider an m�dimensional array refer�
ence� R� whose subscripts contain n index variables�
The coe�cient matrix of R is an m�n matrix A whose
element A�j�k� is the coe�cient of the loop index vari�
able ik in the j�th dimension of R�

De�nition A coe�cient matrix A is diagonalizable if
there exists a nonsingular integer square matrix P such
that PA is in the quasi�diagonal form

�
D 	

�
or

�
D
	

�

where D is a diagonal submatrix�

Example �� The coe�cient matrix of H���i� i��� is�
�
�

�
� which is diagonalizable�

�� The coe�cient matrix of H���k� �		� is

�
�
	

�
� which

is in the quasi�diagonal form and is thus diagonalizable�
�� The coe�cient matrix of H�i� N���j�� where N is a

loop invariant� is

�
� 	
	 ��

�
� which is in the quasi�

diagonal form and is thus diagonalizable�

�� The coe�cient matrix of H�i�j� �� is

�
� �
	 	

�
�

which is not diagonalizable� �

Notice that the number of columns in a coe�cient
matrix may be less than the number of loops enclosing
the array reference� because some index variables may
not appear in the array subscripts�

We diagonalize a coe�cient matrix by a modi�ed
Gaussian elimination which� at each elimination step�
scales the rows when necessary to keep integer results�
It takes at most � � n multiplications and n additions
to eliminate one element� Therefore� with no more than
��m�n� multiplications and m�n� additions at com�
pile time� a coe�cient matrix can either be diagonalized
or be recognized as non�diagonalizable�

In the next two sections� we discuss two classes of
diagonalizable coe�cient matrices which must be dealt
with di�erently� In both sections� we assume the ab�
sence of if statements in the considered loop nests� if
statements will be covered in Section ��

� Complete Coe�cient Matrices

De�nition A coe�cient matrix is complete if the
number of its columns equals the number of loops en�
closing the array reference� Otherwise� the matrix is
called incomplete�

If a dependence source R� has a diagonalizable and
complete coe�cient matrix� then the number �m� of the
subscript equations must be greater than or equal to
the number �l�� of loops enclosing R�� Using the trans�
formation that diagonalizes the coe�cient matrix� the
subscript equations can be rewritten as follows�

�a�i� � ����j�� j�� � � � � jl��

�a�i� � ����j�� j�� � � � � jl��
� � �

�al� il� � ��l��j�� j�� � � � � jl��

	 � ��l����j�� j�� � � � � jl��
� � �

	 � ��m�j�� j�� � � � � jl��

���

where each �ak is a nonzero integer� We can then use the
algorithm below to determine the mask predicate and

�



the contact� Algorithm ���

�� Fint 
� ��a� j ���� � ��a� j ���� � � � � � ��al� j
��l��� where

�j� indicates �divides��

�� If m � l�� then Fzero 
� � ��l��� � 	��� � �� � ��m � 	��
Otherwise� Fzero 
� true�

�� For k from � to l�� �ik 
� ��k	�ak�

�� Substitute each �ik into the loop bound constraints�
i�e�� ineqs� ���� and do


Flb 
�

l��
k��

�uk�ip�k� � vk � �ik � u�k�ip��k� � v�k� ���

�� Substitute each �ik into the precedence constraints�
i�e�� formula ���� and do


Fpre 
� ��i� � j�� � ��i� � j�� � ��i� � j�� � � � � �

��i� � j�� � � � � � ��ilc�� � jlc��� � ��ilc � jlc�� ���

�� F 
� Fint � Fzero � Flb � Fpre�

�� Simplify F �

�� The sought contact is ��i���i�� � � � ��il��� �

In the above� the predicate Fint indicates whether
i�� i�� � � �� il� have integer solutions� given �xed
j�� j�� � � � � jl� � Fzero indicates whether the last m � l�
equations ��k � 	 can be satis�ed� Flb indicates
whether the integer solutions of i�� i�� � � � � il� satisfy the
loop bound constraints �i�e�� ineqs� ����� Fpre indi�
cates whether i�� i�� � � � � il� satis�es the precedence con�
straints �i�e�� formula ����� Recall that if some loops
in the nest are serialized� the corresponding terms in
formula ��� should disappear�

It is clear that the above algorithm is valid for arbi�
trary loop bound expressions� In the whole algorithm�
only Step � involves loop bounds
 It substitutes the so�
lutions of i indices into the loop bound expressions and
derives Flb� This step is valid for arbitrary loop bound
expressions�

After F is formed� it should be simpli�ed as much
as possible to reduce the time for evaluating F at run
time� For instance� we can eliminate those factors that
are recognized as always true� A detailed discussion on
such simpli�cation is beyond the scope of this paper�
Nonetheless� the following lemma gives an upper bound
on the complexity of F �

Lemma � If the coe�cient matrix� A� of R� is both
complete and diagonalizable� then F can be evaluated
with no more than the following integer operations� l�
mod operations� l� divisions� m � � � l� comparisons�
� � l� � m � l� multiplications� and � � l� � m � l�
additions�

�Proof
 In the worst case� none of the components
of F could be evaluated at compile time and therefore

�



must be evaluated at run time� It takes at most m� l�
multiplications and the same number of additions to
calculate ��� Evaluating Fint takes at most l� mod oper�
ations� Fzero takes at most m� l� comparisons to eval�
uate� The vector ��i�� � � � ��il�� can be determined with at
most l� divisions� Evaluating Flb takes at most � � l�
multiplications and the same number of additions and
comparisons� while evaluating Fpre takes at most lc � l�
comparisons� �

Corollary � In Lemma �� if all the loop bounds are
invariants of L� then the numbers of multiplications and
additions can both be reduced to m� l��

Corollary � In Lemma �� if every coe�cient ai is ei�
ther � or �� and all the loop bounds are invariants of
L� then F can be evaluated with at most m� l� multipli�
cations� m� l� additions� and m� �� l� comparisons�

Example We derive F for the dependence from
A�I��I�� I�� to A�I�� I���� in Figure ��a�� Let i� and
i� denote I� and I� in A�I��I�� I��� and let j� and j�
denote I� and I� in A�I��I����� We have

Subscript eqs� 
 i� � j� � j� � �� i� � j� � �
Loop bounds 
 �� � i� � N��

�i� � � � i� � N � ��
� Flb � �� � j� � j� � � � N��

�j� � j� � � � j� � � � N � ��
� �j� � j� � �� � �j� � �j� � ��
� �j� � j� � �� � �j� � ��

Precedence 
 i� � j� � �
� Fpre � �j� � j� � � � j� � ��

� �j� � �� � True
� F � Flb � Fpre

� �j� � j� � �� � �j� � ���

From the subscript equations� the only contact is �j� �
j� � �� j� � ��� �

Having formulated the mask predicates and the con�
tacts� the compiler can generate synchronization code
as follows� First� an event array� ev� is declared for ev�
ery reference R� which is a source of data dependences�
The number of dimensions of ev equals the number� l��
of loops that enclose R�� Note that even if a dependence
source corresponds to several dependence sinks� it suf�
�ces to declare only one event array� Afterwards� post
and wait operations are inserted in the code using the
following algorithm�

Algorithm ���

Input 
 �� An array reference R� in the loop nest L as
speci�ed in Section �� Suppose the indices of the en�
closing loops are named i�� i�� � � � � il� � The coe�cient
matrix of R� is diagonalizable and complete� �� Array

references that are recognized or assumed by the com�
piler as dependent on R��

Output 
 Synchronization code for every dependence
from R��

Steps 
 �� After the statement that issues R�� insert
�post�ev�i�� i�� � � � � il�����

�� For every dependence from R�� do ������� in the
following


���� Use Algorithm ��� to formulate the mask predicate
F�j�� j�� � � � � jl�� and the contact �e�� e�� � � � � el��� where
j�� j�� � � � � jl� are the indices of the loops enclosing the
sink reference�

���� Before the statement which issues the sink
reference� insert �if F�j�� j�� � � � � jl�� then wait�ev�
e�� e�� � � � � el� ���� �

The synchronization code in Figure ��b� was gener�
ated following Algorithm ����

Since Algorithm ��� is valid for arbitrary loop bound
expressions� if all sources of loop carried dependences in
L have complete coe�cient matrices� then we can allow
L to have arbitrary loop bound expressions�

� Incomplete Coe�cient Matrices

Again� consider a dependence source R�� By de�nition�
if indices of some loops that enclose R� do not appear in
the subscripts of R�� then the coe�cient matrix of R�

is incomplete� We call the missing indices the implicit
indices� and call the rest the explicit indices�

After transforming an incomplete and diagonalizable
coe�cient matrix to the quasi�diagonal form� the sub�
script equations can be written as

�a�iy� � ����j�� j�� � � � � jl��

�a�iy� � ����j�� j�� � � � � jl��
� � �

�aniyn � ��n�j�� j�� � � � � jl��

	 � ��n���j�� j�� � � � � jl��
� � �

	 � ��m�j�� j�� � � � � jl��

���

where iyk are the n explicit indices� n � l�� To formu�
late the mask predicate� we let Fint be the predicate
��a� j ���� � ��a� j ���� � � � � � ��an j ��n�� as in Algorithm
���� Likewise� if m � n� we let Fzero be the predicate
� ��n�� � 	� � � � � � � ��m � 	�� If m � n� then we simply
let Fzero be true� The remaining task is to formulate
Flb and Fpre� and to determine the contacts and the
closest contact�

Recall that� in the case of complete coe�cient ma�
trices� Fpre and Flb can be derived by straightforward
index substitutions� Here� we must eliminate implicit

�



indices from ineqs� ��� and ��� without being able to
substitute directly� This problem would be extremely
di�cult if we allowed arbitrary loop bound expressions�
The following algorithm works for singly indexed bound
expressions�

Algorithm ���

�� �Initialize Flb� For � � k � l�� let F
�k�
lb be �ukip�k� �

vk � ik � u�kip��k� � v�k�� Let Flb be
Vl�

k�� F
�k�
lb �

�� �Initialize Fpre� For � � k � lc� let F
�k�
pre be �i� �

j�� � � � � � �ik � jk � ��� Let Fpre be
Vlc

k��F
�k�
pre�

�� Substitute every explicit index iyk in Flb and Fpre

with its solution ��k�

�� For k from l� down to �� if ik is implicit� then do
������� in the following �to eliminate ik from Flb and
Fpre�


���� If ik is the index of a common loop� then replace
ik � jk � � in Fpre by ukjp�k� � vk � jk � �� and
replace ik � jk in Fpre by ukjp�k� � vk � jk�

���� Transform all inequalities in Flb whose only
implicit index is ik to the form of 
 � ik or ik � ��
For all 
 � ik� take LB

�k� � max�
�� For all ik � ��
take UB�k� � min����

���� Delete all inequalities 
 � ik and ik � � found
in Step ��� from Flb �as they are no longer useful in
discovering constraints on the j indices��

���� If LB�k� or UB�k� contains any j index� and if
LB�k� � UB�k� is not implied by current Flb� then
add this inequality to Flb as a new ��� factor�

���� If uk or u�k is nonzero� replace �ukip�k� � vk �

ik � u�kip��k� � v�k� in Flb by �ukip�k� � vk � UB�k��

� �LB�k� � u�kip��k��v�k� � �ukip�k��vk � u�kip��k��
v�k�� �This adds new constraints on ip�k� and ip��k���

���� In all other inequalities in Flb of the form 
 �
ik� where 
 contains an implicit index� replace ik
by UB�k�� Likewise� in those of the form ik � ��
where � contains an implicit index� replace ik by
LB�k�� �Those inequalities were derived in previous
iterations of Step ���

�� �Determine the contacts and the closest contact� For
h from � to lc� do ������� in the following


���� For k from h to l�� do ����� and ����� in the
following


������ For explicit ik� let LB
�k� be the solution of ik

given by eqs� ���� For implicit ik� if uk � 	� then

LB�k� 
� max�LB�k�� ukLB
�p�k�� � vk��

else if uk � 	� then

LB�k� 
� max�LB�k�� ukUB
�p�k�� � vk��

������ For explicit ik� let UB
�k� be the solution of ik

given by eqs� ���� For implicit ik� if u
�

k � 	� then

UB�k� 
� min�UB�k�� u�kUB
�p��k�� � v�k��

else if u�k � 	� then

UB�k� 
� min�UB�k�� u�kLB
�p��k�� � v�k��

If k � h� then UBsave 
� UB�k�� UB�k� 
�
min�UB�k�� jk � ���

���� The closest contact when F
�k�
pre is true is cc�k� �

�UB���� UB���� � � � � UB�l����

���� The set of all contacts when F
�k�
pre is true is SC�k�

� �LB���� UB���
 � �LB���� UB���
 � � � �� �LB�l���
UB�l��
�

���� For implicit i�k�� UB
�k� 
� min�UBsave� jk��

�

Two interesting things can be observed from the re�
sult of the algorithm above� First� unlike in the case
of complete matrices� we may now have multiple con�
tacts� Second� we may even have di�erent forms for the
closest contact� depending on which of the predicates

F
�k�
pre is true� For a �ow or output dependence� only

the closest contact needs to be maintained explicitly by
wait� Other contacts will be maintained automatically
because the reference instances issued at the dependence
source are all write accesses to the same array element
and the access order will be maintained by synchroniza�
tion for the self output dependence� In contrast� for an
anti dependence� every contact must be maintained ex�
plicitly by wait� because the reference instances at the
dependence source are read accesses among which no
order will be maintained� This issue will be discussed
further in Section �� The algorithm below generates
synchronization code for dependence sources which have
diagonalizable and incomplete coe�cient matrices�

Algorithm ���

Input 
 �� An array reference R� in the loop nest L as
speci�ed in Section �� Suppose the indices of the en�
closing loops are named i�� i�� � � � � il� � The coe�cient
matrix of R� is diagonalizable and incomplete� �� Ar�
ray references which are recognized or assumed by the
compiler as dependent on R��

Output 
 Synchronization code for every dependence
from R��

Steps 
 �� After the statement which issues R�� insert
post�ev�i�� i�� � � � � il����

�� For every dependence from R�� formulate the pred�

icates Fint� Fzero� Flb and F
�k�
pre� � � k � lc� Let �F �

Fint � Fzero � Flb�

�� If R� is a write� then for every �ow or output depen�
dence from R�� do the following


�



���� Before the statement which issues the sink ref�
erence� insert �if �F then��

���� For � � k � lc� if F
�k�
pre is not always false� do

the following


���a� Use Algorithm ��� to compute cc�k� �

�e
�k�
� � e

�k�
� � � � � � e

�k�
l�

�� the closest contact to be main�

tained when F
�k�
pre is true�

���b� If k is the smallest integer such that F
�k�
pre is

not always false� then insert �if F
�k�
pre then wait�ev�

e
�k�
� � e

�k�
� � � � � � f

�k�
l�

���� otherwise insert �elseif F
�k�
pre

then wait�ev� e
�k�
� � e

�k�
� � � � � � f

�k�
l�

����

���� Insert �endif� twice�

�� If R� is a read� then for every anti dependence from
R�� do the following


���� Before the statement which issues the sink ref�
erence� insert �if F then��

���� For � � k � lc� if F
�k�
pre is not always false� do

the following


���a� Use Algorithm ��� to compute SC�k�� the set

of all contacts to be maintained when F
�k�
pre is true�

���b� If k is the smallest integer such that F
�k�
pre

is not always false� then insert �if F
�k�
pre then��

and for each contact �e�� e�� � � � � el�� in SC�k�� insert
� wait�ev� e�� e�� � � � � el� ����

���c� If k is not the smallest integer required in Step

���b� then insert �elseif F
�k�
pre then�� and for each

contact �e�� e�� � � � � el�� in SC�k�� insert �wait�ev�
e�� e�� � � � � el� ����

���� Insert �endif� twice� �

The following example illustrates Algorithms ��� and
����

Example Take the doubly�nested loop in Figure ��a��
We need to consider �� the anti dependence� �a� from
A�I��I���� to A�I��I��� �� the output dependence� �o�
from A�I��I�� to A�I��I��� and �� the �ow dependence�
�f � from A�I��I�� to A�I��I�����

�a� For �a� the coe�cient matrix of the source is com�
plete and quasi�diagonal� Following Algorithm ���� we
can easily determine that �I�� I� � �� is the unique con�
tact and that F�a � �I� � N�� � �I� � N� � �� � �I�
� I� � �� � �I� � N� � �� � �I� � I� � ���

�b� For �f � the coe�cient matrix of the source is di�
agonalizable and incomplete� Transforming it to the
quasi�diagonal form� we derive the subscript equations

i� � j�� 	 � j� � j� � ��

where i� and i� denote I� and I� in the source� and j�
and j� denote I� and I� in the sink� Fzero � �I� � I� �
� �� is immediately obtained� We now follow Algorithm

DO I� � �� N�

DO I� � �� N�

A�I��I�
 � ��

���

�� � A�I��I�	�


ENDDO

ENDDO

�a


DOALL I� � �� N�

DOALL I� � �� N�

IF ��I��LE�N�	�
 �AND� �I��LT�I�



WAIT�EV��I��I���



IF �I��GE��
 WAIT�EV��I�	��I�



A�I��I�
 � ���

POST�EV��I��I�



���

IF ��I��LE�N�
�AND���I�	I�
�EQ��



THEN IF �I��GE��
 WAIT�EV��I�	��I�



ELSEIF �I��LE�I�	�

 WAIT�EV��I��I�



ENDIF

ENDIF

�� � A�I��I�	�


POST�EV��I��I�



ENDDO

ENDDO

�b


Figure �
 An Example Using Algorithms ��� and ���

��� to derive Flb� Fpre and the closest contact�

�� Flb 
� �� � i� � N�� � �� � i� � N���

�� F
���
pre 
� �i� � j� � ��� F

���
pre 
� �i� � j�� � �i� �

j� � ���

�� Substituting the explicit index i�� we perform

Flb 
� �� � i� � N�� � �� � j� � N���

F
���
pre 
� �i� � j�� � �j� � j� � ���

���� Since i� is implicit and it belongs to a common
loop� we form

F
���
pre 
� �� � j� � ���

F
���
pre 
� �� � j�� � �j� � j� � ���

���� LB��� 
� �� UB��� 
� N��

���� Delete � � i� � N� from Flb�

���� � � N� does not contain any j index�

Skip �������� Cleaning up the predicates� we have

Flb � �j� � N��� Fzero � �j��j� � ��� F
���
pre � �� � j���

and F
���
pre � �j� � j� � ���

�� In the �rst iteration �for h � ��� UBsave 
� N��
UB��� 
� min�N�� j� � ��� UB��� 
� j��

cc��� 
� �j� � �� j��� UB
��� 
� j��

�



In the second iteration �for h � ��� UB��� 
� j��
cc��� 
� �j�� j���

�c� For �o� the coe�cient matrix of the source is di�
agonalizable and incomplete� Similar to �b�� we derive
the closest contact �I���� I�� and F�o � �� � j���

�d� Following Algorithm ���� we insert synchroniza�
tion as shown in Figure ��b�� where EV� is used for �a
and EV� is used for both �f and �o� �

The following lemma gives an upper bound on the
complexity of F for incomplete� diagonalizable coe��
cient matrices� For simplicity� we assume that the max�
imums and the minimums in Algorithm ��� can be de�
termined at compile time� Therefore� for example� a
compiler can determine which of UB�k� and jk � � is
greater�

Lemma � If the coe�cient matrix� A� of R� is di�
agonalizable and incomplete� then F� can be evaluated
with no more than the following integer operations� l�
mod operations� l� divisions� m � � � l� comparisons�
�� l� �m� l� multiplications and �� l� �m � l� ad�
ditions�

�Proof
 Compared with the operations required in
Lemma �� here we perform additional two comparisons
per iteration in Step � in Algorithm ���� This amounts
to at most � � l� additional comparisons in total�

Corollary 	 If the coe�cient matrix� A� of R� is diag�
onalizable and incomplete� and if all the loop bounds are
invariants in L� then F� can be evaluated with the same
operations required for diagonalizable and complete ma�
trices 	cf� Corollary �
�

�Proof
 Invariant loop bounds make the additional
comparisons in Lemma � unnecessary�

	 IF Statements

In the previous two sections� our discussion was limited
to a loop nest L which contains no if statements� Ig�
noring the step control of DO loops� L had straight line
code� In this section� we cover if statements and control
�ows� In �ow analysis� each do loop will be represented
as a cycle in the �ow graph of L� Parallelization of a do

loop breaks such a cycle� In order to re�ect this fact�
we obtain the sequential skeleton of L by deleting the
do and enddo statements for every do loop that is to
be parallelized� We then build a �ow graph� SSG� of
the sequential skeleton� For the sake of clarity� we as�
sume in this section that backward control transfers do
not exist� As a result� SSG is acyclic� Cycles will be
discussed in Section ��

DO I� � �� N DOALL I� � �� N

DO I� � �� N DOALL I� � �� N

IF �C� THEN IF �C� THEN

��� ���

A�I��I�� � �� A�I��I�� � ��

ELSE POST�EV��I��I���

��� POST�EV��I��I���

��� ELSE

B�I�	��I�� � �� ���

��� B�I�	��I�� � ��

ENDIF POST�EV��I��I���

ENDDO POST�EV��I��I���

ENDDO ENDIF

ENDDO

ENDDO

�a� �b�

Figure �
 An Example of Branch�Induced POST�s

The main problem caused by if statements is that an
event variable may be posted on some control paths but
not on others� which may cause some wait operations
to busy�wait inde�nitely� A straightforward solution to
this problem is to add additional posts �called branch�
induced posts in this paper� to ensure that the event
variable will be posted on every possible control path�

Example The loop in Figure ��a� gives a basic ex�
ample� where a distinctive event array is used for each
of the dependence sources A�I��I�� and B�I����I��� A
branch�induced post is added to each of the two control
paths�

Quite often� an array may be referenced on di�erent
paths using the same indexing subscripts� We call such
identical references on di�erent paths clones� For the
sake of e�ciency� we use the same event array for de�
pendence sources that are clones� The following shows
an example�

Example The loop in Figure ��a� has two clones of
A�I��I�� reference� Both are dependence sources whose
corresponding sink is the A�I����I���� reference� The
same event array EV� is used for both sources�

The following is a formal de�nition of clones�

De�nition Two dependence sources in L are clones
if they are references to the same array� their enclos�
ing loop nests have the same depths and the same loop
bounds� their subscripts are identical� and they belong
to di�erent nodes of SSG� the �ow graph of the se�
quential skeleton� in which neither node dominates or
post�dominates the other�

In the above de�nition� we use the term �dominates�
in the same sense as in �ow analysis �ASU��
� We

�



DO I� � �� N DOALL I� � �� N

DO I� � �� N DOALL I� � �� N

IF �C
 THEN IF �C
 THEN

��� ���

A�I��I�
 � �� A�I��I�
 � ��

ELSE POST�EV��I��I�



��� ELSE

��� ���

A�I��I�
 � �� A�I��I�
 � ��

ENDIF POST�EV��I��I�



� � A�I�	��I�	�
 ENDIF

ENDDO IF ��I��GE��
�AND��I��GE��



ENDDO WAIT�EV��I�	��I�	�



ENDDO

ENDDO

�a
 �b


Figure �
 An Example of Clones

use the term �post�dominates� in the same sense as in
�FOW��

 A node in a �ow graph G post�dominates an�
other if the former dominates the latter in the reverse
graph of G�

Suppose a dependence source R is nested in several
loops and some of the loops are on one of the branches
of an IF statement� When we add branch�induced posts
on the other branches� we must also produce some new
DO loops on those branches to ensure that each branch�
induced post is enclosed in a loop nest of the same depth
and the same loop bounds as the loop nest enclosing R�
The added DO loops are called complementary loops�
We give a formal de�nition as follows�

De�nition Suppose R is a dependence source in L
and S is a code segment of L represented by a node �
in SSG� The DO loops that enclose R but not S are
called the complementary loops of S �or �� with respect
to R�

Example In Figure ��a�� A�I��I�� is a dependence
source� In Figure ��b�� a branch�induced post� enclosed
by a complementary loop �doall I��� is added to the
else branch�

The following algorithm generates synchronization
code for a loop nest L that has if statements�

Algorithm 
��

�� Identify clone dependence sources in L�

�� Build a �ow graph� SSG� for the sequential skeleton
of L� �� For each dependence source in L� declare an
event array ev as speci�ed in Section �� Use the same
ev for clones�

�� Follow Algorithm ��� to insert post and wait� The
dependences from clone sources to a sink share the same

DO I� � �� N DOALL I� � �� N

IF �C
 THEN IF �C
 THEN

��� ���

DO I� � �� N DOALL I� � �� N

��� ���

A�I��I�
 � �� A�I��I�
 � ��

ENDDO POST�EV��I��I�



ELSE ENDDO

��� ELSE

ENDIF DOALL I� � �� N

ENDDO POST�EV��I��I�



ENDDO

ENDIF

���

ENDDO

�a
 �b


Figure �
 An Example of Complementary Loops

procedure Insert a Post	ev� R� �


�� is a node in SSG��

if � already contains a post on ev� return�
if any descendant of � has a post on ev then

for each descendant ��� call Insert a Post�ev� R�
���

else determine the complementary loops of �
w�r�t� R� and insert a post �on ev� and the com�
plementary loops� in the node ��

endif

Figure �
 A Procedure Called by Algorithm ���

wait�

�� For each dependence source R and its event array
ev� call Insert a Post�ev� R� Top� in Figure � to insert
branch�induced posts� where Top is the top node in
SSG� �

In Step � of the algorithm� we traverse SSG in a sim�
ilar way to that in �MP��
� The recursive procedure
Insert a Post in Figure � examines a node in SSG and
inserts a branch�induced post and the complementary
loops when necessary�


 Discussion

Scalar dependences

So far we have ignored dependences between scalar ref�
erences because scalars are usually either privatized or
expanded into arrays to eliminate unnecessary depen�

�



dences� such as those due to storage con�icts� If a scalar
is neither privatized nor expanded and causes loop car�
ried dependences� event post and wait can be inserted
to enforce the dependences� Scalars can be viewed as a
special case of diagonalizable and incomplete coe�cient
matrices� Therefore Algorithms ��� and ��� apply�

Constant distances of data dependences

In the cases where the distance of a dependence is known
and constant� synchronization is easily inserted by our
algorithms� First of all� the contacts would be unique
and trivially determinable� The mask predicate would
simply test whether an index vector displaced by the
distance vector remains within the loop bounds�

Flow graphs with cycles

In Section �� we considered a �ow graph which is a DAG�
To deal with a �ow graph with cycles� reduce the maxi�
mum cycles to single nodes� The reduced graph becomes
a DAG� Handling the reduced graph is straightforward�
except that posts should not be inserted in a reduced
node� lest some wait may terminate before the depen�
dence is satis�ed� Our solution is to add new nodes
on the edges which leave the reduced nodes and insert
posts as needed in the new nodes� However� since the
practical importance of this problem is unclear� we do
not pursue it further�

Complementary loops

In Algorithm ���� we did not handle nodes which have
complementary loops in the most e�cient way� It is
obvious that a single event element su�ces to indicate
whether an if branch is taken in a particular loop it�
eration� Using this fact� we can avoid inserting com�
plementary loops� A complete discussion is beyond the
scope of this paper�

Dependence coverage

If one dependence covers others� then only one pair of
post and wait is needed to preserve all those depen�
dences� Some previous works �LAS��� MP��� CKS�	

discussed dependence coverage in simple cases such as
constant dependence distances� Using mask predicates�
more complicated cases can be handled� A necessary
condition for one dependence to cover another is that
the mask predicate of the latter should imply that of
the former� Su�cient conditions must take the control
�ow into account�

Anti dependences

As Section � shows� if the coe�cient matrix of an anti
dependence source is incomplete� multiple contacts may
exist that require the insertion of multiple waits before

the dependence sink� This is a common weakness among
most existing synchronization mechanisms� Instead of
performing a post� one improvement is to increment a
shared counter after each read access at the dependence
source� Correspondingly� instead of performing multi�
ple waits at the dependence sink� the processor busy�
waits until the shared counter accumulates to the num�
ber of contacts� Such a counter has been implemented
on some research machines such as the Cedar multipro�
cessor �EPY��
� but not on commercial multiprocessors�
In real programs� we found anti dependences that do
not require explicit synchronization because they can be
covered by �ow or output dependences� We hope that
our further experiments can establish this as a common
case�

Related work

Previous works on data synchronization concentrate
mainly on devising synchronization mechanisms �Smi���
Sar��� ZY��� SY��
� Only a few works discuss compiler
algorithms� The work in �MP��
 deals mainly with sin�
gle parallel loops� Recently� Tang� Yew and Zhu present
an algorithm based on special counters �TYZ�	
� Their
paper considers a subset of our loop bounds and sub�
scripts� but does not address if statements� They as�
sume that each data word is associated with a counter�
both of which may be accessed atomically� This may
double the memory requirement of a program� The
practical use of their present algorithm seems to be also
limited by a few problems� especially the problem with
if branches
 they often make the access counts di�cult
to predict� Despite these problems� using counters has
certain advantages� as we discussed earlier� some anti
dependences may be handled more e�ciently� There�
fore� it is worthwhile to pursue a better use of counters�

� Conclusion

We have presented algorithms which gather enhanced
data dependence information that is unavailable from
conventional analysis� Based on this new information�
our algorithms automatically generate event variable
synchronization for a wide range of array references� We
believe the new information is also useful for other data
synchronization mechanisms�

Event variable synchronization is quite �exible� posts
and waits may be inserted in a variety of ways to per�
form correct synchronization� The strategy adopted in
our algorithms may be called a �shortest waiting� strat�
egy� as it allows execution to proceed whenever it is not
hindered by data dependences� In this sense� our al�
gorithms support the maximal parallelism� However�
whether a �shortest waiting� strategy is the best one
depends on the synchronization overhead� which in turn

�	



depends on the complexity of loop structures and array
subscripts� as well as system factors� In fact� the for�
mulation of mask predicates in this paper provides a
basis for evaluating synchronization cost in a �shortest
waiting� strategy� Our next goal is to conduct experi�
ments on real programs� collecting data on synchroniza�
tion complexity and on the validity of our assumptions
on loop bounds and array subscripts�

� Acknowledgement

The author thanks Kathryn McKinley and Chau�Wen
Tseng for reading this paper and making helpful com�
ments� He also thanks Merle Levy for her proofreading�

References

�AK��
 J�R� Allen and K� Kennedy� Automatic
translation of Fortran programs to vector
form� ACM Transaction on Programming
Languages and Systems� ����� October �����

�ASU��
 A�V� Aho� R� Sethi� and J�D� Ullman� Com�
pilers� Principles� Techniques� and Tools�
Addison�Wesley� Reading� Mass�� �����

�CKS�	
 D� Callahan� K� Kennedy� and J� Subhlok�
Analysis of event synchronization in a parallel
programming tool� In Proceedings of the �nd
ACM SIGPAN Symposium on Principles �
Practice of Parallel Programming� pages �� 
��� March ���	�

�CSY�	
 D��K� Chen� H��M� Su� and P��C� Yew� The
impact of synchronization and granularity on
parallel systems� In Proceedings of the �
th
International Symposium on Computer Ar�
chitecture� June ���	�

�EPY��
 P�A� Emrath� D�A� Padua� and P��C� Yew�
Cedar architecture and its software� In Pro�
ceedings of ��nd Hawaii International Con�
ference on System Sciences� January �����

�For��
 The Parallel Computing Forum� PCF Fortran
language de�nition� � edition� August �����

�FOW��
 J� Ferrante� K� Ottenstein� and J� War�
ren� The program dependence graph and its
use in optimization� ACM Transactions on
Programming Languages and Systems� pages
��� ���� July �����

�Kuc��
 D�J� Kuck� The Structure of Computers and
Computations� volume �� John Wiley ! Sons�
�����

�Kum��
 M� Kumar� Measuring parallelism in compu�
tation�intensive scienti�c"engineering appli�
cations� IEEE Transactions on Computers�
������ September �����

�LAS��
 Z� Li and W� Abu�Sufah� On reduc�
ing data synchronization in multiprocessed
loops� IEEE Transactions on Computers� C�
�����
�	� �	�� January �����

�MP��
 S� P� Midki� and D� A� Padua� Compiler al�
gorithms for synchronization� IEEE Transac�
tions on Computers� C�������
���� ����� De�
cember �����

�Sar��
 V� Sarkar� Synchronization using counting
semaphores� In Proceedings of the ���� ACM
International Conference on Supercomputing�
pages ��� ���� July �����

�SLY�	
 Z� Shen� Z� Li� and P��C� Yew� An empiri�
cal study of Fortran programs for paralleliz�
ing compilers� IEEE Transactions on Parallel
and Distributed Systems� ����
��� ���� July
���	�

�Smi��
 B� Smith� The architecture of HEP� In Par�
allel MIMD Computation� HEP Supercom�
puter and Its Applications� J� S� Kowalik�
ed�� pages �� ��� The MIT Press� Cambridge�
Massachusetts� �����

�SY��
 H��M� Su and P��C� Yew� On data synchro�
nization for multiprocessors� In Proceedings
of ��th Annual International Symposium on
Computer Architecture� pages ��� ���� May
�����

�TYZ�	
 P� Tang� P��C� Yew� and C��Q� Zhu� Com�
piler techniques for data synchronization in
nested parallel loops� In Proceedings of the
���� ACM International Conference on Su�
percomputing� July ���	�

�WB��
 M�J� Wolfe and U� Banerjee� Data depen�
dence and its application to parallel process�
ing� International Journal of Parallel Pro�
gramming� ������ April �����

�ZY��
 C��Q� Zhu and P��C� Yew� A scheme to en�
force data dependences on large multiproces�
sor systems� IEEE Transactions on Software
Engineering� SE������
��� ���� June �����

��


