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Abstract

Array contraction is a program transformation which reduces array size while
preserving the correct output. In this paper, we present an aggressive array-contraction
technique and study its impact on memory system performance. This technique,
called controlled SFC, combines loop shifting and controlled loop fusion to maximize
opportunities for array contraction within a given loop nesting. A controlled fusion
scheme is used to prevent over-fusing loops and to avoid excessive pressure on the cache
and the registers. Reducing the array size increases data reuse because of the increased
average number of memory operations on the same memory addresses. Furthermore,
if the data size of a loop nest fits in the cache after array contraction, then repeated
references to the same variable in the loop nest will generate cache hits, assuming set
conflicts are eliminated successfully.

Index terms: compiler, memory, optimization, performance
Key words: array contraction, data locality, loop shifting, optimizing compilers

1 Introduction

Array contraction is a program transformation which reduces array size while preserving the

correct output. This technique has been used in the past to reduce memory requirement of

the program [11], which can be important to out-of-core computing and embedded systems.

A special case of array contraction called array scalarization has also been known to improve

register utilization [3, 12]. In this paper, we use array contraction to improve data reuse

and cache locality. We transform an array to one or several lower-dimensional arrays with a
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smaller total size. We present a technique which combines loop shifting (S), loop fusion (F)

and array contraction (C) to minimize the memory required by arrays used in a given loop

nesting. We call such a combination SFC in this paper. We use loop shifting to eliminate

fusion-preventing data dependences, thereby creating more opportunities for loop fusion and

array contraction.

Furthermore, we study the effect of array contraction on data reuse and cache locality. We

use a scheme to control loop fusion such that we do not overly fuse loops and cause excessive

pressure on the cache and the registers. Array contraction is applied to the resultant loop

nests after this controlled fusion. We call the overall technique controlled SFC.

The rest of the paper is organized as follows. In Section 2, we discuss previous work. In

Section 3, we formulate the mathematical framework for memory requirement minimization

via the the SFC technique. We present the controlled SFC scheme and summarize our

experimental results in Section 4. We conclude in Section 5. Mathematical proofs and

details of experimental results are included in the Appendices.

2 Previous Work

Loop fusion has been studied extensively for improving parallelism, data locality, or both.

Kennedy and McKinley prove that maximizing data locality by loop fusion is NP-hard [19].

Kennedy presents a heuristic method with complexity O(V (E + V )) [18]. Singhai and

McKinley present parameterized loop fusion to improve parallelism and cache locality si-

multaneously [31]. Darte uses loop shifting to enable maximum fusion of parallel loops

which have constant dependence distances [6]. His goal is to find the minimum number of

partitions such that the loops within each partition can be shifted and fused and the fused
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loop remains parallel. Manjikian and Abdelrahman present a shift-and-peel technique to

increase opportunities for loop fusion [24]. Tembe and Pande use loop distribution and loop

fusion to reduce off-chip data I/O traffic on embedded processors [34]. Since these previous

publications do not contract arrays, their problem formulation is different from ours.

Gao et al. combine loop fusion and array scalarization to improve register utilization [12].

Lim et al. combine loop blocking, loop fusion and array scalarization to exploit paral-

lelism [22]. They do not consider either partial contraction or loop shifting. Thies et

al. analyze the tradeoff between parallelism and storage allocation [35]. They study how

to optimize storage allocation without jeopardizing parallel task scheduling. Lefebvre and

Feautrier present a technique to remove all anti- and output dependences by fully expanding

the arrays such that parallelism is maximized [21]. They then try to re-contract the arrays

without sacrificing parallelism. With the exception of the work by Lim et al., these previous

efforts do not perform loop fusion. Furthermore, since their objectives are different from

ours, the problem formulation is also different.

Several researchers have proposed combining loop and data-layout transformations to

improve spatial locality without losing temporal locality [7, 17, 23]. These techniques do not

reduce array size.

Fraboulet et al. present an algorithm to minimize the array size required to execute

a collection of single-level loops which can be immediately fused into a single loop [11].

They require the data dependence distances to be known constants. After loop fusion, their

algorithm realigns the loop iterations for each statement in the loop body in order to minimize

the total size of arrays. They reduce the problem of optimal realignment to a network-flow

problem which can be solved in polynomial time. Their network-flow formulation does
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not apply to multi-level loops. Neither does it apply to coalesced single-level loops. This

is because the loop bounds will become parts of the data dependence distances and loop

bounds usually are not known constants. They use a heuristic to handle multi-level loops

by processing one loop level at a time. If there exist fusion-preventing data dependences,

they fuse only those loops which are not involved in such dependences. We should note that

the work by Fraboulet et al. does not discuss data locality on cache-based memory systems.

Instead, their interest is on minimizing memory requirement in embedded-system design.

Our recent SFC technique [33] uses a network-flow algorithm to reduce the memory

requirement for a collection of multi-level loop nests, each of which is perfectly nested.

This technique has several advantages over that of Fraboulet et al. It uses loop shifting to

remove fusion-preventing data dependences, thus creating new opportunities for loop fusion

and array contraction. Moreover, under a few conditions, this polynomial-time technique

ensures memory minimization not only for single-level loops, but also for multi-level loops.

In this paper, we improve our work in [33] by formulating the controlled SFC technique in

a clearer and more accessible way. We present details of the main concepts and assumptions

for the underlying mathematical framework. Moreover, since the relationship between array

contraction and locality enhancement has not been closely examined in existing work, we

study their relationship by a combination of analysis, simulation and measurement.

3 Minimizing Memory Requirement by SFC

Opportunities for array contraction exist often because the most natural way to specify a

computational task may not be the most memory-efficient, and also because the programs

written in array languages such as F90 and HPF are often memory inefficient. The SFC
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technique looks for such opportunities by identifying array variables whose lifetime can be

shortened through loop fusion. Take the Jacobi relaxation code in Figure 1(a) as an example.

Within each T -iteration, the four-neighbor averages of array A are computed and stored in

array temp. It requires (N − 2)2 elements of temp to store such temporary results in each

T -iteration. We wish to fuse the loop nests labeled by L1 and L2 such that a smaller number

of temp elements are required. In order to preserve the data dependences, however, loop

shifting must be applied before fusion.

When applying loop shifting to a loop whose control variable is i, the appearance of i in

the loop body is replaced by i − pi, pi > 0. Assuming unit stride, the lower and the upper

bounds are both incremented by pi. The number pi is called the shifting factor for the i-loop.

Figure 1(b) shows the code after shifting the J2 loop by the shifting factor of 1. The loops

can now be fused as shown in Figure 1(c). Notice that the outer loop, J , of the fused loop

nest has expanded its index domain to [2, N ]. Two IF-conditions, called guards, are inserted

in the loop body. One guard makes sure that the statement from the original L1 loop body

does not get executed in iteration J = N . The other guard makes sure that the statement

from the original L2 loop body does not get executed in iteration J = 2. After loop fusion,

the lifetime of each element of array temp is shortened, in the sense that between its write

and read only N − 2 distinct temp elements remain live. The array temp, therefore, can

be contracted to a new array, temp′, which has a single dimension and the size of N − 2

elements. In addition, a scalar r is needed to temporarily store the four-neighbor average

before it can be safely copied to an element of temp′. Figure 1(d) shows the code after array

contraction.

In the rest of this section, we develop a memory-minimization problem under loop shifting,
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DO T = 1, ITMAX

L1: DO J1 = 2, N − 1
DO I1 = 2,N − 1

temp(I1, J1) = (A(I1 + 1, J1)
+A(I1 − 1, J1) + A(I1, J1 + 1)
+A(I1, J1 − 1))/4

END DO
END DO

L2: DO J2 = 2, N − 1
DO I2 = 2,N − 1

A(I2, J2) = temp(I2, J2)
END DO

END DO
IF (converge) exit

END DO

DO T = 1, ITMAX

L1: DO J1 = 2,N − 1
DO I1 = 2, N − 1

temp(I1, J1) = (A(I1 + 1, J1)
+A(I1 − 1, J1) + A(I1, J1 + 1)
+A(I1, J1 − 1))/4

END DO
END DO

L2: DO J2 = 3,N
DO I2 = 2, N − 1

A(I2, J2 − 1) = temp(I2, J2 − 1)
END DO

END DO
IF (converge) exit

END DO

(a) (b)

DO T = 1, ITMAX

DO J = 2, N
DO I = 2,N − 1

IF (J.EQ.2) THEN
temp(I, J) = (A(I + 1, J)

+A(I − 1, J) + A(I, J + 1)
+A(I, J − 1))/4

ELSE IF (J.EQ.N) THEN
A(I, J − 1) = temp(I, J − 1)

ELSE
temp(I, J) = (A(I + 1, J)

+A(I − 1, J) + A(I, J + 1)
+A(I, J − 1))/4

A(I, J − 1) = temp(I, J − 1)
END IF

END DO
END DO
IF (converge) exit
END DO

DO T = 1, ITMAX

DO J = 2,N
do I = 2, N − 1

IF (J.EQ.2) THEN
temp′(I) = (A(I + 1, J)

+A(I − 1, J) + A(I, J + 1)
+A(I, J − 1))/4

ELSE IF (J.EQ.N) THEN
A(I, J − 1) = temp′(I)

ELSE
r = (A(I + 1, J)

+A(I − 1, J) + A(I, J + 1)
+A(I, J − 1))/4

A(I, J − 1) = temp′(I)
temp′(I) = r

END IF
END DO

END DO
IF (converge) exit
END DO

(c) (d)

Figure 1: The Jacobi example

loop fusion and array contraction. We first explain how the shifting factors determine the

required temporary memory to execute a given set of loop nests. We then present the

program model and state our assumptions. Based on these, we formalize the mathematical

framework.

3.1 Preliminaries

A loop nest is said to be perfectly nested if all its executable statements, except the loop

control statements, are embedded in its unique innermost loop. We represent an instance of

the loop body by a vector ~i = (i1, i2, . . ., in), where n is the depth of the loop nest. The
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element ik is the value of the k-th loop control variable for that particular instance. The

indices are ordered from the outermost loop to the innermost.

Suppose w is a reference which writes to a distinct element of array A in each loop

iteration. The number of distinct A elements written by w during the execution of loop

iterations between ~i and ~j, ~j � ~i, is equal to the inner product of ~j −~i and the coalescing

vector defined below 1.

Definition 1 For the perfectly-nested loops given above, suppose bk is the trip count of the

loop at level k. We define the coalescing vector of the given loop nest to be ~s = (s1, s2, . . . , sn),

such that sn = 1, sk = sk+1bk+1, 1 ≤ k ≤ n − 1.

Clearly, sk equals the number of times the innermost loop body is executed during each

iteration of the loop at the k-th level. For any pair of iteration vectors ~i and ~j such that

~j �~i, we call the inner product (~j −~i)~s T their coalesced distance. This distance equals the

number of times the innermost loop body is executed between ~i and ~j.

Suppose there exists a data dependence between w and a reference r such that the value

written by w in iteration~i = (i1, i2, . . ., in) is used by r in iteration ~j = (j1, j2, . . . , jn). Such

data dependence from a write to a read is also called flow dependence. By convention [36],

this data dependence is said to have a distance vector of ~j −~i = (j1 − i1, j2 − i2, . . . , jn − in).

For convenience, we say that the data dependence has a coalesced distance equal to (~j−~i)~s T .

We assume all the values written by w are useful, meaning that they will be accessed by

some read references. Before the value written by w in iteration ~i is used by r in iteration ~j,

1Following notations in [36], given ~u = (u1, u2, . . . , un) and ~v = (v1, v2, . . . , vn), we write ~u + ~v =
(u1 + v1, u2 + v2, . . . , un + vn), ~u−~v = (u1 − v1, u2 − v2, . . . , un− vn), ~u � ~v if ∃0 ≤ k ≤ n−1, (u1, . . . , uk) =
(v1, . . . , vk) ∧ uk+1 > vk+1, ~u � ~v if ~u � ~v or ~u = ~v, and lastly, ~u > ~v if uk > vk (1 ≤ k ≤ n). In this paper,
we also use ~u~vT to represent the inner product of ~u and ~v, and use abs(~u) to represent (|u1|, |u2|, . . . , |un|).
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w writes to a number of other elements of array A. This number is the minimum array size

required to satisfy the flow dependence between w in ~i and r in ~j. For convenience, we call

this number the memory-space cost of the flow dependence. (As in Jacobi, a single scalar

is needed to temporarily store the value written by w in iteration ~j. We do not count this

scalar.) From the discussion above, the memory-space cost of the flow dependence between

w in ~i and r in ~j is equal to the coalesced distance of this dependence. Suppose that w is

the only write reference in the loop nest which writes to array A and that A is dead after

the entire loop nest is executed. The minimum size of A required to execute this loop nest

is then equal to the maximum of the memory-space cost among all the flow dependences

which have w as the source.

Next, consider a sequence of two loop nests labeled L1 and L2 respectively, each being

perfectly nested. We assume that both L1 and L2 have the same nesting depth, n, and the

same trip count bk at each loop level k. Suppose that there exists a flow dependence from

a write reference w in L1 and a read reference r in L2 such that the value written by w in

iteration ~i is used by r in iteration ~j. If there exist no data dependences (including flow,

anti-, and output dependences) between L1 and L2 to prevent loop fusion, then, as in the

Jacobi example, we may reduce the memory-space cost of the flow dependence by fusing the

two loop nests. Since ~j −~i will become the distance vector between these two iterations

after loop fusion, we call this difference vector the predicted distance vector, or in short, the

distance vector.

Notice that we do not require that the two loop nests before fusion have identical loop

bounds at the same loop level, although we require the trip counts to be the same. Therefore,

when we try to determine the memory-space cost after loop fusion, we must be careful with
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the loop bounds at all loop levels. Although the fused loop has an expanded index domain,

reference w mentioned above is not issued in all iterations of the fused loop, because of the

inserted guards. If ~j mentioned above is within the bounds of the original loop nest L1, then

it is not difficult to verify that the memory-space cost of the flow dependence between w and

r is equal to the coalesced distance of the dependence from ~i to ~j. In contrast, if ~j falls out

of bound of L1, then the memory-space cost will be less than the coalesced distance.

Take Figure 2 for example. After loop fusion, the dependence distance between the write

and the read references of A equals a constant vector (1, 1). The coalesced distance of the

dependence equals N − 1. The memory-space cost of the flow dependence between the write

of A(2, 2) and the read is equal to its coalesced distance. However, the memory-space cost

of the flow dependence between the write of A(N − 1, N − 1) and the read equals one only.

The read of A(N, N) occurs in iteration (N, N), which falls out of the bounds of the original

loop nest that contains the write reference.

Suppose that w is the only write reference in the fused loop nest which writes to array

A, that all values written by w are useful, and that A is dead after the entire fused loop

nest is executed. The minimum required size of A is then equal to the maximum of the

memory-space cost among all the flow dependences which have w as the source. In the

example in Figure 2, the maximum memory-space cost equals N − 1.

Next, we discuss what to do if there exist data dependences from L1 to L2 which make

loop fusion illegal. Since L2 follows L1 immediately, it is a well-known fact that both loop

nests can be fused if and only if every data dependence, say from iteration ~u of L1 to

iteration ~v of L2, satisfies ~v � ~u [36]. In other words, their dependence distance vector

must be lexicographically nonnegative. If there exist any data dependence which does not
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DO J1 = 2, N − 1
DO I1 = 2, N − 1

A(I1, J1) = . . .
END DO

END DO
DO J2 = 3, N

DO I2 = 3, N
. . . = A(I2 − 1, J2 − 1)

END DO
END DO

(a) Before fusion

DO J = 2,N
DO I = 2, N

IF ((I < N).AND.(J < N))
A(I, J) = . . .

IF ((I > 2).AND.(J > 2))
. . . = A(I − 1, J − 1)

END DO
END DO

(b) After fusion

Figure 2: Reuse Distances Vary for Different Instances of Data Dependence

satisfy this condition, then fusing L1 and L2 will cause the source and the destination of the

dependence to be reversed, making the fusion illegal.

Suppose a fusion-preventing dependence exists from memory operation 2 r1 in iteration

~u of L1 to memory operation r2 in iteration ~v of L2. To make loop fusion legal, we need

to perform loop shifting on L2 using a proper vector of shifting factors ~p = (p1, p2, . . . , pn)

such that pk is applied to loop level k. The dependence destination in L2 after loop shifting

becomes ~v′ = ~v + ~p. The requirement on ~p is that ~v′ � ~u. Obviously, there exist multiple

choices of ~p. Among them, the optimal choice is the one which is lexicographically minimum.

This is because under this choice, the memory-space cost of the flow dependence from any

write w to its dependent read r will be minimum after loop fusion. Any other legal choice of

the shifting vector can only increase the number of times the innermost loop body executes

between w and r. In Figure 2(a) (1, 1) is the lexicographical minimum among all fusion-

enabling shifting vectors applied to L2.

The key optimization problem in this paper is to find the lexicographical minimum among

all fusion-enabling shifting vectors such that, after loop shifting and loop fusion, the minimum

2In this paper, we call a run-time instance of a variable reference a memory operation, assuming the
variable is allocated to the memory instead of a register. A memory operation may be a write operation or
a read operation.
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memory requirement to execute the fused loop nest is minimized. For an arbitrary number

of sets of perfectly-nested loops, such a problem can be formulated as a set of integer

programming problems. However, the lexicographical minimum is difficult to work with

when one tries to develop a polynomial-time algorithm. In the rest of this section, we explain

under certain assumptions how we can use the coalescing vector to formulate our optimization

problem as a single integer programming problem. Such an integer programming problem

can be reduced to a network-flow problem for which polynomial algorithms exist. Due to

space limitations, we refer readers to our work elsewhere [33] for the transformations which

lead to the network-flow problem. Here, we focus on the formulation of the single integer

programming problem.

3.2 Loop Coalescing

Our main idea is to imagine that we perform loop coalescing on the given set of perfectly-

nested loops. Loop coalescing is a loop transformation performed by mapping an iteration

vector ~i = (i1, i2, . . . , in) to its coalesced index defined as the inner product of ~i and ~s. The

multi-level loop nest is transformed to a single-level loop whose iteration domain is the range

of the coalesced index. The advantage of this approach is that a lexicographically negative

dependence distance vector may become lexicographically nonnegative after loop coalescing,

which makes it legal to fuse the coalesced loops. This nice property allows us to formulate

the optimization problem as a set of linear integer constraints. Theorem 1 presented later

in this section states that, under certain assumptions, the minimum memory-space cost

is completely determined by coalesced distances. Thus, if two choices of shifting vectors

result in the same coalesced distances for all data dependences, then they both minimize the
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memory-space cost. According to the following lemma, we do not need to actually coalesce

the loops.

Lemma 1 For any set of shifting vectors, we can find a set of shifting vectors which result

in the same coalesced distances for all data dependences and they allow legal fusion of the

loop nests before coalescing.

Proof See Appendix A. 2

Figure 3(b) shows the result of applying loop shifting to Figure 3(a) using the shifting

vector of (0, N − 1). Such a shifting vector is illegal for the purpose of loop fusion, since

the loop nests in Figure 3(b) still cannot be fused. However, after coalescing the loop nests

in Figure 3(b) to two single-level loops in Figure 3(c), they can be fused. It is not difficult

to verify that the memory-space cost of flow dependences for array temp, which equals to

N − 1, is the minimum under any combination of loop shifting, loop coalescing and loop

fusion. On the other hand, we can find that the fusion-enabling shifting vector (1, 1) can be

applied to Figure 3(a) to achieve the same memory-space cost after fusion.

Let ~b = (b1, b2, . . . , bn) be the trip counts. The following lemma establishes an important

relationship between the iteration vector ~i and its coalesced index.

Lemma 2 ∀~u s.t. abs(~u) < ~b, ~u � ~0 ⇔ ~u~s T > 0.

Proof See Appendix B. 2

Suppose ~i1 and ~i2 are two different iterations in a perfectly-nested loop. Since abs(~i2−~i1) <

~b holds, Lemma 2 immediately derives the following equivalence:

~i2 � ~i1 ⇔ ~i2~s
T > ~i1~s

T . (1)
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L1: DO J = 2,N − 1
DO I = 2,N − 1

temp(I, J) = A(I − 1, J − 1)
END DO

END DO
L2: DO J = 2,N − 1

DO I = 2,N − 1
A(I, J) = temp(I, J)

END DO
END DO

L1: DO J = 2, N − 1
DO I = 2, N − 1

temp(I, J) = A(I − 1, J − 1)
END DO

END DO
L2: DO J = 2, N − 1

DO I = N + 1, 2N − 2
A(I − N + 1, J) = temp(I − N + 1, J)

END DO
END DO

(a) (b)
L1: DO J1 = 2(N − 2) + 2, (N − 1)(N − 2) + N − 1

J = DIV(J1 − 2(N − 2) − 2, N − 2) + 2
I = MOD(J1 − 2(N − 2) − 2,N − 2) + 2

temp(I, J) = A(I − 1, J − 1)
END DO

L2: DO J1 = 2(N − 2) + N + 1, (N − 1)(N − 2) + 2N − 2
J = DIV(J1 − 2(N − 2) − N − 1,N − 2) + 2
I = MOD(J1 − 2(N − 2) − N − 1, N − 2) + N + 1

A(I − N + 1, J) = temp(I − N + 1, J)
END DO

(c)

Figure 3: An example of loop coalescing

The equivalence property (1) means that loop coalescing preserves the execution order of

all loop iterations and that the mapping between ~i and its coalesced index is one-to-one.

Furthermore, the coalesced index values form a consecutive sequence, because the difference

between the upper limit and the lower limit equals (~b − ~1)~s T + 1 = b1b2 . . . bn, which is the

total number of instances of the innermost loop body before coalescing. Given the coalesced

index and the trip counts ~b, we can recompute ~i using MOD and divide operations. (We

omit the derivation details here.)

At this point, we should note that, given a single set of perfectly-nested loops, it may

be possible to reduce its memory requirement by first distributing it into two or more sets

of perfectly-nested loops. After that, we can find shifting vectors for those sets of loops

such that they can be fused back into one set with minimized memory requirement. In

the following, we assume that we have already performed maximum loop distribution such
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DO T = 1, ITMAX

L1 : DO L1,1 = l11, l11 + b1 − 1
DO L1,2 = l12 , l12 + b2 − 1

. . .
DO L1,n = l1n, l1n + bn − 1

. . .
Li : DO Li,1 = li1, li1 + b1 − 1

DO Li,2 = li2, li2 + b2 − 1
. . .

DO Li,n = lin, lin + bn − 1
. . .
Lm : DO Lm,1 = lm1, lm1 + b1 − 1

DO Lm,2 = lm2, lm2 + b2 − 1
. . .

DO Lm,n = lmn, lmn + bn − 1
END DO

DO T = 1, ITMAX

L1 : DO L1,1 = l11 + p11, l11 + p11 + b1 − 1
DO L1,2 = l12 + p12, l12 + p12 + b2 − 1

. . .
DO L1,n = l1n + p1n, l1n + p1n + bn − 1

. . .
Li : DO Li,1 = li1 + pi1, li1 + pi1 + b1 − 1

DO Li,2 = li2 + pi2, li2 + pi2 + b2 − 1
. . .

DO Li,n = lin + pin, lin + pin + bn − 1
. . .

Lm : DO Lm,1 = lm1 + pm1, lm1 + pm1 + b1 − 1
DO Lm,2 = lm2 + pm2, lm2 + pm2 + b2 − 1

. . .
DO Lm,n = lmn + pmn, lmn + pmn + bn − 1

END DO

(a) Before (b) After

Figure 4: Loop nests before and after loop shifting

that each set of perfectly-nested loops can no longer be distributed. Compiler methods for

maximum loop distribution are well-known [36].

3.3 Program Model

We consider an iterative loop T with a trip count ITMAX, which contains a collection of

loop nests, L1, L2, . . ., Lm, m ≥ 1, in the lexical order shown in Figure 4(a). If loop T does

not exist, the compiler may proceed as if there exists an artificial T loop with ITMAX = 1.

The label Li denotes a perfect nest of loops with indices Li,1, Li,2, . . ., Li,n, n ≥ 1, starting

from the outmost loop. We assume that all loops Li,j at level j have the same trip count

bj with the lower bound lij and the upper bound lij + bj − 1 respectively, where lij and bj

are constants or symbolic constants within the loop nesting. Without loss of generality, we

assume all loops Li,j have a step of 1. For simplicity of presentation, all the loop nests Li,

1 ≤ i ≤ m, are assumed to have the same nesting level n. If this is not the case, we can apply

controlled SFC to the highest nmin levels, where nmin is the least nesting depth among all

loop nests. The array regions referenced in the given collection of loops are divided into the

following three classes. An input array region is upwardly exposed to the beginning of L1.
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An output array region is live after Lm. A local array region does not intersect with any

input or output array regions.

By utilizing the existing dependence analysis, region analysis and live analysis tech-

niques [5, 8, 10, 13, 15], we can compute input, output and local array regions efficiently.

Note that input and output regions may overlap with each other. In the Jacobi example

(Figure 1), temp(2:N-1,2:N-1) is the local array region, A(1:N,1:N) is the input region, and

A(2:N-1,2:N-1) is the output region.

Definition 2 A loop dependence graph (LDG) is a directed multi-graph G = (V, E) such

that each node in V represents a loop nest Li, 1 ≤ i ≤ m, in Figure 4(a). (We write

V = {L1, L2, . . . , Lm}.) Each directed edge in E represents a data dependence (flow, anti- or

output dependence) from one loop nest, say Li, to another, say Lj. Each edge e is annotated

by its predicted distance vector ~de, or in short, its distance vector (Section 3.1).

Given an iteration vector~i in the iteration domain of Li, its dependent iteration ~j in Lj can be

expressed as an n-element function vector defined over ~i. It is possible that certain elements

of ~j remain undefined for a particular ~i because of the absence of dependence. Clearly,

de = ~j −~i can also be expressed as an n-element function vector defined over ~i. Existing

techniques for data dependence analysis [10, 36] can be utilized to construct the LDG. This

analysis takes exponential time in the worst case but it is quite fast in common cases. As

discussed earlier, we use the dependence distance vectors to determine the legality of loop

fusion and the memory-space cost. In our controlled SFC scheme, we first optimistically fuse

all of the m loop nests in Figure 4(a) into a single loop nest and find all contractable arrays.
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Applying our previous discussions to the entire collection of loop nests, we immediately

derive the following legality condition.

Lemma 3 It is legal to fuse all of the m loop nests in Figure 4(a) into a single loop nest if

and only if

~de � ~0, ∀e ∈ E. (2)

We wish to find optimal loop shifting such that after loop shifting and loop coalescing, all

loop nests can be fused into a single-level loop and the memory requirement is minimized.

For this purpose, we associate each loop Li,j with a shifting factor pij. The shifting vector

for the loop nest labeled Li is then ~pi = (pi1, pi2, . . . , pin). The code after loop shifting

is shown in Figure 4(b). For any dependence edge e = 〈Li, Lj〉 with the distance vector

~de = ~j −~i before loop shifting, the new dependence distance vector after loop shifting is

(~j + ~pj)− (~i + ~pi) = ~pj − ~pi + ~de. After applying loop coalescing to the loops in Figure 4(b),

the new code will consist of m single-level loops. For any ~de = ~j −~i before loop shifting, the

coalesced dependence distance after loop coalescing is (~j+ ~pj)~s
T −(~i+~pi)~s

T = (~pj−~pi+ ~de)~s
T .

Applying Lemma 3 to the loops after coalescing, we immediately have the following lemma.

Lemma 4 After applying loop shifting and loop coalescing described above to the loop nests

in Figure 4(a), it is legal to fuse the loops into a single loop if and only if

(~pj + ~de − ~pi)~s
T ≥ 0, ∀e = 〈Li, Lj〉 ∈ E. (3)

The lower bound of the fused loop is the minimum of the lower bounds of the coalesced

loops before fusion, and the upper bound is the maximum of the upper bounds. As discussed

previously, guards are inserted in the fused loop to make the statements skip the iterations

in which they must not be executed.
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3.4 Formulating the Memory Minimization Problem

Before we formulate the integer programming problem to minimize memory requirement

through array contraction, we make the following assumptions to simplify the discussion.

Assumption 1 For each reference w which writes to a local array region, we assume that w

writes to a distinct array element in every iteration of the innermost loop body. We assume

that all values written by w are useful, meaning that each written value will be used by some

read references in the given set of loop nests.

If a reference w writes to the same memory location in different iterations, we apply array

expansion [9, 36] to w as long as correct data flow can be preserved after expansion. Notice

that the expanded array regions still remain local. If the assumptions in the rest of this

subsection are also met, then our scheme will find all the contractable arrays and minimize

the memory requirement. Obviously, the memory required will be no greater than before

the array expansion.

Assumption 1 stated above implies that we exclude the cases in which w may not be

executed in certain iterations. For such cases, we may need to take the IF conditions into

account in order to determine the memory-space cost. We also exclude the cases in which a

reference may write to local regions of an array in certain loop iterations and to non-local

regions of the same array in other iterations. Array contraction can still be performed in such

cases, but the memory-space cost must be calculated differently for the flow dependences.

Moreover, the transformed code will be more complex.

Notice that if there exists an extremely large shifting factor, then the coalesced distance

of a flow dependence may exceed Πn
k=1bk, which is the total iteration count of the innermost
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loop body. Under Assumption 1, the memory-space cost of each instance of flow dependences

is equal to either the coalesced distance after shifting or Πn
k=1bk, whichever is smaller. The

following lemma determines the memory required to satisfy all flow dependences which have

the same source w. This amount of memory is called the memory-space cost of w.

Lemma 5 For the reference w in Li which writes to a local array region, under Assump-

tion 1, the memory required to satisfy all flow dependences which have w as the source equals

min(max{(~pj + ~de − ~pi)~s
T |∀e = 〈Li, Lj〉due to w}, Πn

k=1bk). (4)

In the Jacobi example, the coalesced distance of the flow dependence for array temp equals

N − 2, which is less than Πn
k=1bk = (N − 2)2. Thus, the memory-space cost for the write

reference to array temp equals N − 2.

Next, we determine the total memory-space cost for all write references to local array

regions. To simplify the discussion, we make the following assumption, under which the total

memory-space cost for all write references is equal to the summation of the memory-space

cost for each write reference.

Assumption 2 We assume that the local array regions written by different write references

do not overlap, and that all local array regions remain live until the end of the T loop (in

Figure 4(a)).

We want to formulate the memory space cost minimization problem as a network flow

problem which can be solved in polynomial time [33]. There exist two obstacles: (1) the

operator min in Formula (4) makes the minimization problem complex, and (2) non-constant

dependence distance vectors make computing the shortest path distance difficult in network

flow algorithm [1].
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To overcome the above two obstacles, we first replace any edge which has a non-constant

dependence distance vector, say ~de, by two edges whose dependence distance vectors are

constant. Recall that the coalesced distance ~de~s
T is a function of the index vector ~i of the

loop nest Li which contains the dependence source. We find two iteration vectors ~i0 and ~i′0

within the iteration domain such that the coalesced distance is minimum at ~i0 and maximum

at ~i′0. We replace the edge of distance vector ~de by two edges and mark them by the two

constant-dependence distance vectors corresponding to ~i0 and ~i′0 respectively. (In Appendix

C, we prove that this replacement does not change the result of memory minimization.) As a

common example, consider a non-constant distance vector whose elements are affine functions

of ~i. The coalesced distance is of course also an affine function of ~i, say Σn
k=1akik + a0. To

find an index vector for which the coalesced distance is minimum, we simply let ik equal the

lower bound of Lik if ak ≥ 0 and the upper bound of Lik if ak < 0. To find an index vector

for which the coalesced distance is maximum, we do the opposite.

Let G′ = (V ′, E ′) be the modified loop dependence graph after replacing the non-constant

dependence distance vectors. We further make the following assumption,

Assumption 3 We assume that in G′ the sum of the absolute values |dk| of all data depen-

dence distances at loop level k are less than the trip count bk.

Under Assumptions 1 to 3, the following theorem formalizes our problem of minimizing

the overall memory-space cost.

Theorem 1 Given the m loop nests in Figure 4(a) and the revised loop dependence graph

G′, let τi be the number of write references to local array regions in each loop nest Li. Let e

represent an arbitrary data dependence in E ′, say from Li to Lj, which may be a flow, anti-,
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or output dependence. Let e1 represent an arbitrary flow dependence in E ′, say from Li to

Lj, for a local array region. Under loop shifting and loop fusion, the minimum memory-space

cost is

min(Σm
i=1Σ

τi

k=1
~Mi,k~s

T ) (5)

subject to

(~pj + ~de − ~pi)~s
T ≥ 0, ∀e ∈ E ′, and (6)

~Mi,k~s
T ≥ (~pj + ~de1

− ~pi)~s
T , ∀e1 ∈ E ′, 1 ≤ k ≤ τi. (7)

Proof See Appendix C. 2

Given the shifting vectors, the expression ~Mi,k~s
T in constraint (7) defines the maximum

coalesced distance among all flow dependences originating from a write reference wi,k in Li

which writes to a local array region. According to Lemma 4, constraint (6) guarantees legal

loop fusion after shifting and coalescing. The objective function (5) states the minimum

total memory required for all static write references. A separate paper [33] describes how

the problem formulated above can be reduced to a network-flow problem, without loss of

optimality, which can be solved in polynomial time.

4 The Controlled SFC Scheme

A fusion scheme that minimizes the total memory requirement does not necessarily result

in the minimum cache misses, since bringing more memory references into a loop body

may potentially increase cache misses. Hence, we present a controlled-fusion scheme in this

section.

Following [16], we classify all cache misses into three classes: compulsory misses, capacity
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misses and conflict misses. Compulsory misses are those cache misses which are incurred

when memory locations are first visited during program execution. Compared to the other

two classes of cache misses, compulsory misses usually have much less impact on the overall

program performance. Therefore we omit them in our study even though the SFC can

potentially reduce compulsory misses because of the reduced array sizes. Capacity misses

are due to limited cache size. These are noncompulsory cache misses which will occur even

if the cache is fully associative. Conflict misses, on the other hand, are due to limited set

associativity which causes different data items to interfere on the same cache set. Conflict

misses could have been avoided if the cache were fully associative.

Our controlled SFC scheme is mainly aimed at reducing capacity misses. The number of

capacity misses depends on both the cache size and the reuse distances in the given program.

For a pair of consecutive references to the same data element, let δ be the number of distinct

data elements accessed between such a pair. On a fully-associative cache with an LRU cache

replacement policy, if δ exceeds the cache size, then the second reference will cause a capacity

miss. The number δ is called squeezed reference distance by Gu et al. [14] and reuse distance

by Ding and Kennedy [7]. Therefore, unless the cache size is greater than the maximum reuse

distance, capacity misses will occur. Generally speaking, a smaller average reuse distance

implies a better data locality in the program.

Loop fusion in SFC may either increase or decrease the reuse distance between a pair

of memory operations on the same location. If the pair were in different loop nests before

fusion, loop fusion tends to reduce their reuse distance. However, if the pair were in the

same loop nest before fusion, loop fusion may introduce new memory operations between

them which access new memory locations. The reuse distance between this pair will then
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increase. Array contraction tends to reduce reuse distances. This is because certain memory

operations which previously access distinct locations may access the same location after the

contraction. If the reuse distance between two memory operations was greater than the cache

size prior to array contraction, then the second memory operation would be a capacity miss.

Suppose the reuse distance after array contraction is less than the cache size, then the second

memory operation will no longer generate a capacity miss. Array contraction, therefore, can

potentially reduce capacity misses. As far as registers are concerned, loop fusion tends to

increase the pressure on register allocation due to the increased loop body size, while array

contraction itself has less impact on register pressure. Excessive fusion may cause a loss in

data locality and register spills. To avoid this, we selectively apply loop fusion such that the

maximum reuse distance does not exceed the cache capacity and the data size of the loop

body does not exceed the register limit after loop fusion and array contraction.

In [19], Kennedy and McKinley prove that fusion to maximize data locality is an NP-hard

problem. Their work does not consider loop shifting or array contraction. Adding these two

transformations into consideration further complicates the overall problem. Nonetheless, we

believe the best loop candidates for fusion are those whose fusion can result in a maximal

array contraction, subject to the conditions that the cache capacity is not exceeded by the

maximum reuse distance and the register limit is not exceeded by the loop body. Under such

a strategy, we devise an algorithm to greedily find fusion candidates which can result in a

maximal array contraction in each step. This algorithm, named controlled Fusion, is used in

the last stage of controlled SFC and is presented next.
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Input: (1) a collection of m loop nests, Li, as shown in Figure 4(a);
(2) shifting factors solved from the problem defined in Theorem 1;
(3) the sizes of local arrays, before and after maximal contraction;
(4) the cache size and the number of available registers.

Output: A set of partitions, P , over the given loop nests.
Procedure:

Sort the contractable arrays, starting with the one which gives the maximum array size reduction.
Initialize the partition set P to φ.
for (each contractable array a in the sorted order)

Let S be the set of loop nests in which a is accessed.
Find the partitions in current P which overlap with S.
Let M be the union of all such partitions and S.
if (num ref size(M) is smaller than the cache size and num reg(M) is smaller than the number of available registers) then

remove the union members of M from P and add M to P .
end if

end for

Add the set {Li} to P for all Li not belonging to any element in P .

Figure 5: Algorithm 1: controlled fusion

4.1 Controlled Fusion

Figure 5 shows our controlled fusion algorithm. It utilizes two functions. The function

num ref size(S) estimates the maximum reuse distance, under the assumptions that all the

loops in S are fused together. Furthermore, all local array regions in S are assumed to have

been contracted to the minimum size according to Theorem 1 which is applied to the loop

nests in S only. Function num reg(S) estimates the number of registers required to execute

a single iteration of the innermost loop, assuming all the loops in S are fused together.

Similar to previous work [30], we estimate the number of required registers before fusion as

the number of distinct array elements accessed in a single iteration of the innermost loop.

After fusion, instead of recounting, we follow previous work [31] and estimate the required

number of registers by adding the numbers in the individual loops before fusion. (Detailed

knowledge about the compiler back-end may allow one to estimate the required registers more

precisely. This is because one can better predict how the machine code will be generated for

the loop body and what register allocation algorithm will be used. However, based on our

experiments and work of others [30, 31], the estimation method used here seems adequate.)
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Wi: the total array data size of loop nest Li, 1 ≤ i ≤ m, in Figure 4(a).
Pj : the j-th member of P computed in Algorithm 1 (Figure 5).
Fj : the total array data size of Pj , after all loops in Pj are fused into one and array contraction is performed on Pj .
Cb and Cs: the cache line size and the cache size respectively.

Figure 6: Definition of some terms for cache miss estimation

Take Jacobi (in Figure 1) as an example. After solving the problem in Theorem 1, we

have ~p1 = (0, 0) and ~p2 = (1, 0). The array temp is the only contractable array. Following

the steps in Algorithm 1, we have P = φ and S = {L1, L2}. No partition in P overlaps with

S. We have M = {L1, L2}, num ref size(M) = 3 ∗N − 2 and num reg(M) = 7. If 3 ∗ N − 2

is smaller than the cache size and the number of available registers is not smaller than 7, P

= {{L1, L2}}. Otherwise, P = {{L1}, {L2}}.

Let na be the number of contractable arrays. The complexity of controlled SFC is itemized

below. It takes time O(n(V + E)3) to compute the shifting factors [33]. It takes time

O(nalogna) to sort the contractable arrays. Function num ref size(M) takes O(na) time [33],

and Function num reg(M) takes time O(m). The top-level for loop takes time O(m2na(na +

m)). In summary, the total complexity is O(max(n(V + E)3, m2na(na + m))).

4.2 Effect on Capacity Misses

To illustrate the potential impact of controlled SFC on capacity misses, we define certain

terms as in Figure 6 and assume the LRU cache replacement policy, which is a common policy

in practice. We also assume cache line spatial locality is fully exploited for all loop nests.

According to a study conducted by McKinley and Teman for a set of scientific programs

in [25], most cache misses are inter-nest capacity misses, i.e. capacity misses that occur when

program control proceeds from one loop nest to the next. We pessimistically assume that no

cached-data reuse exists across different loop nests Li in Figure 4(a), but we optimistically
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assume that within each Li, the reuse distances are all less than the cache size. Under these

assumptions, using the notations in Figure 6, the number of capacity misses in the original

code equals
Σm

i=1
Wi

Cb
∗ ITMAX.

For the code after controlled SFC, we first consider the best case in which the total data

size after applying controlled SFC is no greater than the cache size. The number of capacity

misses will equal the total data size divided by the cache line size. If, however, the total data

size after controlled SFC still exceeds the cache size, the number of capacity misses can be

potentially greater. Again, we pessimistically assume that no cached-data reuse exists across

different partitions, but we optimistically assume that the reuse distances are all less than the

cache size within the same partition, the number of capacity misses is then upper-bounded

by
Σ

‖P‖
j=1

Fj

Cb
∗ITMAX, where ‖ P ‖ denotes the number of partitions in P. Note that controlled

SFC guarantees that the reuse distances within each partition Pi are no greater than the

cache size if that partition contains more than one original loop nest.

Since Fj ≤ ΣLi∈Pj
Wi, even the upper bound of capacity misses after controlled SFC is

no greater than capacity misses in the original code. If the data size after controlled SFC is

within the cache size, then the reduction in capacity misses is very significant. In the cases

between the best and the worst, the analysis of the exact number of capacity misses requires

further assumptions, which is beyond the scope of this paper.

4.3 Experiments

We have implemented controlled SFC in a research Fortran77 compiler, Panorama [15, 33],

and applied it to twenty test programs. Both the description of these test programs and
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Figure 7: Memory sizes before and after transformation

details of the experimental results are given in Appendix D. In this subsection, we briefly

summarize the results.

Figure 7 compares the code size and the data size before and after applying controlled SFC

on an MIPS R10K processor. The data size shown for each original program is normalized

to 100. The actual data size varies greatly for different benchmarks, which is listed in

Appendix D. The arithmetic mean of the reduction rate, counting both the data and the

code, is 51%. For several small benchmarks, the reduction rate is almost 100%. For each of

the benchmarks, we examine three versions of the code, i.e. the original one, the one after

loop fusion but before array contraction, and the one after array contraction. Among the

tested benchmarks, only combustion, purdue-07 and purdue-08 fit the program model

in previous work [11]. In those cases, the previous algorithm [11] will derive the same result

as ours. Therefore, there is no need to list them again.

We use the Cheetah cache simulator in SimplesScalar 3.0 suite [4] to help evaluate the
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Table 1: Average reuse distances, reference counts and cache miss rates

Original Fusion Contraction
avg. reuse distance 5208 3039 766

Jacobi reference count 10594956 9417607 10573205
miss rate 0.113 0.064 0.029

avg. reuse distance 2919 1529 222
tomcatv reference count 122994043 125325245 125972343

miss rate 0.052 0.018 0.005
avg. reuse distance 3628 3177 2090

swim95 reference count 31063966 31740919 32031613
miss rate 0.082 0.067 0.054

(Simulation results are obtained by using cache size 32KB and line size 16 bytes with LRU replacement. The programs are

compiled by gcc with the “-O3” optimization level.)

effect of controlled SFC on data locality. Table 1 shows the average reuse distances for three

programs. It also lists the total number of memory references and the cache miss rates. We

use reduced data size for simulation in order to reduce the simulation time. From Table 1,

we see that the average reuse distances after array contraction are lower than those after

applying loop fusion alone. The latter are lower than those in the original programs.

To further evaluate the effectiveness of array contraction, we measured the performance

on a MIPS R10K processor in an SGI Origin 2000 multiprocessor environment. For all

versions of the benchmarks, we use the native Fortran compiler on an SGI Origin 2000

multiprocessor to produce the machine codes. We use the optimization flag “-O3”, with

the following adjustments to get as much performance as possible for all versions of codes.

We switch off prefetching for laplace-jb, software pipelining for laplace-gs and loop

unrolling for purdue-03. For swim95 and swim00, the native compiler fails to insert prefetch

instructions in the innermost loop body after memory reduction. We manually insert prefetch

instructions into the three key innermost loop bodies, following exactly the same prefetching

patterns used by the native compiler for the original codes. Figure 8 shows the normalized

execution time of the twenty benchmark programs using the full data size. These measured
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Figure 8: Performance comparision with the original inputs

results show that controlled SFC speeds up program execution by a factor of 1.40 over the

original codes and a factor of 1.25 over the codes transformed by loop fusion only. We use

the perfex [20] package to measure the number of misses on the L1 data cache and the

L2 unified cache. Figure 9 compares such statistics, where the total reference counts in the

original codes are normalized to 100. The results show that controlled SFC either reduces

the total number of loads and stores (by array scalarization) or the number of cache misses

(by partial contraction), often both.

4.4 Discussions

The programmer or the compiler can reduce conflict misses significantly by a careful choice

of the array column sizes and the starting addresses of different arrays [28, 29]. After array

contraction, such techniques can still be applied in order to reduce conflict misses. In fact,

if an array is contracted to a single dimension or to a scalar, interferences between different

array columns at the same cache line naturally disappear. On the other hand, when loop
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Figure 9: Cache statistics with the original inputs

fusion is performed to increase the opportunity for array contraction, the number of array

elements referenced in a loop nest may be increased, which in turn may increase conflict

misses. However, our experiments show that the benefit of reduced capacity misses tend to

outweight the penalty of any increased conflict misses.

Controlled SFC may have an impact on software pipelining. Loop fusion increases the

length of the loop body. This can potentially increase the number of simultaneous operations.

On the other hand, loop fusion also increases resource requirement. For example, it may

increase the number of registers required to allow simultaneous operations. Consequently,

the minimum initiation interval (MII) [2] may be increased, offsetting the potential gain in

parallelism. Furthermore, both loop fusion and array contraction may introduce additional

data dependences in the loop body, which may also increase the MII. All these factors may

affect the software pipelining schedule in a way which is difficult to predict when the compiler

transforms the program with a representation close to the source code level.
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5 Conclusion and Future Work

In this paper, we have formulated a memory-requirement minimization problem under loop

shifting, loop fusion and array contraction. We have also presented the controlled SFC

scheme to avoid over-fusing loops. We have studied the impact of our technique on cache

misses through a combination of analysis, simulation and measurement. The results demon-

strate that the controlled SFC can effectively reduce cache misses and improve execution

speed. More details of the experiments are reported in the Appendices which will accompany

this paper as supplemental materials on the digital library of IEEE Computer Society.

The program model presented in this paper imposes a number of requirements on the given

loop nesting. For example, the loop bounds are required to be loop-nest invariants. In our

future work, we shall investigate extensions to our current program model, e.g., extensions

that cover loop bounds which are affine functions of the enclosing loops.

Currently, most program transformations intended for cache-performance enhancement,

including our controlled SFC, are performed with a representation close to the source code

level. In the future, we believe such transformations are best performed at a lower level

representation, where the compiler can have better information on the impact of the trans-

formations on low level technique such as software pipelining and register allocation.
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Appendix A: Proof of Lemma 1

Suppose the given set of shifting vectors do not already allow legal fusion without loop

coalescing. The loop dependence graph (LDG) must be a DAG if we ignore the self cycles.

Thus we can traverse the LDG in a topological order. At each node Li, we find the incoming

edge whose distance vector ~d under the given shifting vectors is the lexicographical minimum

among all incoming edges to the same node. Suppose ~d = (0, . . . , 0, dk, . . .), where the first

non-zero component is the kth component dk < 0. We let ~q = (0, . . . , 0,−dk + 1,−(−dk +

1)bk+1, 0, . . . , 0), where the kth component of ~q is −dk + 1. We then add ~q to the shifting

vector ~pi of Li. The distance vectors of all incoming edges to Li are now lexicographically

positive. Furthermore, the coalesced distance of each incoming edge remains unchanged

because the difference between the old and the new coalesced distance equals ~q~s T = 0.

Appendix B: Proof of Lemma 2

Suppose ~u � ~0. Since abs(~u) < ~b, we have ~u ≥ ~v = (0, . . . , 0, 1, 1 − bk+1, . . . , 1 − bn),

1 ≤ k ≤ n, assuming the first non-zero element in ~u is the kth element. Since ~u− ~v ≥ ~0, we

have ~u~s T −~v~s T = (~u−~v)~s T ≥ 0, hence ~u~s T ≥ ~v~s T . Since ~v~s T = sn > 0, we have ~u~s T > 0.

Similarly, we can prove that ~u ≺ ~0 ⇒ ~u~s T < 0. Therefore, if ~u~s T > 0, then ~u � ~0 must

be true.
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Appendix C: Proof of Theorem 1

From Lemma 5, the objective function of the memory-space cost minimization should be

min(Σm
i=1Σ

τi

k=1min( ~Mi,k~s
T , Πn

t=1bt)), (8)

under constraints (6) and (7). We define this problem (the objective function (8) and the

constraints (6) and (7)) as Problem 0 and the problem in Theorem 1 as Problem 1.

It is clear that there exist optimal solutions for Problem 0 and for Problem 1. This is

because constraints (6) and (7) guarantee ~Mi,k~s
T ≥ 0, which bounds the objective functions

(5) and (8) from below. Thus, to prove Theorem 1, we only need to prove the following two

claims.

• Claim C.1: For any optimal solution of Problem 0, we can find a solution for

Problem 1 with the same objective function value. Conversely, for any optimal

solution of Problem 1, we can find a solution for Problem 0 with the same objective

function value.

• Claim C.2: In Section 3.4, we replaced each dependence edge which has a non-

constant distance vector by two edges whose distance vectors are constant. One

vector has the maximum coalesced distance and the other with the minimum coalesced

distance. We claim that any edge we replaced would have satisfied constraints (6) and

(7) under an optimal solution of shifting vectors. Therefore, its removal does not affect

the optimal objective function value in Formulas (5) and (8).

We prove Claim C.1 first. Without any loss of generality, we can assume that G′ has a single

connected component when the directions of edges are ignored. This is because, if G′ viewed
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as an undirected graph contains two or more connected components, then the shifting vectors

can be solved for each component independent of the other components.

For any optimal solution of Problem 0 over G′, we construct a new graph G1 which is a

subset of G′ obtained by removing the edges whose coalesced distances, under the optimal

shifting vectors, do not equal zero. We have the following lemma.

Lemma 6 There exists an optimal solution of Problem 0 over G′ such that its correspond-

ing graph G1, when the edge directions are ignored, has a single connected component.

Proof Suppose G1, when the edge directions are ignored, contains more than one con-

nected component. Take any component in G1, say t1. This component may contain

flow-dependence sources for certain local array regions and flow-dependence destinations

for others. Suppose we further shift all nodes in t1 by a shifting factor −1. This is equivalent

to further shifting the innermost loop by −1 after optimal loop shifting. This is always legal

because all dependences with either the source or the destination (but not both) in t1 have

positive dependence distances. The shifting will have no impact on data dependences whose

sources and destinations are both in t1.

The local array regions which have flow-dependence sources (but not all destinations) in

t1 may have their minimum memory requirement increased. Let κ1 represent the increased

memory requirement for such local array regions. The local array regions which have flow-

dependence destinations (but not all the sources) in t1 may have their minimum memory

requirement reduced. Let κ2 represent the decreased memory requirement for such local

array regions. Similarly, if we shift all nodes in t1 in G′ by 1, we can let κ3 and κ4 represent
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the memory requirement increase and decrease respectively, for their corresponding local

array regions.

Consider local array regions which have flow-dependence sources in t1 but not all the des-

tinations. As stated above, shifting by −1 may potentially increase the memory requirement

by κ1, and shifting by 1 may decrease memory requirement by κ4. Now, for any local array

region whose flow-dependence source is in t1 but whose flow-dependence destinations are not

all in t1, we have the following two scenarios:

• Shifting by 1 reduces its memory requirement by 1. Then, shifting by −1 may increase

its memory requirement by 1, or the increase may be just 0 if the coalesced dependence

distance is equal to Πn
t=1bt, according to Formula (8).

• Shifting by 1 does not change its memory requirement. This means two possibilities.

The first is that the destination node corresponding to the maximum coalesced de-

pendence distance is inside t1 and the coalesced dependence distances corresponding

to those destinations outside t1 are smaller than that maximum coalesced distance.

The second possibility is that the maximum coalesced dependence distance is already

greater than Πn
t=1bt. In either case, shifting by −1 also does not change the memory

requirement.

From the discussions above, for the local array region under consideration, the decreased

memory requirement is equal to or greater than the increased memory requirement. Con-

sidering all such local array regions, we have κ4 ≥ κ1. Similarly, κ2 ≥ κ3 holds. Because our

solution is optimal, both κ1−κ2 ≥ 0 and κ3−κ4 ≥ 0 hold. Thus, we have κ1 = κ2 = κ3 = κ4,

which implies that we can further shift all the nodes in t1 in G′ either by −1 or by 1 without
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changing the objective function value. The updated shifting vectors ~pi will remain optimal.

We continue to further shift until one of the original edges between t1 and other nodes in G′

has (~pj + ~de− ~pi)~s
T = 0. At this time, the number of connected components in G1 is reduced

by 1 with a new set of optimal shifting vectors.

We repeat the above process until only one connected component remains in G1. Thus,

we have transformed the original optimal solution to a new optimal solution such that its

associated G1 has a single connected component when edge directions are ignored. 2

Lemma 7 below is the counterpart of Lemma 6 for Problem 1. Its proof is nearly identical

to that of Lemma 6. The phrase “minimum memory requirement” in Lemma 6 is replaced

by “maximum coalesced distance” in Lemma 7. There exist also certain subtle differences

in the increase and the decrease of these numbers. For completeness, we present the whole

proof to Lemma 7.

Lemma 7 There exists an optimal solution of Problem 1 over G′ such that its associated

G1, when the edge directions are ignored, has a single connected component.

Proof Suppose G1 contains more than one connected component. Take any component in

G1, say t1.

Imagine that we further shift all nodes in t1 in G′ by −1. The local array regions which

have flow dependence sources (but not all destinations) in t1 may have maximum coalesced

dependence distance increased. We let κ1 denote this increase. The local array regions

which have some flow dependence destinations (but not the source) in t1 may have maximum

coalesced dependence distance reduced. We let κ2 denote this decrease. Similarly, imagine

that we shift all nodes in t1 in G′ by 1, we let κ3 and κ4 represent the increase and decrease
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in the maximum coalesced dependence distance respectively for their corresponding local

array regions.

Consider local array regions which have the flow dependence sources in t1 but not all the

destinations. As stated in the above, shifting by −1 may potentially increase the maximum

coalesced dependence distance by κ1, and shifting by 1 may decrease the maximum coalesced

dependence distance by κ4. Now, for any local array region whose flow-dependence source

is in t1 but whose flow-dependence destinations are not all in t1, we have the following two

scenarios:

• Shifting by 1 reduces its maximum coalesced dependence distance by 1. Then, shifting

by −1 will increase its maximum coalesced dependence distance by 1, according to

Formula (5).

• Shifting by 1 does not change its maximum coalesced dependence distance. This means

that the destination node corresponding to the maximum coalesced dependence dis-

tance is inside t1 and the coalesced dependence distances corresponding to destinations

outside t1 are smaller than that maximum distance. Therefore, shifting by −1 also does

not change the maximum coalesced dependence distance.

Hence, for this local array region, the decrease in the maximum coalesced dependence

distances is equal to the increase in the maximum coalesced dependence distances among all

flow dependences. Including all such local array regions, we have κ4 = κ1. Similarly, we can

prove that κ2 = κ3 holds.

Because our solution is optimal, both κ1 − κ2 ≥ 0 and κ3 − κ4 ≥ 0 hold. These lead to

κ1 = κ2 = κ3 = κ4, which implies that we can further shift all the nodes in t1 in G′ either
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by −1 or by 1 without changing the objective function value. The updated shifting vectors

~pi will remain optimal. The rest of the proof is identical to that of Lemma 6.

2

Under Assumption 3, we have the following lemma.

Lemma 8 For any optimal solution of Problem 0 (or Problem 1) over G′, if its associated

G1 has a single connected component when the edge directions are ignored, then the condition

(~pj + ~de − ~pi)~s
T < Πn

t=1bt holds for all dependence distance edges in G′.

Proof For any edge e from Li to Lj in G′, ignoring edge directions, there exists a simple

path from Li to Lj in G1, say (Li, Lq1
, Lq2

, . . . , Lqk
, Lj), where k ≥ 0. We write Li as Lq0

and Lj as Lqk+1
.

For any edge et between Lqt
and Lqt+1

, 0 ≤ t ≤ k, if the edge direction is from Lqt
to

Lqt+1
, let rt = 1. Otherwise, let rt = −1. For edge et, we have

( ~pqt+1
+ rt

~det
− ~pqt

)~sT = 0, 0 ≤ t ≤ k. (9)

Adding together all k+1 equations represented by (9), we have (~pj +Σk
t=0rt

~det
− ~pi)~s

T = 0.

Therefore, (~pj + ~de − ~pi)~s
T = (−Σk

t=0rt
~det

+ ~de)~s
T . Under Assumption 3, (~pj + ~de − ~pi)~s

T ≤

(~b −~1)~sT < Πn
t=1bt. 2

Note that any feasible solution for Problem 0 is also a solution for Problem 1, and

vice versa. Based on Lemmas 6 and 8, for any optimal solution of Problem 0 over G′, we

can find an optimal solution where the objective function value of (8) is equal to that of

(5). Therefore, the optimal objective function value of (8) is equal to or greater than the

optimal objective function value of (5). Similarly, for any optimal solution for Problem 1

over G′, based on Lemmas 7 and 8, we can find an optimal solution whose objective function
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value for (5) is equal to that for (8). Therefore, the optimal objective function value for (5)

is equal to or greater than the optimal objective function value of (8). Hence, Problem 0

and Problem 1 have the same optimal objective function value over G′. Claim C.1 is thus

proved.

Next, we prove Claim C.2. Suppose dependence edge e has a non-constant dependence

distance vector ~de which is replaced by two constant instances of ~de, say ~de1
and ~de2

, under

certain instances of the iteration vector, such that ~de1
has the minimum coalesced dependence

distance and ~dek
has the maximum coalesced dependence distance. We have

~de1
~sT ≤ ~det

~sT ≤ ~dek
~sT , 2 ≤ t ≤ k − 1, (10)

where ~det
is an arbitrary instance of ~de. In the following, we prove that adding any such

distance vector ~det
to either Problem 0 or Problem 1, the optimal solution (of either

problem) will not change. To prove this, we make the following derivations based on

Inequality (10):

(~pj + ~de1
− ~pi)~s

T ≥ 0 ⇔ (~pj + ~det
− ~pi)~s

T ≥ ( ~det
− ~de1

)~sT ⇒ (~pj + ~det
− ~pi)~s

T ≥ 0 (11)

Similarly, we make the following derivation:

~Mi,k~s
T ≥ (~pj + ~dek

− ~pi)~s
T ⇒ ~Mi,k~s

T ≥ (~pj + ~det
− ~pi)~s

T (12)

Based on derivations (11) and (12), ~det
satisfy both constraints (6) and (7). From (12), ~det

does not affect the final solution for Problem 0 and Problem 1. Hence, ~det
can be omitted.

Combining Claims C.1 and C.2, we have shown that Problem 0 and Problem 1 have

the same optimal objective function value over the loop dependence graph G. Furthermore,
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given any optimal solution for one problem, we can derive an optimal solution for the other.

Theorem 1 is thus proved.

Appendix D: Experimentation Details

We have implemented controlled SFC in a research Fortran77 compiler, Panorama [15, 33],

and used it to find a number of test programs on which controlled SFC successfully reduces

array sizes. (Although the question of how widely array contraction is applicable is of high

empirical importance, such study requires a massive survey of open-source programs and is

beyond the scope of this paper. We point out that, to our best knowledge, our test programs

are much more extensive than reported in any previous papers on array contraction.)

We use the collected test cases to gather experimental results, from both simulation

and real-machine measurement, concerning cache performance and execution speed. In this

appendix, we describe the test cases and report experimentation details.

D.1 Test Cases

Table 2 lists the benchmarks used in our experiments, their descriptions and their input

parameters. In this table, “m/n” represents the number of loops in the loop sequence (m)

and the maximum loop nesting level (n). Note that the array size and the iteration counts

are chosen arbitrarily for LL14, LL18 and Jacobi. To distinguish the two versions of swim

in SPEC95 and SPEC2000, respectively, we denote the SPEC95 version as swim95 and

the SPEC2000 version as swim00. Program swim00 is almost identical to swim95 except

for its larger data size. For combustion, we change the array size (N1 and N2) from 1

to 10, to make the execution time last for at least several seconds. Programs climate,
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Table 2: Test programs
Benchmark Name Description Input Parameters m/n

LL14 Livermore Loop No. 14 N = 1001, ITMAX = 50000 3/1
LL18 Livermore Loop No. 18 N = 400, ITMAX = 100 3/2
Jacobi Jacobi Kernel w/o convergence test N = 1100, ITMAX = 1050 2/2

tomcatv A mesh generation program from SPEC95fp reference input 5/1
swim95 A weather prediction program from SPEC95fp reference input 2/2
swim00 A weather prediction program from SPEC2000fp reference input 2/2
hydro2d An astrophysical program from SPEC95fp reference input 10/2

lucas A promality test from SPEC2000fp reference input 3/1
mg A multigrid solver from NPB2.3-serial benchmark Class ‘W’ 2/1

combustion A thermochemical program from UMD Chaos group N1 = 10, N2 = 10 1/2
purdue-02 Purdue set problem02 reference input 2/1
purdue-03 Purdue set problem03 reference input 3/2
purdue-04 Purdue set problem04 reference input 3/2
purdue-07 Purdue set problem07 reference input 1/2
purdue-08 Purdue set problem08 reference input 1/2
purdue-12 Purdue set problem12 reference input 4/2
purdue-13 Purdue set problem13 reference input 2/1
climate A two-layer shallow water climate model from Rice reference input 2/4

laplace-jb Jacobi method of Laplace from Rice ICYCLE = 500 4/2
laplace-gs Gauss-Seidel method of Laplace from Rice ICYCLE = 500 3/2

laplace-jb, laplace-gs and all the Purdue set problems are from an HPF benchmark suite

at Rice University [26, 27], which are available on-line. Except for lucas, all benchmarks

are written in F77. We manually apply our technique to lucas, which is written in F90.

We note that, prior to applying controlled SFC, loop interchange and array transpose are

required for tomcatv and circular loop skewing is required for swim. They are all well-known

transformations [17, 36]. Among 20 benchmark programs, our algorithm finds that the

purdue-set programs, lucas, LL14 and combustion do not require loop shifting in order to

get their loops fused. For each of the benchmarks in Table 2, all m loops are fused together.

For swim95, swim00 and hydro2d, where n = 2, only the outer loops are fused. For all other

benchmarks, all n loop levels are fused. For all benchmarks except tomcatv, swim95 and

swim00, we perform array contraction with the L1 cache as the target, i.e., we try to improve

the L1 cache locality. For those three other programs, we target the L2 cache, which has

a much bigger size. This is due to the large array column sizes and the large number of
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(Data size for the original programs (unit: KB))

LL14 LL18 Jacobi tomcatv swim95 swim00 hydro2d
96 11520 19360 14750 14794 191000 11405

lucas mg combustion purdue-02 purdue-03 purdue-04 purdue-07
142000 8300 89 4198 4198 4194 524

purdue-08 purdue-12 purdue-13 climate laplace-jb laplace-gs -
4729 4194 4194 169 6292 1864 -

Table 3: Actual data sizes before and after transformation

arrays in those three programs. Unless all arrays are contracted from two dimensions to one

dimension or scalars, the resulted maximum reuse distance after array contraction will not

fit in the L1 cache.

Table 3 lists the actual data size before and after applying controlled SFC on an MIPS

R10K processor in an SGI Origin 2000 multiprocessor environment. From Figure 7, for mg

and climate, the memory requirement differs little before and after transformation. This

is due to the small size of the contractable local array. For all other benchmarks, our

technique reduces the memory requirement noticeably. Counting both the data and the

code, the arithmetic mean of the reduction rate is 51%. Among the tested benchmarks, only

combustion, purdue-07 and purdue-08 fit the program model in previous work [11]. In

those cases, the previous algorithm [11] will derive the same result as ours. So, there is no

need to list those results.

D.2 Simulation Results

We use the Cheetah cache simulator in SimplesScalar 3.0 suite [4] to examine the cache

behavior. Our simulated machine model contains a one-level cache with a line size of 16

bytes. We use the LRU cache replacement policy. The program is compiled by gcc with
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(The number of conflict misses is less than 11 in all cases)

Figure 10: Cache statistics for Jacobi (N = 110, ITMAX = 50)

Capacity Misses

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

16 32 64 128 256 512 1024

Cache Size (KB)

N
u

m
b

er
 o

f 
C

ac
h

e 
M

is
se

s

Original
Fusion
Contraction

Two-Way Conflict Misses

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

16 32 64 128 256 512 1024

Cache Size (KB)

N
u

m
b

er
 o

f 
C

ac
h

e 
M

is
se

s

Original
Fusion
Contraction

Figure 11: Cache statistics for tomcatv (N = 80, ITMAX = 100)

the optimization level “-O3”. By using a simulator, we are able to separate capacity misses

from conflict misses.

Unlike the execution on a real machine in Section D.3, we use the reduced data set size

and smaller iterative-loop trip counts for simulation, in order to reduce the long simulation

time. In this subsection, we pick three benchmarks to study their cache behavior, with

arbitrarily-chosen inputs. We count the number of cache misses for the whole program

which also contains some initialization and output codes.
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Figure 12: Cache statistics for swim95 (M = N = 64, ITMAX = 90)

Jacobi

Figure 10 shows the cache miss results with ITMAX = 50 and N = 110. Each data element

takes 8 bytes. The top subfigure shows that, for cache sizes 8KB to 64KB, loop fusion

reduces capacity misses by half and array contraction further halves that number. For the

cache size 128KB, array contraction makes both arrays fit in the cache, thus it maximally

reduces the number of capacity misses. For the cache size 256KB, even the original arrays

can all fit in the cache simultaneously, so the number of capacity misses is small for all three

versions of codes. The other subfigure shows conflict misses, assuming a two-way associative

cache. From this subfigure, we observe no significant negative effect of controlled SFC on

conflict misses.

tomcatv

The original tomcatv has seven 2-D arrays accessed in 5 loop nests. The numbers of 2-D

arrays referenced in these five loop nests are 6, 2, 5, 4 and 4 respectively. After fusion, the

same seven 2-D arrays are accessed in the fused loop. After array contraction, five of the
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2-D arrays are contracted to seven 1-D arrays. Figure 11 shows the results with the input

N = 80 and ITMAX = 100.

swim95

The original swim95 has thirteen 2-D arrays accessed in 2 loop nests. After fusion, the same

thirteen 2-D arrays are accessed in the fused loop. After array contraction, four 2-D arrays

(CU , CV , Z and H) are contracted to twelve 1-D arrays. Figure 12 shows the results with

the input M = N = 64 and ITMAX = 90.

D.3 Execution Results on a Real Machine

To further evaluate the effectiveness of array contraction, we have measured the performance

both on a Sun Ultrasparc machine and on one processor (MIPS R10K) in an SGI Origin

2000 multiprocessor. The results on these two machines are quite similar. We document the

Ultrasparc results elsewhere [32] and report the MIPS R10K results as follows.

The MIPS R10K has a 32KB 2-way set-associative L1 data cache with a 32-byte cache

line, and it has a 4MB 2-way set-associative unified L2 cache with an 128-byte cache line.

The multiprocessor machine has a total of 16GB size of memory of which 1GB is local to the

processor. It has 32 integer registers and 32 floating-point registers. The cache miss penalty

is 9 CPU cycles for the L1 data cache and 68 CPU cycles for the L2 cache.

For all versions of the benchmarks, we use the native Fortran compiler on an SGI Origin

2000 multiprocessor to produce the machine codes. We use the optimization flag “-O3”,

with the following adjustments to get as much performance as possible for all versions of

codes. We switch off prefetching for laplace-jb, software pipelining for laplace-gs and

loop unrolling for purdue-03. For swim95 and swim00, the native compiler fails to insert
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Figure 13: Performance comparision with ITMAX = 1

prefetch instructions in the innermost loop body after memory reduction. We manually

insert prefetch instructions into the three key innermost loop bodies, following exactly the

same prefetching patterns used by the native compiler for the original codes.

Execution Time with Original Inputs

From Figure 8 in the paper, one can see that loop fusion sometimes worsens the performance.

As we discussed in the previous subsection, loop fusion may increase conflict misses in some

cases. Nonetheless, the significant reduction in capacity misses after array contraction greatly

outweights any increase in conflict misses introduced by loop fusion. From Figure 8, the codes

after array contraction achieves an average speedup (using a geometric mean) of 1.40 over

the original programs. The average speedup over the fusion codes is 1.25.

Cache Statistics

We also measured the reference count (dynamic load/store instructions), the number of

misses on the L1 data cache, and the number of misses on the L2 unified cache. We use the

perfex [20] package to get the cache statistics. Figure 9 in the paper compares such statistics,

where the total reference counts in the original codes are normalized to 100. One special
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example is Jacobi, in which the number of references is increased after array contraction,

when compared with the original code. On the other hand, from Figure 9, the number of

cache misses (especially L2 cache misses) is reduced significantly.

When arrays are contracted to scalars, register reuse is often increased. Figure 9 shows

that the number of total references get decreased in most cases. However, in a few cases, the

total reference counts get increased instead. We examined the assembly codes and found a

couple of reasons:

• The native compilers can perform scalar replacement for references to noncontracted

arrays. The fused loop body may prevent such scalar replacement due to increased

register pressure.

• Loop peeling may decrease the effectiveness of scalar replacement since fewer loop

iterations benefit from it.

Execution Time with ITMAX = 1

In order to find out whether array contraction increases more data reuses across the time

steps (i.e. the T loop iterations), as opposed to within each single time step, we also picked

several test programs and measured their performance with ITMAX changed to 1. (Several

benchmarks, hydro2d, lucas, mg, combustion, purdue-07, purdue-12 and climate, already

have an artificial outer loop with ITMAX = 1. The new experiments are skipped for those

programs. We also skipped those programs whose running time with ITMAX = 1 is too

short to measure by the UNIX time utility.)

The results for the remaining five test programs are in Figure 13, which shows that the

speedup of the codes after array contraction over the fused codes in Figure 8 is greater than
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Figure 14: Performance comparision with other schemes

that in Figure 13. This is because parts of program other than the loop nests involved in

controlled SFC will consume a relative large portion of total execution time for a smaller

ITMAX. This results in a smaller speedup.

D.4 Comparison with Other Schemes

Figure 14 compares our contraction technique with other techniques, where “Para-Fusion”

stands for parameterized loop fusion [31] and “Collect-Fusion” for collective loop fusion [12].

The execution time for parameterized loop fusion is normalized to 100. The geometric

average speedup of SFC over parameterized loop fusion is 1.28 over 20 benchmarks. The

average speedup of SFC over collective loop fusion is 1.15.
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