
A Compiler Scheme for Reusing Intermediate Computation Results

Yonghua Ding
Department of Computer Science

Purdue University
West Lafayette, Indiana 47907

ding@cs.purdue.edu

Zhiyuan Li
Department of Computer Science

Purdue University
West Lafayette, Indiana 47907

li@cs.purdue.edu

Abstract

Recent research has shown that programs often exhibit
value locality. Such locality occurs when a code segment,
although executed repeatedly in the program, takes only a
small number of different values as input and, naturally,
generates a small number of different outputs. It is poten-
tially beneficial to replace such a code segment by a table
which records the computation results for the previous in-
puts. When the program execution re-enters the code seg-
ment with a repeated input, its computation can be simpli-
fied to a table look-up. In this paper, we discuss a compiler
scheme to identify code segments which are good candi-
dates for computation reuse. We discuss the conditions un-
der which the table look-up costs less than repeating the
execution, and we perform profiling to identify candidates
which have many repeated inputs at run time. Compared
to previous work, this scheme requires no special hard-
ware support and is therefore particularly useful for re-
source constrained systems such as handheld computing de-
vices. We implement our scheme and its supporting analy-
ses in GCC. We experiment with several multimedia bench-
marks and the GNU Go game by executing them on a hand-
held computing device. The results show the scheme to im-
prove the performance and to reduce the energy consump-
tion quite substantially for these programs.

1. Introduction

Recent research has shown that programs often exhibit
value locality [9, 10, 16, 17], a phenomenon in which a
small number of values appear repeatedly in the same reg-
ister or the same memory location. A number of hardware
techniques [4, 5, 6, 9, 10, 13, 15, 17] have been proposed
to exploit value locality by recording the inputs and outputs
of a code segment in a reuse table implemented in the hard-
ware. The code segment can be as short as a single instruc-

tion. A subsequent instance of the code segment can be sim-
plified to a table look-up if the input has appeared before.

The hardware techniques require a nontrivial change
to the processor design, typically by adding a spe-
cial buffer which may contain one to sixteen entries.
Each entry records an input (which may consist of sev-
eral different variables) and its matching output. Such a
special buffer increases the hardware design complex-
ity and the hardware cost, and it remains unclear whether it
will be adopted for embedded systems and handheld com-
puting devices.

In this paper, we present a software scheme based on
compiler analysis, profiling information and program trans-
formation. The scheme identifies code segments which are
good candidates for computation reuse. For each selected
code segment, the scheme creates a hash table to contin-
uously record the inputs and the matching outputs of the
code segment. Based on factors such as the value repeti-
tion rate, the computation granularity, and the hashing com-
plexity, we develop a formula to estimate whether the ta-
ble look-up will cost less than repeating the execution. The
hashing complexity depends on the hash function and the
size of the input and the output. Unlike the special hard-
ware reuse buffer, the hash table is very flexible in its size.
It can be as large as the number of different input patterns.
This offers opportunities to reuse computation whose inputs
and outputs do not fit in a special hardware buffer. On the
other hand, the overhead of accessing and updating the hash
table is higher than the overhead for the hardware buffer.

We have implemented a prototype of our scheme, as well
as the supporting compiler analyses, in the GCC compiler.
We performed experiments by running several multimedia
benchmarks [12] and the GNU Go game [1] on a Compaq
iPAQ handheld device. The preliminary results show that,
despite the hashing overhead, the compiler scheme reduces
the execution time and the energy consumption quite sub-
stantially for these programs.

In summary, this paper makes the following main contri-
butions:

Data flow analysis to determineinput/output

Estimate hashing overhead

Granularity analysis

Choose code segments for value profiling

Determine code segments to transform

Identify candidate code segments

Figure 1. Frame-work of the compiler scheme

• We design and implement a compiler scheme to reuse
the intermediate computation results. To the best of our
knowledge, this is the first effort that uses a compiler
approach for computation reuse without special hard-
ware support.

• We present a cost-benefit analysis to identify code seg-
ments for computation reuse. For nested code seg-
ments, our cost-benefit analysis chooses the appropri-
ate code segment to transform for computation reuse.
Such analysis is absent in previous work.

• We give a detailed analysis of the experimental results.
Previous work all use simulations in experiments. Our
work is the first to provide experimental results from
real measurement.

In the rest of the paper, we discuss our compiler scheme
and its cost-benefit analysis in section 2, present experimen-
tal results in section 3, discuss related work in section 4 and
make a conclusion in section 5.

2. A Compiler Scheme for Computation
Reuse

Figure 1 shows the main steps in our compiler scheme.
We will first briefly explain these steps and their ordering.
We then address some of the key issues in the scheme.

2.1. The Main Steps

In our first step, we filter out code segments which are
executed infrequently, in order to reduce value-profiling [3]

cost. Our scheme requires information on the repetitiveness
of a set of input values for a code segment. This is in con-
trast to single-variable value profiling, where one can record
the number of different values of the variable written by an
instruction during the program execution. The ratio of this
number over the total number of execution of the instruction
defines the value locality at the instruction. (The lower the
ratio, the higher the locality.) The locality of a set of values,
unfortunately, cannot be directly derived based upon the lo-
cality of the member values. For example, suppose x and
y each has two distinct values. The set of (x, y) may have
two, three, or four distinct value combinations.

Therefore, our scheme first needs to define code seg-
ments for which we conduct value-set profiling. Given such
a code segment, profiling code stubs can be inserted to
record its distinct sets of input values. If we indiscriminately
perform such value-set profiling for all possible code seg-
ments, the profiling cost will be prohibitive. To limit such
cost, we confine the code segments of interest to those fre-
quently executed routines and loops. Such frequency in-
formation can be collected using well-known tools such as
gprof and gcov.

Next, we determine the input and output variables in
the candidate code segments selected in our first step. We
apply data flow analysis to the program. The inputs of a
code segment are those variables or array elements that have
upward-exposed reads in the code segment, excluding those
recognized by the compiler as invariants at the entry of the
code segment. (An invariant never needs to be included in
the hash key.) The output variables are identified by liveness
analysis. A variable computed by the code segment is an
output variable if it remains live at the exit of the code seg-
ment. We have implemented such upward-exposure anal-
ysis and liveness analysis in a GCC compiler for C pro-
grams, including pointer and structure analysis necessary
for identifying aliases. Algorithms for such analyses are
well known.

Figure 2(a) shows an example code segment extracted
from a Mediabench program which implements the G721
voice standard. The function quan is invoked in several
places within loops. The code segment has an input vari-
able val which is upward exposed to the entry of function
quan. The compiler recognizes power2 to be invariant af-
ter its initialization. The output variable is integer i which
remains live at the exit of the function.

In the remaining steps, our scheme collects information
on three factors which determine the performance gain or
loss from computation reuse, namely the computation gran-
ularity, the hashing overhead, and the input reuse rate of the
given code segment. With the execution-frequency profiling
information, it is relatively easy to estimate the computation
granularity, defined as the number of operations performed
by the code segment. To get the reuse rate, we estimate the

int quan(int val) {
 int i;

 for (i = 0; i < 15; i++) {
 if (val < power2[i])
 break;
 }
 return (i);
}

(a)

int quan(int val) {
 int i, key;

 if (check_hash(val, hash_table, &key) == 0) {
 for (i = 0; i < 15; i++) {
 if (val < power2[i])
 break;
 }

 }
 else {
 i = hash_table[key].output;
 }

 return (i);
}

 hash_table[key].output = i;

(b)

Figure 2. An example code segment and
its transformation by applying computation
reuse

number of distinct sets of input values (Nds) by value pro-
filing, and the number of execution instances of the code
segment (N). We define the reuse rate R as

R = 1 −

Nds

N

Based on the inputs and outputs of the candidate code
segment, we estimate the hashing overhead for computation
reuse. The hashing overhead depends mainly on the com-
plexity of the hash function and the size of each set of in-
puts and outputs.

To produce a hash key for each code segment, we first
define an order among the input variables. The bit pattern
of each input value forms a part of the key. In the case of
multiple input values, the key is composed by concatenat-
ing multiple bit strings. In common cases, the hash key can
be quite simple. For example, the input of the code segment
in Figure 2(a) is an integer scalar, so the hash key is sim-
ply the value of the input. The hash index can simply be the

hash key modularized by the hash size.
The hashing overhead depends on the size of the input

and the output. The time taken to determine whether we
have a hit is proportional to the size of the input. For a hit,
the recorded output values should be copied to the corre-
sponding output variables. For a miss, the computed out-
put values must be recorded in the hash table. In both cases,
the cost of copying is proportional to the size of the output.
In our scheme, we estimate the number of CPU cycles of
the extra operations performed during a hit or a miss. (Note
that a hit and a miss have the same number of extra opera-
tions.) A hash collision will increase the hashing overhead.
To simplify the discussion, we assume there exist no hash
collisions. During value-set profiling, we can count the hash
collision rate for each value set and deduct the reuse rate ac-
cordingly. (In our experiments, only the program MPEG2
generates hash collisions.)

In the following subsections, we derive formulas to de-
termine the performance gain or loss from computation
reuse. Several other important issues are also discussed.

2.2. A Cost-Benefit Analysis

For a specific code segment, suppose we know the com-
putation granularity C, the hashing overhead O, and the
reuse rate R. The cost of computation before transforma-
tion equals C. The new cost of computation with compu-
tation reuse is specified by formula (1) below. The cost of
computation now equals C + O if hashing misses and it
equals O if hashing hits. Our scheme checks to see whether
the gain by applying computation reuse, defined by formula
(2), is positive or negative. Hence, if and only if the condi-
tion in formula (3) is satisfied, the code segment has a per-
formance gain from computation reuse.

(C + O) · (1 − R) + O · R (1)

C − [(C + O) · (1 − R) + O · R] ≡ R · C − O (2)

R · C − O > 0 or R >
O

C
(3)

Obviously, the reuse rate R can never be greater than 1. This
gives us another criteria to filter out code segments so as
to reduce the complexity of value-set profiling. The com-
piler scheme removes code segments which do not satisfy
O
C

< 1 from further consideration. For the remaining code
segments, value profiling is performed to get R.

After we obtain R, the compiler picks the code segments
which satisfy formula (3) for computation reuse. Such code
segments are transformed into codes that perform table
look-up. Figure 2(b) shows the transformation result of the
code segment in Figure 2(a).

CS1

CS2 CS3

CS4 CS5 CS6

Figure 3. An example nesting graph shows
nested code segments

2.3. Nested Code Segments

In our current scheme, if one code segment is embedded
in another and both segments can benefit from computation
reuse according to the cost-benefit analysis, we choose only
one of them for reuse. Examples of nested code segments
include nested loops, loops in a routine, a routine call inside
a loop and a routine calls another.

Based on the cost-benefit analysis in the previous sub-
section, we can determine the average performance gain,
R ·C−O, for each code segment. Suppose such gain equals
g1 for the outer code segment, and g2 for the inner code
segment. Further suppose that, on average, n instances of
the inner code segment are executed in each instance of the
outer code segment. If the condition in formula (4) below
is satisfied, then reusing the inner code segment will out-
perform that of the outer code segment. Otherwise, we reuse
the outer code segment instead.

g1 − n · g2 < 0 (4)

If a code segment encloses two sequential code segments,
the performance gain from the outer code segment will be
compared with the sum of the gains from the two inner code
segments.

To determine which code segments in those nested code
segments to reuse, our compiler scheme constructs an in-
terprocedural nesting graph to represent the nesting rela-
tionship among all code segments which can have perfor-
mance gain from computation reuse. If the program con-
tains recursive functions, then the nesting graph will contain
cycles. For each non-singleton strongly connected compo-
nent (SCC), we estimate the performance gain from com-
putation reuse for each node in the SCC. The node with the
best performance gain remains as a computation-reuse can-
didate according to the comparison described above. The
rest of the nodes in the SCC are no longer candidates. We
then condense the SCC into a single node. The estimated
performance gain of the survivor in the SCC is assigned to
the condensed node. After condensing all SCC’s this way,

static int quan(int val, short *table, int size) {
 int i;

 for (i = 0; i < size; i++)
 if (val < *table++)
 break;

 return (i);
}

Figure 4. Original code of quan in G721

the nesting graph becomes a DAG. We traverse the DAG
bottom-up to determine which code segment in a nesting
has the best performance gain according to the formula (4).

Figure 3 shows an example in which each node repre-
sents a code segment. An arc points from an outer code seg-
ment to an inner code segment. The compiler starts from
the leaf nodes. It first compares the performance gain of
CS4 with that of CS2 and marks the decision on the node
CS2. It next compares the performance gain of CS3 with
the sum of that of CS5 and CS6. The decision is marked on
node CS3. Next, it compares the performance gain of CS1
with the sum of that recorded on CS2 and CS3. With that,
the scheme can finally determine which code segments con-
tribute the most performance gain.

2.4. Hashing Overhead Reduction

To reduce the hashing overhead, we apply code special-
ization to reduce the number of inputs and/or outputs of
the candidate code segments. Specialization makes multi-
ple versions of a code segment. In certain versions, some
input variables become invariants. Specialization may in-
crease the number of candidate code segments and hence
the storage overhead for the hash table. However, the stor-
age overhead is justified if the performance gain is substan-
tial.

The code segment in Figure 2(a) is in fact a specializa-
tion of the function quan in G721. Figure 4 shows the orig-
inal code of quan, which has three input variables, an inte-
ger scalar size, an integer array table, and an integer scalar
val. By an estimate, the hashing overhead outweighs the
computation granularity. However, this function is called in
several places in the program. For most of the call sites, the
value of size always equals 15 and the array table is always
a copy of another array power2 which is never changed af-
ter initialization. After specialization, these call sites will
call a new version of quan which has one input variable
val. Computation reuse can now be applied to this version
of quan with a performance gain.

Entry Input Var (IV) 1 ... IV n Output Var (OV) 1 ... OV m

1
2
...

Table 1. A hash table for a single code seg-
ment

To identify whether a variable is invariant in the execu-
tion of the code segment, our scheme performs a code cov-
erage analysis to find all basic blocks which are in the ex-
ecution paths from the first execution instance to the last
execution instance of the code segment. If the variable re-
mains unchanged in all these basic blocks, then it is invari-
ant for the code segment.

2.5. Merging Hashing Tables to Reduce Storage
Overhead

The hash tables consume extra memory. If we find mul-
tiple code segments with identical input variables, we can
merge their hash tables to reduce the storage overhead. we
include a bit vector in the merged hash table. Each bit rep-
resents one of the code segments and it records whether the
output is available for a specific input. Table 1 shows the
hash table for a single code segment. Table 2 shows the
merged hash table for multiple code segments with iden-
tical input variables.

The GNU Go game is a good example to show the ben-
efit of merged hash tables. The program has eight candi-
date code segments which have the identical set of input
variables. Without merging, the transformed code runs out
of memory on the Compaq iPAQ in our experiment. How-
ever, after merging the eight hash tables into one, the trans-
formed code gets a speed up over 20% and an energy re-
duction over 16%. Further details are given in the next sec-
tion.

3. Experimental Results

In this section, we first describe our implementation of
computation reuse and then show the experimental results,
including the performance and energy data.

3.1. Implementation

We have implemented the techniques described above, as
well as a number of supporting analyses (see below), in the
GCC compiler (v3.3). We implemented the new modules
based on the abstract syntax tree in GCC. It is more diffi-
cult to collect information such as pointer deferences based

on the lower level (i.e. the RTL level) intermediate represen-
tation in GCC. We implemented the following new modules
in GCC:

• Call graph construction

• Clean-up

• Pointer analysis

• Control flow graph construction

• Def-use chains construction

• Code segment analysis

– Granularity analysis

– Hashing overhead analysis

– Code coverage analysis

– Array reference analysis for array input/output

• Code generation for computation reuse

In the call graph construction, we take into account
function pointers and recursive functions. For recursive
functions we compute their strongly-connected-component
(SCC). The clean-up module is implemented to ease our
subsequent analyses. For example, each function call in a
complex expression is split from the expression in order
to simplify the interprocedural analysis. We perform the
pointer analysis [7] globally. For example, we can analyze
a local pointer in one procedure which points to a local
variable in another procedure. The construction of def-use
chains [14] is also global because a definition in one pro-
cedure may be used in another procedure through pointers
or global variables. In other words, there may exist a def-
use chain whose definition and use are in different proce-
dures. After we obtain the def-use chains for the entire pro-
gram, we perform code segment analysis to identify candi-
date code segments for profiling. In code segment analysis,
we estimate a lower bound on the granularity and an up-
per bound on the hashing overhead for each code segment.
We confine the candidate code segment to a function body, a
loop body, or an IF branch. To reduce the hashing overhead
by reducing the number of inputs and outputs, we apply the
code coverage analysis to identify invariant variables in the
code segment. After profiling, we choose the code segments
which satisfy formula (3) and transform them for computa-
tion reuse. Our implementation is a source-to-source trans-
formation.

We implement a direct addressing hash table for each
code segment. We generate the hash key by concatenat-
ing the values of input variables. If the hash key is not
greater than 32 bits, we use the modularization to gener-
ate hash index. Otherwise, we perform a hash function [11]
on the large hash key to generate a 32-bit hash key before
the modularization. When hash collision happens, the pre-
viously recorded inputs and outputs in the entry is replaced

Code Segment 1 ... Code Segment p
Entry IV 1 ... IV n Bit vector OV 1 ... OV m1 OV 1 ... OV mp

1
2
...

Table 2. A Merged hash table

by the new inputs and outputs. The hash table size is de-
termined based on the value profiling information, i.e., the
number of distinct input patterns.

3.2. Experimentation Setup

We use a Compaq iPAQ 3650 PDA for the experiments.
The iPAQ 3650 has a 206MHZ Intel StrongArm SA1110
processor [2] and 32MB RAM, and it has a 16KB instruc-
tion cache and an 8KB data cache, both being 32-way set-
associative. By reducing the computation through reuse, we
hope to reduce energy consumption on the PDA. To evaluate
the impact of our transformation on the energy consump-
tion on the handheld device, we connect an HP 3458a high
precision digital multi-meter to measure the actual current
drawn on the handheld computer during the program execu-
tion. In order to get a reliable and accurate measurement, we
disconnect the batteries from both the iPAQ and its exten-
sion pack, and we use a steady external 5V DC power sup-
ply instead. We use the built-in trigger mechanism in the
multi-meter to start and stop measurement. After the test
program starts running, the iPAQ triggers the multi-meter
to read the current in a high frequency, and the trigger stops
when the test program finishes. According to our measure-
ment, the overhead associated with the triggering interrupts
is less than 0.5% and the readings are consistent over re-
peated runs.

3.3. Test Programs

We have experimented with six multimedia programs
from Mediabench [12] and the GNU Go game [1]. For other
programs in Mediabench, our compiler scheme does not
identify any significant code segments which benefit from
computation reuse. In our experiments, we use the default
input parameters and input files as specified on the Medi-
abench web-site. The results from these programs are de-
scribed below.

The two programs G721 encode and G721 decode per-
form voice compression and decompression, respectively,
based on the G.721 standard. They both call a function
quan which performs a linear search through a table. Af-
ter a simple code specialization, the function quan can be
transformed to a function with one input variable and one
output variable. The variation of inputs is small for both

0 2000 4000 6000 8000 10000 12000
0

2

4

6

8

10

12
x 10

5

Values

Ac
ce

ss
 #

Figure 5. Histogram of input values in
G721 encode

G721 encode and G721 decode. In our experiments, quan
is invoked 1612942 times with 9155 different input patterns
in program G721 encode, and it is invoked 2888970 times
with 8884 different input patterns in program G721 decode.
In both cases, the computation reuse rate is over 99%. The
number of different input patterns, however, is much greater
than the small hardware reuse buffer could store in the hard-
ware approaches. Since both the input and the output are in-
tegers, the hash function is simple and the hash key is small.
Figure 5 and 6 show the histogram of input values in func-
tion quan of G721 encode and G721 decode respectively.
Figure 7 and 8 show the histogram of the table entries that
were accessed.

As Figure 2(a) shows, the algorithm in the function quan
is a linear search in a table whose elements increase by the
power of 2. One might wonder whether computation reuse
still benefits should the search be implemented differently.
To answer this question, we revise the code by replacing the
linear search with a binary search, and by replacing the ta-
ble with shift operations respectively. We run the revised
codes for both encode and decode. Figure 9 shows the re-
vised function quan with a complete loop unrolling and a
binary search. Figure 10 shows the function quan in which
the table power2 is replaced by shift operations.

The programs MPEG2 encode and MPEG2 decode en-
code and decode an MPEG stream respectively. Our

0 2000 4000 6000 8000 10000 12000
0

5

10

15
x 10

5

Values

Ac
ce

ss
 #

Figure 6. Histogram of input values in
G721 decode

0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Table entries

Ac
ce

ss
 #

Figure 7. Histogram of accessed table entries
in G721 encode

scheme identifies the function fdct for computation reuse
in MPEG2 encode and the function Reference IDCT

in MPEG2 decode. Both functions consume signifi-
cant amount of computation time in their respective pro-
grams. They both have input and output of a 64-entry
block. The hash key, being a 64-entry block, is much
longer than the single integer used in the other pro-
grams mentioned above, and the hashing overhead is
consequently higher. On the other hand, the computa-
tion granularity of the code segment is also considerably
larger than those in the other programs. Hence, if the in-
puts have a high repetition rate, then it is still beneficial
to reuse the computation. It turns out that the repeti-
tion rate is high in MPEG2 decode (48.6%), but not as high
in MPEG2 encode.

RASTA, which implements front-end algorithms of

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6
x 10

5

Table entries

Ac
ce

ss
 #

Figure 8. Histogram of accessed table entries
in G721 decode

speech recognition, is a program for the rasta-plp process-
ing, and it supports the following front-end techniques:
PLP, RASTA, and Jah-RASTA with fixed Jah-value. Its
most time-consuming function FR4TR contains a code
segment with one input variable and six output vari-
ables. The input repetition rate is 99.6%. Figure 11 shows
the histogram for the accesses of the distinct input pat-
terns in the code segment of RASTA.

UNEPIC is an image decompression program.
Its main function contains a loop to which our com-
piler scheme is applied. The loop body has a single input
variable and a single output variable, both integers. The in-
put has a repetition rate of 65.1%. Figure 12 shows the
histogram of the input values in the code segment of UN-
EPIC.

GNU Go is a game which won the 8-th place in the 21st
Century Cup in York, Pennsylvania and the second place
in the European Go Congress. In our experiments, we use
the input parameters “-b 6 -r 2”, where “-b 6” means play-
ing 6 steps in benchmark mode and “-r 2” means setting the
random seeds as 2 (to make it easier to verify results). The
function accumulate influence contains eight code seg-
ments, each with four input variables and one output vari-
able. Based on profiling, the input values fall in the range of
[0,19]. For such small integer values, we use a single inte-
ger as the hash key which contains all four input values. The
average repetition rate of inputs is 98.2%. Figure 13 shows
the histogram of the input values in the code segments of
GNU Go.

Table 3 lists statistics concerning several factors which
affect the decision on whether to apply our computation
reuse scheme. For each program, we show statistics only for
the most significant code segment which has performance
gain from computation reuse. The second column shows
the computation granularity of one instance of the reusable

Programs Computation Overhead DIP # Reuse Rate Hash Table Size
G721 encode 1.28 0.12 9155 99.4% 86KB
G721 decode 1.38 0.15 8884 99.7% 86KB

MPEG2 encode 13859 49.4 7617 9.8% 1.98MB
MPEG2 decode 12029 52.7 4068 48.6% 1.98MB

RASTA 333.7 59.5 31 99.6% 2KB
UNEPIC 29.45 0.61 22902 65.1% 512KB
GNUGO 26.3 2.14 46283 98.2% 4.47MB

Table 3. Factors which affect the optimization decision

quan(int val)
{
 int i;

 if (val < power2[7]) {
 if (val < power2[3]) {
 if (val < power2[1])
 i = (val < power2[0]) ? 0 : 1;
 else
 i = (val < power2[2]) ? 2 : 3;
 }
 else {
 if (val < power2[5])
 i = (val < power2[4]) ? 4 : 5;
 else
 i = (val < power2[6]) ? 6 : 7;
 }
 }
 else {
 if (val < power2[11]) {
 if (val < power2[9])
 i = (val < power2[8]) ? 8 : 9;
 else
 i = (val < power2[10]) ? 10 : 11;
 }
 else {
 if (val < power2[13])
 i = (val < power2[12]) ? 12 : 13;
 else
 i = (val < power2[14]) ? 14 : 15;
 }
 }
 return (i);
}

Figure 9. quan with binary search

quan(int val)
{
 int i, j;

 j = 1;
 for (i = 0; i < 15; i++) {
 if (val < j)
 break;
 j = j << 1;
 }

 return (i);
}

Figure 10. quan with table power2 replaced
by shift operations

0 5 10 15 20 25 30
150

200

250

300

350

400

450

500

550

600

Distinct Input Patterns

Ac
ce

ss
 #

Figure 11. Histogram of distinct input pat-
terns in RASTA

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

0

1000

2000

3000

4000

5000

6000

Values

Ac
ce

ss
 #

Figure 12. Histogram of input values in UN-
EPIC

0 2 4 6 8 10 12 14

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Values

Ac
ce

ss
 #

Figure 13. Histogram of input values in GNU
Go

code segment in the unit of microsecond (µs). The third col-
umn shows the overhead (in µs) to access and manage the
hash table in one instance of the execution of the code seg-
ment. The fourth column shows the number of distinct input
patterns. The fifth column shows the reuse rate. The last col-
umn shows the extra memory consumption (in byte) of the
hash table used in our experiment to get performance and
energy data.

Table 4 lists the number of code segments analyzed, pro-
filed, and transformed respectively in the specified func-
tions. The last column shows the code size of the programs
in the term of lines.

Table 5 shows the hit ratios when the hash table size is
limited to 1-entry, 4-entry, 16-entry and 64-entry respec-
tively. The LRU replacement policy is used. The results
show that the hit ratio drops significantly for small hash ta-

Programs Original (s) Computation Reuse (s) Speedup

G721 encode 4.40 2.82 1.56
G721 encode s 4.12 2.78 1.48
G721 encode b 2.84 2.55 1.11
G721 decode 8.01 5.00 1.60

G721 decode s 7.49 5.00 1.50
G721 decode b 5.15 4.56 1.13
MPEG2 encode 158.22 148.18 1.07
MPEG2 decode 96.65 53.22 1.82

RASTA 18.07 15.50 1.17
UNEPIC 2.14 0.93 2.30
GNUGO 1158.01 885.30 1.31

Harmonic Mean 1.46

Table 6. Performance Improvement with O0

Programs Original (s) Computation Reuse (s) Speedup

G721 encode 2.01 1.53 1.31
G721 encode s 1.83 1.51 1.21
G721 encode b 1.60 1.48 1.08
G721 decode 3.69 2.76 1.34

G721 decode s 3.42 2.73 1.25
G721 decode b 2.99 2.73 1.10
MPEG2 encode 120.63 113.30 1.06
MPEG2 decode 83.02 46.06 1.80

RASTA 14.92 12.66 1.18
UNEPIC 1.73 0.76 2.28
GNUGO 788.05 654.51 1.20

Harmonic Mean 1.37

Table 7. Performance Improvement with O3

bles. Note that in the current hardware proposals, the size
of input/output is limited to no more than 8 entries for each
code segment and the hash table size is limited.

3.4. Performance and Energy Data

Tables 6 and 7 show the performance improvement by
our scheme applied to those seven programs mentioned
above. G721 encode s and G721 decode s are modified
codes with table power2 in function quan replaced by shift
operations. In G721 encode b and G721 decode b, the lin-
ear search in function quan is replaced by a binary search.
The harmonic mean excludes these modified codes. In Ta-
ble 6, we first show results with both the original programs
and the transformed programs compiled by GCC without
any other optimization (O0). The second and third columns
of the table show the execution time of original programs
and transformed programs. By applying our scheme, 4 of
the 7 programs have speedups greater than 1.5 over their

Programs Functions Analyzed CS Profiled CS Transformed CS code size (lines)

G721 encode quan, fmult, update 81 4 2 1.3K
G721 decode quan, fmult, update 84 7 2 1.2K

MPEG2 encode fdct 10 7 1 7.6K
MPEG2 decode Reference IDCT 11 5 1 8.2K

RASTA FR4TR 27 3 1 6.1K
UNEPIC main, collapse pyr 69 1 1 0.9K
GNUGO accumulate influence 106 16 8 40K

Table 4. Number of code segments (CS)

Programs 1-entry 4-entry 16-entry 64-entry 64-entry Size (Byte)
G721 encode 0.1% 0.8% 3.1% 12.2% 512
G721 decode 0.04% 0.5% 2.3% 9.9% 512

MPEG2 encode 3.1% 5.1% 5.2% 5.4% 16384
MPEG2 decode 33.5% 44.7% 44.7% 44.7% 16384

RASTA 2.6% 17.9% 58.8% 99.6% 2048
UNEPIC 1.1% 1.1% 1.2% 1.4% 512
GNUGO 0% 0.01% 0.06% 0.3% 10240

Table 5. Hit Ratios with Limited Buffers

Programs Original (J) Comp. Reuse (J) Energy Saving

G721 encode 10.25 6.60 35.6%
G721 decode 18.70 11.75 37.2%

MPEG2 encode 367.86 344.52 6.3%
MPEG2 decode 224.23 123.74 45.0%

RASTA 44.30 37.96 14.3%
UNEPIC 4.96 2.19 55.8%
GNUGO 2844.66 2185.35 23.2%

Table 8. Energy Saving with O0

original programs. There is little performance improvement
for MPEG2 encode because the reuse rate is only 9.8%.

Table 7 shows the performance results with both the
original program and the transformed program compiled
with the most aggressive optimizations (O3) in GCC. Our
scheme is still shown to improve the performance of these
programs considerably.

Tables 8 and 9 show the energy saving by our computa-
tion reuse scheme applied to these seven programs with O0
and O3 optimization levels respectively. Out of the seven
programs, six achieve substantial energy saving by the soft-
ware scheme. The second and the third columns of the ta-
bles show the energy consumption of the handheld com-
puting device running the original programs and the trans-
formed programs by applying the computation reuse, mea-
sured in the unit of Joule (J). We compute the energy con-
sumption of the entire system of the handheld computer dur-

Programs Original (J) Comp. Reuse (J) Energy Saving

G721 encode 4.59 3.56 22.4%
G721 decode 8.43 6.47 23.3%

MPEG2 encode 281.67 265.12 5.9%
MPEG2 decode 193.85 108.01 44.3%

RASTA 36.60 31.02 15.2%
UNEPIC 4.03 1.81 55.1%
GNUGO 1936.23 1613.69 16.7%

Table 9. Energy Saving with O3

ing the execution by the following equation:

energy = voltage ∗ current drawn ∗ elapsed time

In the above equation, voltage is fixed to 5 volt
since we use a steady external 5V DC power supply, and
current drawn is the average electrical current drawn dur-
ing the execution of the program. The current fluctuates
during the program execution, but the overall energy con-
sumption is reduced in the transformed codes.

Figures 14 and 15 compare the speedups achieved by our
scheme applied to these programs with different hash table
sizes (in bytes). The optimal hash table size is determined
based on the profiling information and is shown in the last
column of Table 3. With the optimal size, the hash table
holds all distinct inputs/outputs of its code segment with the
default input file. Almost all these programs achieve good
speedups by applying computation reuse with a hash table

0

0.5

1

1.5

2

2.5

G721_encode

G721_decode

MPEG2_encode

MPEG2_decode
RASTA

UNEPIC
GNUGO

Optimal
512K
64K
8K
1K

Figure 14. Under O0 optimization, speedups
with different hash table sizes

0

0.5

1

1.5

2

2.5

G721_encode

G721_decode

MPEG2_encode

MPEG2_decode
RASTA

UNEPIC
GNUGO

Optimal
512K
64K
8K
1K

Figure 15. Under O3 optimization, speedups
with different hash table sizes

of 512KB. This amount of storage overhead is affordable
on handheld devices.

Since our computation reuse scheme is based on profil-
ing, we evaluate the effectiveness of the scheme with differ-
ent input files. The program transformation is based on the
profiling with default input files from the Mediabench web-
site, and we run the transformed programs with other differ-
ent input files. We show the results in Table 10. GNU Go has
no input files, and we change the parameter from 6-step to
9-step. For each of the other programs, we arbitrarily col-
lect an input file either from the Internet or from another
benchmark suite such as MiBench [8]. We list the sources
of input files in the second column of Table 10. For G721,
we choose the input file small.pcm from the MiBench pro-
gram ADPCM . We select the tens 015.m2v file, for play-

ing table tennis, from Tektronix web-site, and we extract the
first 6 frames as the input of MPEG2 encode and decode.
For RASTA, we choose the input file phone.pcmbe.wav

in 1998’s RASTA test suite from ICSI. For UNEPIC,
we get the input file baboon.tif of EPIC, and we gen-
erate its UNEPIC input file by running EPIC with the
baboon.tif as input. The last column of Table 10 shows the
effectiveness of our scheme. After applying our scheme to
these programs based on the profiling information with the
default input files, substantial performance improvement is
also achieved for the other input files.

4. Related Work

Since Michie introduced the concept of memoization
[13], the idea of computation reuse had been used mainly
in the context of declarative languages until the early 90’s.
In the past decade, researchers have designed various hard-
ware mechanisms to reuse the intermediate computation re-
sults of previously executed instructions [4, 5, 6, 9, 10, 15,
17]. Richardson applies computation reuse to two applica-
tions by recording the previous computation results in a re-
sult cache [15]. However, he does not specify how to iden-
tify candidates for reuse, and the result cache in his paper is
a special hardware cache. Sodani and Sohi [17] propose an
instruction reuse method. The performance improvement of
instruction level reuse is not shown to be significant, due to
the small reuse granularity [18]. In the block and sub-block
reuse schemes [9, 10], hardware mechanisms are proposed
to exploit computation reuse in a basic block or sub-block.
The reuse granularity on basic block level seems still too
small, and the hardware needs to handle a large number of
basic blocks for computation reuse.

Connors and Hwu propose a hybrid technique [6] which
combines software and hardware for reusing the intermedi-
ate computation results of code regions. Their scheme iden-
tifies the candidate code segments by value profiling for
each instruction. In contrast, our scheme uses the compiler
to select code segments based on value-set profiling. Under
their scheme, the computation results of the reusable code
regions are recorded into hardware buffers during the exe-
cution for potential reuse. Their compiler analysis can iden-
tify large reuse code regions and feed the analysis results
to the hardware through an extended instruction set archi-
tecture. In the design of the hardware buffer, they limit the
buffer size to no more than 16 entries for each code seg-
ment and limit the input/output register array to 8 entries. In
our compiler scheme, there is no such limitation. Since ac-
cessing software hash tables are more time consuming than
hardware buffers, we perform careful cost-benefit analysis
to select reuse candidates. Such analysis is not done in pre-
vious work.

Programs Sources of Inputs Original (s) Computation Reuse (s) Speedup
G721 encode MiBench 9.12 6.77 1.35
G721 decode MiBench 8.60 6.32 1.36

MPEG2 encode Tektronix(table tennis) 175.36 147.47 1.19
MPEG2 decode Tektronix(table tennis) 139.32 94.37 1.48

RASTA ICSI(rasta testsuite 1998) 37.87 31.98 1.18
UNEPIC EPIC web-site(baboon.tif) 7.26 1.71 4.25
GNUGO “-b 9 -r 2” 1485.28 1236.96 1.20

Harmonic Mean 1.43

Table 10. Performance Improvement for Different Input Files (Under O3 optimization)

5. Conclusions

In this paper, we have presented a compiler scheme to
reuse intermediate computation results. Our scheme uses
profiling techniques to collect information on execution fre-
quencies and value-set repetitions of important code seg-
ments. Based on a cost analysis, our scheme chooses code
segments to transform for computation reuse. Our prelimi-
nary experimental results show that, for several Mediabench
programs and the GNU Go game, the compiler scheme can
result in significant performance improvement and energy-
saving on a handheld computing device. The proposed
transformations are best carried out by a compiler or a pro-
gramming tool, because it is quite unnatural to write the pro-
gram in the style of the transformed codes. Our scheme can
be made more sophisticated in various ways. Most impor-
tant of all, a candidate code segment can be a part of a loop
body, a function body, or an IF branch, instead of the en-
tire body. How to identify the most cost-effective part re-
mains our future work.

6. Acknowledgments

This work is sponsored by National Science Founda-
tion through grants CCR-0208760, ACI/ITR-0082834, and
CCR-9975309.

References

[1] GNU Go. http://www.gnu.org/software/gnugo/gnugo.html.
[2] Intel StrongARM SA-1110 Microprocessor Developer’s

Manual. October 2001.
[3] B. Calder, P. Feller, and A. Eustace. Value profiling. Proc.

of the 30th Int. Symp. on Microarchitecture, pages 259–269,
December 1997.

[4] D. Citron and D. Feitelson. Hardware memoization of math-
ematical and trigonometric functions. Technical Report, He-
brew University of Jerusalem, March 2000.

[5] D. Connors, H. Hunter, B. Cheng, and W. Hwu. Hardware
support for dynamic activation of compiler-directed compu-
tation reuse. Proc. of the 9th Int. Conf. on Architecture Sup-

port for Programming Languages and Operating Systems,
November 2000.

[6] D. Connors and W. Hwu. Compiler-directed dynamic com-
putation reuse: Rationale and initial results. Proc. of 32nd
Int. Symp. on Microarchitecture, pages 158–169, November
1999.

[7] M. Das. Unification-based pointer analysis with directional
assignments. Proc. of the 2000 ACM SIGPLAN Conf. on
Programming Language Design and Implementation, pages
35–46, June 2000.

[8] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown. Mibench: A free, commercially representa-
tive embedded benchmark suite. IEEE 4th Annual Workshop
on Workload Characterization, pages 3–14, December 2001.

[9] J. Huang and D. Lilja. Exploiting basic block value locality
with block reuse. In The 5th Int. Symp. on High-Performance
Computer Architecture, January 1999.

[10] J. Huang and D. Lilja. Balancing reuse opportunities and
performance gains with sub-block value reuse. Technical Re-
port, University of Minnesota, February 2002.

[11] B. Jenkins. A hash function for hash table lookup. Dr.
Dobb’s Journal, September 1997.

[12] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia
and communications systems. Proc. of the 30th Int. Symp.
on Microarchitecture, pages 330–335, December 1997.

[13] D. Michie. Memo functions and machine learning. Nature,
218:19–22, April 1968.

[14] H. Pande, W. Landi, and B. Ryder. Interprocedural def-use
associations for c systems with single level pointers. IEEE
Transactions on Software Engineering, 20(5), May 1994.

[15] S. Richardson. Exploiting trivial and redundant computa-
tion. Proc. of the 11th Symp. on Computer Arithmetic, pages
220–227, July 1993.

[16] S. Sastry, R. Bodik, and J. Smith. Characterizing coarse-
grained reuse of computation. 3rd ACM Workshop on Feed-
back Directed and Dynamic Optimization, December 2000.

[17] A. Sodani and G. Sohi. Dynamic instruction reuse. Proc.
of the 24th Int. Symp. on Computer Architecture, pages 194–
205, June 1997.

[18] A. Sodani and G. Sohi. Understanding the differences be-
tween value prediction and instruction reuse. Proc. of the
31th Int. Symp. on Computer Architecture, pages 205–215,
December 1998.

