
Array Privatization for Parallel Execution of Loops

Zhiyuan Li�

Department of Computer Science

University of Minnesota

��� Union St� SE� Minneapolis� Minnesota �����

li�cs�umn�edu

Abstract

In recent experiments� array privatization played a crit�
ical role in successful parallelization of several real pro�
grams� This paper presents compiler algorithms for the
program analysis for this transformation� The paper
also addresses issues in the implementation�

� Introduction

The diversity of parallel architectures makes it di�cult
to write e�cient parallel programs in a machine inde�
pendent language� For a long time� many researchers
have pursued the goal of automatic transformation of
sequential programs into parallel machine code� Un�
fortunately� the result has been unsatisfactory� Many
transformation techniques used in existing compilers do
not prove to be e�ective in practice �EB�	
� mainly be�
cause they handle relatively simple cases� On the other
hand� recent experiments show signi�cant results by
solving more complex cases� using hand�performed new
analyses and transformations �EHJ��	
� �EHLP�	
� A
technique called array privatization� along with other
techniques� improves the performance of all four pro�
grams reported in �EHLP�	
� Tables 	 and � summa�
rize the e�ect of array privatization on those programs�
The �fth column of Table � shows the percentage of
the sequential execution time over the whole program�
of each loop which is made parallel after array pri�
vatization� The percentage indicates the signi�cance
of each loop� For every program except OCEAN� no
improvement would result without array privatization�
We have improved other application programs through
array privatization� although we have yet to compile
the result data to show the e�ect� These programs in�
clude ADM and SPEC�� in the Perfect program suite

�This work is supported by the Graduate Collage of Univer�
sity of Minnesota�

�PER��
 and WHAMS�D �BT��
� a program for struc�
tural analysis�

In this paper� we discuss compiler algorithms for au�
tomatic array privatization� This technique may be
viewed as an extension of scalar privatization which has
been used in parallelizing compilers �ABC���
� �CF��
�
We may call both techniques variable privatization� If
a variable is modi�ed in di�erent iterations of a loop�
writing con�icts result when the iterations are executed
by multiple processors� Variable privatization removes
such con�icts by allocating in each processor a private
storage for the o�ending variable� Parallelism in the
program is increased� Data access time may also be
reduced� since privatized variables can be allocated to
local memories� Of course� the e�ectiveness of privati�
zation is limited by the memory size�

Table �� Speedups before and after
hand transformations on the Alliant

FX��� � vector processors��
Code Before After Array Priv�
MDG 	�	 ��� Yes

OCEAN 	��� ��� Yes
TRACK ���� ��	 Yes
TRFD ���� 	��� Yes

Table �� Loops in which arrays are
privatized speedup is over seq� time��

Prog Loop Routine Loop � of
Label Spdup Seq

TRACK ��� nl�lt ��� ���
��� fptrak ��� ��
��� extend ��� ���

MDG 	��� interf ��� ���
���� poteng ��� ��

TRFD 	�� olda 	��� ���
��� olda 	��� ���

OCEAN ��� ocean ��� ��
��� ocean ��	 ��
��� ocean ��� ��

Privatization is not always valid� If the value of a

	

DO j � �� N DO j � �� N

DO i � �� N DO i � �� N

� A�i��� �r�� A�i� � �w��
A�i� � �w�� � A�i	�� �r��
A�i	�� � �w�� END DO

END DO END DO

END DO

�a� �b�

Figure 	� Examples of SDDs and NSDDs

variable is de�ned in one iteration and used in another�
then the variable cannot be privatized� Privatizable
scalars can easily be identi�ed� If any scalar de�ni�
tion reaches the end of the loop body and any use of
the same scalar is exposed to the beginning of the loop
body� then the de�nition will certainly reach the use
from one iteration to another� which prohibits priva�
tization� However� such a criterion does not apply to
array references� In the simple example in Figure 	a��
w� and w� reach the end of the loop body and r� is
exposed to the beginning of the loop body� However�
r� does not read any value generated in previous iter�
ations of the outer loop� Array A� therefore� can be
privatized in the outer loop� In contrast� A cannot be
privatized in the outer loop in Figure 	b�� because its
values are carried from one iteration to another� From
the examples� it is clear that new criteria are needed
for array privatization�

We organize this paper as follows� In Section �� we
discuss the basic idea and various aspects of array pri�
vatization� We also review the related work� In Section
�� we present algorithms to determine array privatiz�
ability� which is the key to the technique� In Section ��
we present an algorithm for live array analysis which is
used to determine whether copy�out is necessary� We
summarize in Section ��

� Overview and Related Work

Two types of writing con�icts may exist between di�er�
ent iterations of a loop� The �rst type involves a single
de�nition which overwrites the same array elements in
di�erent iterations� The second type involves two dif�
ferent de�nitions� Privatization is suitable for the �rst
type� while renaming is suitable for the second� In Fig�
ure 	a�� the writing con�icts between w� and w� can
be removed by renaming� i�e�� by letting w� write to a
new array� This paper covers privatization only�

The problem of privatization may be divided into
three issues� The �rst is the privatizability of an array
in a loop� The second is the need to copy out the last
de�ned values� The third is the storage allocation for
privatized arrays� We describe these issues separately
in the following�

��� Array privatizability

First� we de�ne the object of privatization�

De�nition If a de�nition of a variable overwrites the
same array elements� in di�erent iterations of a loop L�
we call this de�nition a self dependent de�nition SDD�
in loop L�

In Figure 	a�� both w� and w� are SDDs in the
outer loop� because in every iteration� w� writes the
same elements� A��N�� and w� writes the same ele�
ments� A��N�	�� However� w� and w� are not SDDs
in the inner loop� because they write di�erent elements
in di�erent iterations� Similarly� in Figure 	b�� w� is
an SDD in the outer loop� but not in the inner loop�
SDDs can be recognized by the well�understood analy�
sis of output dependences �Ban��
�

De�nition An SDD w is privatizable in loop L i� the
value generated by w is not used across the iterations
of L�

In Figure 	a�� both w� and w� are privatizable in
the outer loop� In Figure 	b�� w� is not privatizable�
These facts will be explained as our discussion pro�
ceeds�

In a DO loop� we can divide the de�nitions of an ar�
ray into three categories� the non�self dependent de��
nitions NSDDs�� privatizable de�nitions� and nonpri�
vatizable de�nitions� We privatize an array in a DO
loop only if the following criteria are both met�

Criterion A The SDDs of the array are all privatiz�
able in the loop�

Criterion B The SDDs do not overlap the NSDDs in
the loop� �

Breaking the two criteria would make the compiler
analysis substantially more complicated� To break Cri�
terion A� the compiler may privatize the privatizable
de�nitions while leave others unchanged� However� the
compiler will have to identify which de�nitions are pri�
vatizable and which are not� To break Criterion B� the
compiler must be able to handle the situation in which
both a privatizable de�nition and an NSDD may reach
an array use� If either of the criteria is broken� the
compiler has to analyze array reaching de�nitions fully
and exactly� which is extremely time�consuming� On
the other hand� it seems unlikely in practice that a
better performance could result by breaking the two
criteria� In the experiment reported in �EHLP�	
� the
privatized arrays meet both the above criteria�

To check whether an array A meets Criterion B in a
DO loop� we intersect the set of the A elements de�ned
by SDDs and the set of the A elements de�ned by NS�
DDs� This is a typical data dependence test problem

�They may overlap in an outer loop�

�

and has been studied extensively �Ban��
� Hence� we
need to examine Criterion A only�

Once the privatizable arrays are identi�ed� the com�
piler can prune the data dependence graph� All loop
carried dependences whose sources are SDDs can be
eliminated� Of course� other transformations such as
scalar privatization can also contribute to the graph
pruning� Based on the new dependence graph� the com�
piler decides which loops should be executed in parallel�
Variables are privatized in parallel loops only�

��� The copy�out issue

If any self dependent de�nitions SDDs� in a loop
reach the array uses outside the loop� then the last
values written by the SDDs must be copied out� When
a processor executes a particular iteration� it needs to
determine which array elements should be copied out�
Figure � shows simple examples� In each example� A is
privatizable in the outer loop according to Criteria A
and B� Copy�out is necessary in a�� but is unnecessary
in b� because the SDDs are killed in the following loop
by an assignment to Ak�� For program TRFD cf�
Table ��� two privatized arrays are copied out from each
of the two listed loops� For other programs in Table ��
copy�out is unnecessary either because the privatized
arrays are not referenced outside the loops� or because
the de�nitions are killed before reaching any uses�

De�nition The last de�ning iteration LDI� of an
array element is the iteration in which the element is
last de�ned in the loop�

IF statements in a loop tend to make it unclear which
iteration is the last de�ning iteration for a particular
arary element� In this case� a processor cannot deter�
mine independently� i�e� without communicating with
others� whether the current iteration is the LDI� We
say that� in this case� the LDI is independently unde�

terminable� The LDIs in Figures �a� and �b� are in�
dependently� and easily� determinable� For every A el�
ement� the LDI is i � N � LDIs of the privatized arrays
in program TRFD cf� Table �� are also independently�
and easily� determinable� In Figure �c�� however� the
LDIs are independently undeterminable� In this case�
we do not privatize the array� In our experience so far�
the LDIs are independently determinable whenever we
need to copy out� However� it is unclear whether this
is generally true in practice�

To summarize� we handle the copy�out issue as fol�
lows� First� the compiler performs a fast live array

analysis to see whether the SDDs in a loop reach any
outside use� If no SDDs of array A reach any out�
side use� then no copy�out is necessary for A and we
mark A as a candidate for privatization� Otherwise� we
examine whether the LDIs are independently undeter�

DO i � �� N DO i � �� N DO i � �� N

DO j � �� M DO j � �� M DO j � �� N

A�j� � A�j� � IF �� THEN

� A�j� � A�j� A�j� �

END DO END DO � A�j�

END DO END DO END IF

END DO

DO k �
� M�� DO k � �� M END DO

� A�k� A�k� �

END DO � A�k�

END DO

�a� �b� �c�

Figure �� Copy�out and LDIs

minable� If they are� we do not privatize A� If they
are not� then we mark A as a candidate for privatiza�
tion� The copy�out code will be described in the next
subsection� The algorithms for the live array analysis
will be brie�y discussed in Section �� Reference �Li��

discusses algorithms for determining LDIs�

��� Storage allocation

The storages are allocated as follows� For each par�
allel loop� the compiler checks to see whether it imme�
diately contains any self dependent de�nitions SDDs�
of a candidate for privatization� If it does� then in each
processor that participates in executing the loop� the
compiler allocates a private storage for each of such
candidates� This materializes the array privatization�
The storage will be reclaimed as soon as the loop is
completed�� Note that sometimes the SDDs in a loop
modify a part of an array only� In these cases� it suf�
�ces to allocate a private storage just for that part of
the array�

In all programs listed in Table �� the privatized ar�
rays are privatizable at one loop level only� Given a
perfect nest of loops that have no intervening state�
ments between the loop headers or the loop ends� it
always su�ces to privatize the array in the innermost
loop in which the array is privatizable� However� if
a loop nest is imperfect and an array is privatizable in
more than one loop� then the array should be privatized
in more than one loop� It is clear that a privatizable
SDD should write into the private storage allocated to
the innermost enclosing loop in which the array is pri�
vatized� We call this loop the home loop or simply the
home of the SDD� If the array of an SDD is not priva�
tized in any enclosing loop� then the SDD should write
into the storage for the original array� In this case�
we say the home of the SDD is the whole scope of the
original array� say� a subroutine� For an array de�nition
which is not an SDD in any loop� the home is also the
scope of the original array� The hierarchy among the

�

homes for the same array can be represented by a tree
whose root is the scope of the original array� In the pro�
grams in Table �� all privatized SDDs have one home
only� Nonetheless� in program SPEC�� in the Perfect
code suite �PER��
� some SDDs have two homes� one
of which being the scope of the original array�

For each array use� the compiler must determine the
storage from which it reads� This depends on which ar�
ray elements are used� The compiler locates the nearest
home that satis�es the following� 	� the home contains
the array use� and �� the used element is de�ned by
SDDs in that home� In other words� the used element
should not be upward exposed de�ned in Section �� in
the home�

Copy�out� when necessary� is performed as follows�
When a processor executes a loop iteration� it checks
to see whether the iteration is the last de�ning iteration
of some privatized array elements that must be copied
out� The processor writes these elements into the stor�
age allocated to the home� H� at the next upper level�
If H is a DO loop and there exist statements outside
H which use the copied elements� then the processor
which executes the last iteration of H is responsible for
copying the elements all the way up to the parent ofH�
This process continues until all statements that use the
copied elements are served� Copy�out in such �relay�
style simpli�es the analysis of reaching de�nitions� In
our experience so far� e�g� in program TRFD Table
��� only one step of copy�out is necessary�

We use examples Figure �� to show the code before
and after array privatization� To make them easy to
understand� we present the examples in a self�evident
pseudo parallel language� The keyword DOALL indicates
a parallel loop and the keyword private indicates the
new name for a privatized array� In example a�� the
inner loop is the only home loop� The array use reads
most elements generated within the loop� But it also
reads an element from outside the loops� Here� we sim�
ply copy in that element A	�� In example b�� there
are two home loops� An array element is copied from
one home to the other�

Implementation of the mechanism described in this
subsection is quite straightforward� Therefore� we do
not provide algorithms here to formalize the mecha�
nism� Analysis of array privatizability� on the other
hand� is essential but not straightforward� Hence� we
present its algorithms in Section ��

��� Related work

Literature on data dependence analysis abounds and
is well�known� Data dependence analysis� in the com�
monly understood terms� are concerned about inter�
section of array regions� which does not support array

A��� � A��� �

DO i � �� N DOALL i � �� N

DO j � �� N DOALL j � �� N

DO k �
� N private A����N�

A�k� � A���� � A���

� A�k��� DO k �
� N

END DO A��k� �

END DO � A��k���

END DO END DO

END DOALL

END DOALL

�a�

DO i � �� N DOALL i � �� N

DO j � �� N private A����N�

DO k � �� N DOALL j � �� N

A�k� � private A
���N�

� A�k� DO k � �� N

END DO A
�k� �

END DO � A
�k�

END DO

IF�j�N� THEN

A���� � A
��� copy�out

END DOALL

DO h �
� N DO h �
� N

A�h� � A��h� �

� A�h��� � A��h���

END DO END DO

END DO END DOALL

�b�

Figure �� Examples of array privatization

privatization� Nonetheless� we have shown that the
results in data dependence analysis are useful for iden�
ti�cation of self dependent de�nitions and for veri��
cation of Criterion B� Our work has been inspired by
recent related work� Feautrier studies the technique of
array expansion �Fea��
� His method expands arrays
to higher dimensions to allow a program transformed
into a single assignment form� He considers programs
which have DO loops� assignment statements and con�
ditional assignment statements� Gross and Steenkiste
devise a data�ow analysis on arrays �GS��
� Their al�
gorithm examines whether a de�nition reaches a use in
the same loop iteration and whether it reaches the end
of the loop body�

Our work focuses on the information required to de�
termine array privatizability� The essential information
is whether an array reference can possibly read a value
from previous iterations� suppose the loop is executed
in sequential� This information is not provided by ei�
ther the traditional data dependence analysis or recent
related works� To make it more general� we consider
arbitrary �ow graphs including cases in which a DO
loop has multiple exits� Interestingly� in our scheme� if

�

a program�s �ow graph is reducible� we do not need to
propagate information over any cycles�

� Determination of Array Privatizabil�
ity

��� An assumption on IF conditions

Most data �ow analyses are insensitive to the exact
content of an IF condition� Unfortunately� for sub�
routine INTERF of MDG and the main program of
OCEAN cf� Table ��� array privatizability cannot be
recognized without considering the exact contents of
IF conditions� In the case of MDG� the conditions are
in the form of �if LOC � 	 or LOC�NW�	 � MEM�
SIZE or NW � 	 ��� which involves scalars only� In
the case of OCEAN� the conditions are in the form of
�if RSk� � CUT� ��� which involves arrays as well�
Compiler mechanisms that deal with scalar relations
do exist �LT��
� �TIF��
� But mechanisms dealing with
arrays are yet to be devised� Nonetheless� to separate
two di�erent issues� we do not examine the contents of
IF conditions in this paper� As a result� we must make
the assumption that one branch decision will not a�ect
another�

The above assumption makes our computation of the
upward exposed array elements de�ned below� conser�
vative� It also implies that nonprivatizable de�nitions
exist in loop L if and only if an array element is de�ned
by self dependent de�nitions SDDs� in one iteration
and is upward exposed in a later iteration� which is a
conservative statement�

��� Upward exposed array elements

De�nition If an array element is always de�ned be�
fore used in iteration i� we say the element is covered

in iteration i� Otherwise� we say the element is upward
exposed in iteration i�

In order to determine whether nonprivatizable de�ni�
tions exist� we introduce the following notations� Con�
sider a nest of DO loops� L�� L�� � � � � Ln� where L� is
the outermost� L� is nested in L�� and so on� Suppose
the loop index variables are I�� I�� � � � � In� respectively�
Without loss of generality� we assume index steps of
	�� We represent an iteration of Ld� 	 � d � n� by an
index vector hi�� i�� � � � � idi such that I� � i�� I� � i��
and Id � id� For a given array A� let UEhi��i������idi

denote the set of all upward exposed elements in iter�
ation hi�� i�� � � � � idi and let Dhi��i������idi denote the set
of all elements which may be written in hi�� i�� � � � � idi
by SDDs� The following formalizes our condition for
the existence of nonprivatizable de�nitions�

Claim � Loop Ld has nonprivatizable de�nitions of A

i�� for some iteration hi�� i�� � � � � idi� the intersection of

UEhi��i������idi and
S
ld�k�id��

Dhi��i������ki is nonempty�

where ld is the lower bound of Ld and id � ld�

Consider the outer loops in Figure 	� In a�� A�� is the
upward exposed element in every iteration� but A�� is
not de�ned in any iterations� because Dhji is A��N�	��
Therefore� the de�nitions of A are privatizable in a��
In b��Dhji is A��N�� A��N� are both upward exposed
and de�ned in every iteration� Therefore� w� is not
privatizable�

The cover set de�ned below is instrumental in com�
puting the set of upward exposed elements� Suppose
statement S is nested in L�� L�� � � � � Ln� Let S� de�
note the instance of S in iteration � � hi�� i�� � � � � ini
and Shi� �i������idi denote all instances of S in iteration
hi�� i�� � � � � idi� We may also write Shi��i������idi as S�jd �
where �jd stands for the �rst d elements of � �

De�nition For array A� the cover set of S� at loop

level d is the set of the A elements that are guaranteed
to be de�ned within iteration �jd before the execution
of S�� CS

�
jd denotes this cover set�

Take the examples in Figure 	� where we suppose S
is the statement that issues r� and � stands for hj� ii�
In a� and b�� the cover set of S� at loop level 	
is A��i�� Note that a cover set� like other types of
sets in this paper� often has loop index variables as its
parameters� If we assign di�erent values to the index
variables� we obtain di�erent sets of array elements�
Set representation is brie�y discussed in �Li��
�

Let US
�

denote the array elements used by S�� In
iteration �jd� the set of the upward exposed elements
used by S� are clearly US

�
� CS

�
jd� The set of the

upward exposed elements used by all instances of S
in iteration hi�� i�� � � � � idi is the union of US

�
� CS

�
jd

over all � such that �jd � hi�� i�� � � � � idi� Finally� as
claimed below� we can determine the set of the upward
exposed elements in iteration hi�� i�� � � � � idi�

Claim � UEhi��i������idi equals to the union of US
�
�

CS
�
jd over all � such that �jd � hi�� i�� � � � � idi and

over all S that make use of array A in loop Ld�

We illustrate this claim through Figure 	� Let S be the
statement which issues r� and let � be hj� ii�

	a
 US
�
j� is Ai�	�� US

�
�CS

�
j� is Ai�	� for i � � and

is empty for other i� Hence� UEhji is A���

	b
 US
�

is Ai�	�� CS
�
j� is A��i�� Hence� US

�
� CS

�
j�

is Ai�	�� UEhji is fAi�	� j � � i � Ng �
A��N�	��

��� Computing the cover sets

In this subsection� we discuss how the control �ows
a�ect the cover sets� We �rst consider DO loops that
have no exits due to GOTO�

�

We build the control �ow graphs in a hierarchical
fashion� Consider again the DO loops L�� L�� � � � � Ln�
We assume that Ld may contain DO loops in addition
to Ld��� d � 	� �� � � �� n � 	� For the loop body of Ld�
we construct a condensed control �ow graph� Gd� Each
DO loop� including Ld��� that is immediately nested
in Ld is represented by a condensed node in Gd� We
denote the condensed nodes by L���� L���� � � � � L�m��
The remaining statements in Ld are grouped into basic
blocks in the same way as in the conventional control
�ow graphs� Each basic block is represented by a regu�
lar node in Gd� A condensed node is di�erent from an
interval �All��
� �Coc��
 in that only an indexed DO
loop may be condensed� A loop of any other type is
decomposed into basic blocks and is represented by a
number of regular nodes�

It is convenient to index the instances of a basic
block� B� or a DO loop� L�i�� in Ld� Let Bhi��i������idi

denote the instances of basic block B in iteration
hi�� i�� � � � � idi�

� Similarly� let L
�i�
hi��i������idi

denote the

instances of DO loop L�i� in iteration hi�� i�� � � � � idi�
In the following� unless we state otherwise� we use the
symbol P to denote either a basic block or a DO loop
L�i��

De�nition For a given array A� the incoming�cover�

set of Phi��i������idi in Gd� denoted by C INP
hi��i������idi

�
is the set of the A elements guaranteed to have been
de�ned in iteration hi�� i�� � � � � idi before P is entered�
The outgoing�cover�set of Phi��i������idi in Gd� denoted
by C OUTP

hi��i������idi
� is the set of the A elements guar�

anteed to have been de�ned in iteration hi�� i�� � � � � idi
before the exit of P �

De�nition The must�modify set of Phi��i������idi� de�
noted by MP

hi��i������idi
� is the set of the A elements de�

�ned in Phi��i������idi no matter what control path is
taken within Phi��i������idi� Similarly� MS

hi��i������idi
de�

notes the set of the A elements de�ned in Shi��i������idi�
an instance of statement S�

We now establish the basic �ow equations regarding
the sets de�ned above� First of all� we have

Eq�� C OUTP
hi��i������idi

�

C INP
hi��i������idi

�MP
hi��i������idi

�

Eq�� Suppose P�� P�� � � �� Pp are the prede�
cessors of P in Gd� C INP

hi� �i������idi
equals

T
i���pC OUT

Pi
hi��i������idi

�

Eq�� C INT
hi��i������idi

� C OUTT
hi��i������idi

is empty�
where T is the starting node in Ld�

�In the presence of while or goto loops� an instance de�ned
as such may repeat at run time� This� however� does not disturb
our discussion�

Now� suppose a basic block B contains s statements
which modify A elements� We list these statements by
their textual order� S�� S�� � � � � Ss� By de�nitions� we
have

Eq�� MB
hi��i������idi

�
S
i���pM

Si
hi� �i������idi

�

Eq�� For any statement S in B which textually
precedes S�� CS

hi��i������idi
jd � C

S�
hi��i������idi

jd �

C INB
hi� �i������idi

�

Eq�� For any statement S between Si and Si���

� � i � s � 	� CS
hi��i������idi

jd � C
Si��
hi��i������idi

jd �

C
Si
hi��i������idi

jd �M
Si
hi��i������idi

�

Eq� C OUTP
hi��i������idi

� CSs
hi��i������idi

�MSs
hi��i������idi

�

Eq�� C INP
hi� �i������idi

� C OUTP
hi��i������idi

�

Under the present assumption that a DO loop has
one exit only� we insert a single exit node� X� in
Ld� C OUTX

hi��i������idi
� C INX

hi��i������idi
is the set of

the A elements that must be de�ned within iteration
hi�� i�� � � � � idi�

De�nition The past�modify set of loop Ld in itera�
tion hi�� i�� � � � � idi� denoted by MLd

hi� �i������idi
� is the set of

A elements de�ned in the iterations from hi�� i�� � � � � ldi
through hi�� i�� � � � � id� 	i� This set is empty if id � ld�

Claim � In DO loops L�� L�� � � � � Ln� the past�modify

sets are determined by the equation

 MLd

hi� �i������idi
�

�

ld�Id�id��

C OUT
Xd

hi��i������id���Idi
� 	�

The must�modify sets are determined by the equation

M
Ld

hi��i������id��i
�

�

ld�Id�ud

C OUT
Xd

hi��i������id���Idi
� ��

where ud is the upper bound of Ld� The cover sets of

statements are determined by the equation

CS
�
jd � CS

�
jn � C IN

Ld��

hi� �i������idi
� M

Ld��

hi� �i������id��i
�

�C IN
Ld��

hi� �i������id��i
� M

Ld��

hi� �i������id��i
�

� � � �

�C IN
Ln

hi� �i������in��i
� MLn

hi��i������ini
��

If a DO loop Ld has exits due to GOTO� the above
equations need modi�cation� First of all� we insert an
exit node in Gd for each exit� The exit for the normal
termination of Ld is denoted by X

���
d � while the other

exits are denoted by X
���
d

� X���
d

� and so on� In graph
Gd�� at the upper level� suppose Ld is represented by
a condensed node P � We make a copy of P in Gd�� for

�

every GOTO exit in Ld� We draw an edge from each
predecessor of P to each copy of P � Suppose an exit
jumps to a statement in Ld��� That statement must
be the header in a node� Q� in Gd��� We draw an edge
from each copy of P to the corresponding target Q� If
an exit of Ld jumps outside Ld��� then we treat the
corresponding copy of P as an exit node in Gd�� and
repeat the above process on the new exit node�

For GOTO exits� Claim � should be modi�ed as fol�
lows� The past�modify set is computed for X��� only�
i�e�

 MLd

hi��i������idi
�

�

ld�Id�id��

C OUT
X

���
d

hi��i������id���Idi
� ��

The must�modify set for the original P corresponding
to the normal exit� is computed in the same way as in
Claim �� Suppose the copies of P are denoted by P �j��

	 � j � m� corresponding to GOTO exits X
�j�
d � The

must�modify set of each copy is computed by

MP �j�

hi��i������id��i
� C OUT

X
�j�
d

hi��i������id�� �ldi
� ��

In the above� we assumed conservatively that a GOTO
exit may be taken as early as in the �rst iteration�
This may not be true in some cases� However� since
our analysis is insensitive to the exact content of an IF
condition� the assumption is necessary�

After the above treatment� GOTO exits no longer
a�ect our further discussion except in trivial details�
For convenience� we will assume in the rest of the paper
that GOTO exits do not exist�

Based on the equations developed so far� we present
in Figure � the main algorithm for determining the ex�
istence of nonprivatizable de�nitions� A compiler may
apply the algorithm to a DO loop at any loop level� The
algorithm examines array privatizability for that loop
as well as the inner loops immediately nested or other�
wise�� We assume that all subroutine calls are in�lined
so that no interprocedural propagation is necessary�

��� Traversal of the �ow graphs

In this subsection� we discuss how to propagate cover
sets through the �ow graphs� Certain properties of
cover sets allow us to simplify the propagation con�
siderably� Most noticeably� we may break cycles in a
condensed control �ow graph before its traversal�

De�nition If hP�� P�i is an edge in a control �ow
graph G such that P� dominates P�� hP�� P�i is called
a back edge in G �ASU��
�

Claim � If P� dominates P� in a condensed control

�ow graph G of the body of a DO loop at level d� then

C OUTP�
hi��i������idi

� C INP�
hi� �i������idi

�

Algorithm �

Given	 	� DO loop L and all its inner loops immedi�
ately nested or otherwise�� Let L denote the set
of these loops� �� The index variables and the
bounds of the outer loops of L� if any�

Output	 For each loop in L� an answer to the question
whether there exist nonprivatizable de�nitions of
A�

	� Call Compute�Block�SetsL� Figure �� which re�
cursively constructs the incoming�cover�sets� the
outgoing�cover�sets� the past�modify sets and the
must�modify sets in L and the inner loops�

�� for each DO loop L� in L� do

a� for each non�DO� statement S within L�� do

Compute the cover set CS
�
jd according to

Claim �� where � � hi�� i�� � � � � ini is the
index vector of the DO loops enclosing S
and d is the loop level of L��

b� Compute UEhi��i������idi� the set of the upward
exposed A elements in Ld� as prescribed in
Claim ��

c� Determine whether nonprivatizable A de�ni�
tions exist in Ld as prescribed in Claim 	�

Figure �� The main algorithm

Claim � If hP�� P�i is a back edge in G� then

C INP�
hi� �i������idi

remains the same if hP�� P�i is deleted

from G�

Our traversal algorithm Figure �� �rst prunes G ac�
cording to Claim � and then propagates cover sets
through the pruned graph� If G is reducible �ASU��
�
the pruned graph will be acyclic� in which each node
needs to be visited only once� If G is irreducible� the
traversal algorithm partitions the pruned graph into
maximum strong components MSC� and then visits
the MSCs in a topsort order� The nodes in each MSC�
!� are traversed iteratively� Each node will be visited
"!� times� For a sparsely connected MSC� many of
these visits could be avoided� However� we will not
pursue the details�

� The Live Array Analysis

As mentioned in Section �� live array analysis is use�
ful in dealing with the copy�out problem� The purpose
of the analysis is to determine whether the self depen�
dent de�nitions SDDs� in a loop are live outside the
loop� i�e� whether they reach any uses outside the loop�

�

Procedure Compute�Block�SetsL�

Parameters	 L� a DO loop nested in L�� L�� � � �� Ld��
whose index variables are i�� i�� � � �� ld��� respec�
tively� The index variable of L is id�

	� For each DO loop� L�� immediately nested in L�
call Compute�Block�SetsL���

�� Construct the condensed control �ow graph� G� for
the loop body of L�

�� Initialize C INT
hi��i������idi

� C OUTT
hi��i������idi

to
empty sets� where T is the start node in G�

�� Traverse G according to Algorithm � in the
next subsection� and compute C INP

hi� �i������idi
and

C OUTP
hi��i������idi

for every node P in G�

�� Compute the past�modify set ML
hi��i������idi

and the

must�modify set ML
hi��i������id��i

according to Claim
��

Figure �� Visit loops bottom�up

The merit of such information is twofolds� First� if no
SDDs are live� then we are not concerned about the
last de�ning de�nitions� because no copy�out is neces�
sary� Second� if we can limit the copied�out elements to
a minimum� run time overhead will be reduced� How�
ever� we want to avoid a full analysis of reaching de�ni�
tions� Recall that the information we need is quite lim�
ited� We only need to know whether SDDs reach any

outside uses and do not need to identify the reached
uses� Moreover� we perform the live array analysis for
the privatizable arrays only� We describe one scheme
for the live array analysis in this paper� Two other
schemes are described in �Li��
�

The UEE scheme

Consider privatizable SDDs of array A in loop Ld��
at loop level d�	� Ld�� is represented by a condensed
node in Gd� where Gd is the condensed �ow graph at
the d�th level as de�ned in Section �� We use G� to de�
note the condensed control �ow graph whose condensed
nodes include all outermost DO loops in the program�
G� is thus the �ow graph at the highest level� Let

SM
Ld��

hi��i������idi
denote

S
ld�k�ud

Dhi� �i������id�ki which is

the set of A elements de�ned by SDDs in Ld���

In the UEE scheme� we examine the set of the up�
ward exposed elements of any condensed node L in Gd�
which is denoted by UEEL

hi��i������idi
� The set is deter�

mined by the following equation�

UEEL
hi��i������idi

�

Algorithm

Given	 	� A DO loop� L� at level d� �� The con�
densed �ow graph� G� of the loop body� �� The
dominance relations in G�

Output	 The incoming�cover�set and the outgoing�
cover�set of each node in G�

	� Delete all back edges fromG and obtain the pruned
graph� G��

�� For each node in G�� compute its must�modify set�

�� Find the maximum strong components MSCs� in
G� and construct the reduced graph G��� which is
acyclic� Each node in G�� represents an MSC in
G��

�� Traverse G�� in a topsort order� for each node
visited� do

a� If the node corresponds to a single node P in
G�� then compute the incoming�cover�set and
the outgoing�cover�set of P according to the
basic �ow equations Eq	 and Eq��

b� If the node corresponds to an MSC� !� of
several nodes in G�� then call procedure
Iterate!��

Figure �� The traversal algorithm

�

ld���k�ud��

 ML
hi��i������id�ki

�UEhi��i������id�ki����

where ML
hi� �i������id�ki

is the past�modify set of L as de�
termined in Claim �� and UEhi��i������id�ki is the set of
the upward exposed elements in the loop body of L�
as determined in Claim �� Note that these sets are al�
ready computed before the live array analysis� We also
compute UEEB

hi��i������idi
� the upward exposed elements

in each regular node B in Gd� which is straightforward�

We now compute the UEE set for every node in
Gk that is reachable from Lk��� where � � k � d�

We then intersect the set SM
Ld��

hi��i������idi
� de�ned above�

with each of the UEE sets� If every intersection is
empty� then we are sure that no copy�out is necessary�
Otherwise� we conservatively assume that copy�out is
necessary�

The motivation behind the UEE scheme is a hypoth�
esis that if the SDDs in a DO loop do not reach any
outside uses� then the array either disappears outside
the loop or the array� as a temporary� is reinitialized
in di�erent places� In the latter case� any use of the
array outside the loop will likely read a value that is
�locally� de�ned� The scheme is conservative because

�

Procedure Iterate!�

for each P in !� do �# initialize the cover sets #�

� Suppose P�� P�� � � �� Pm are the predecessors
of P outside !� initialize C INP

hi��i������idi
to

T
j���mC OUT

Pj
hi��i������idi

�

� If P has no predecessors outside !� then ini�
tialize C INP

hi� �i������idi
to �� which is the set

of all A elements�

� Initialize C OUTP
hi��i������idi

to

C INP
hi��i������idi

�MP
hi��i������idi

�

for each P in !� do �# propagate the cover sets #�

	� SnowBall�P
 �� C OUTP
hi��i������idi

�

�� Givers �� fPg�

�� Idle �� fAll nodes in ! but Pg�

�� while Idle is nonempty� do

for each Q in Givers� do
a� Receivers �� f R j R � Idle� hQ�Ri

is an edge in !g�

b� Idle �� Idle �Receivers�

c� for each node R in Receivers� do
if C INR

hi��i������idi
	
 SnowBall�Q

then C INR
hi� �i������idi

��

C INR
hi��i������idi

� SnowBall�Q
�

SnowBall�R
 �� C OUTR
hi��i������idi

�� C INR
hi��i������idi

�MR
hi��i������idi

�

Givers �� Receivers�

Figure �� Traversal of an MSC

even if the intersection of SM and an UEE of node
P � is nonempty� it is possible that the elements in the
intersection are killed in every path from Ld�� to P �

The UEE scheme works well with the programs in
Table �� In TRACK and MDG� the privatizable arrays
are local variables of subroutines� Within each subrou�
tine� there are no references to the privatizable arrays
beyond the loop nest� In OCEAN� a privatizable ar�
ray CWORK is used in all three loops listed in Table
�� CWORK is also passed to a few subroutines called
within those loops� However� CWORK is not upward
exposed to the outside of any of those loops� The UEE
scheme will hence report the de�nitions of CWORK as
dead� Therefore� no copy�out is necessary� In TRFD�
two privatizable arrays� XIJ and XRSIQ� are subrou�
tine parameters� The uses of the two arrays outside the
subroutines involve array subscripts that have compli�
cated symbolic terms� The di�cult subscripts� not the

UEE scheme� force a conservative decision to copy out
the two privatized arrays�

� Summary

We have presented compiler algorithms for array pri�
vatization� a program transformation technique that is
critical in the successful program parallelization in re�
cent experiments� Where appropriate� we also report
the behavior in real programs that we have examined�
Although the analysis for array privatization is more
complicated than commonly known data dependence
analysis� the signi�cant performance improvement it
brings seems to well justify the additional compile time�

A review of the algorithms in Section � yields the
following time complexity analysis� The time con�
sumed by the algorithms can be divided into two parts�
The �rst part is spent on constructing the condensed
�ow graphs and partitioning the graphs into maximum
strong components� This part is proportional to the
number of basic blocks in the program� The second
part is spent on performing symbolic set operations to
derive the cover sets and the modify sets� For a pro�
gram whose �ow graph is reducible� the number of such
operations is proportional to the number of statements
multiplied by the maximum number of loop levels� as�
suming the number of predecessors of each node in the
�ow graph is bounded by a small constant� If a program
has components whose �ow graphs are irreducible� an
extremely rare case� then the second part is further
multiplied by the maximum number of graph nodes in
such components� The time for each symbolic set op�
eration depends on the complexity of array references�
Set representations are discussed in �Li��
� Due to lack
of space� we do not explore further� In the loops listed
in Table �� array references are quite simple� Set opera�
tions are therefore quite simple� However� the compiler
does need machineries that can manipulate symbolic
expressions in the subscripts� Interprocedural analysis
is also often required�

We summarize the practical aspects in array priva�
tization as follows� 	� The UEE algorithm in Sec�
tion � seems adequate for live array analysis in prac�
tice� �� The storage allocation scheme in Section � is
more than what we need for the programs examined
so far� because in practice� we have found privatizable
arrays at one loop level only� �� The last de�ning iter�
ations are easy to determine in our experience� �� The
�ow graphs of the loops encountered are all reducible�
Therefore� Procedure Iterate cf� Figure �� may be
unnecessary� �� The set computations described in
Section � seem adequate� Unioning and intersection of
the sets do occur over control paths� Further� array
de�nitions and uses may interleave in the statements�
Therefore� a simple summary of the references over a

�

whole loop is insu�cient� �� The privatizable arrays
range from one�dimensional to three�dimensional� and
the array subscripts may be constants or may contain
loop indices and other symbolic terms� �� We do not
consider the exact contents of IF conditions here� But
in at least two programs� we have found the contents
important�

We are currently building an interprocedural ana�
lyzer to experiment on aggressive transformations� in�
cluding array privatization� We adopt a hierarchical
approach to dealing with complexity of data �ows in
large programs� A similar approach is proposed by
Rosen in �Ros��
 for scalar analysis�� This approach
takes advantage of structures in high level languages�
which makes data �ow analysis and dependence anal�
ysis e�cient� Array privatization �ts naturally in this
approach� because a condensed node is just one exam�
ple of using structures� The algorithms presented here
will be tested in our experimental compiler� Many ef�
�ciency vs� precision issues raised in this paper will be
explored through experiments�

� Acknowledgement

The author is grateful to his former compiler group
colleagues at CSRD� Rudy Eigenman� Jay Hoe�inger�
and Dave Padua� The group performed hand analysis
and transformation on several programs� which led to
the cited paper �EHLP�	
 and eventually motivated the
author to pursue the study in this paper� The practi�
cal cases cited here constitute only a small part in that
tremendous e�ort� The author takes the sole respon�
sibility for any potential errors in the description of
those cases� The author also thanks the reviewers who
suggested to include practical cases in this paper�

References

�ABC���� F� Allen� M� Burke� R� Cytron� J� Ferrante�
W� Hsieh� and V� Sarkar� A framework for deter�
mining useful parallelism� In Proc� of the ����

ACM Int�l Conf� on Supercomputing� pages ��	

���� July ����

�All	�� F� E� Allen� Control �ow analysis� ACM SIG�

PLAN Notices� ��	���
�� �	��

�ASU��� A�V� Aho� R� Sethi� and J�D� Ullman� Com�

pilers� Principles	 Techniques	 and Tools�
Addison�Wesley� Reading� Mass�� ����

�Ban��� U� Banerjee� Dependence Analysis for Super�

computing� Kluwer Academic Publishers� New
York� ����

�BT��� T� Belytschko and C� S� Tsay� Whamse� A
program for three�dimensional nonlinear nonlin�
ear structural dynamics� Tech� Rept� No� NP�
����� Dept� of Civil Engin�� Northwestern Univ�
Evanston� IL� Feb� ����

�CF�	� R� Cytron and J� Ferrante� What�s in a name�
or the value of renaming for parallelism detec�
tion and storage allocation� In Proc� of the ���

Int�l Conf� on Parallel Processing� pages �
�	�
August ��	�

�Coc	�� J� Cocke� Global common subexpression elim�
ination� ACM SIGPLAN Notices� ��	����
���
�	��

�EB�� R� Eigenmann and W� Blume� An e�ectiveness
study of parallelizing compiler techniques� In
Proc� of the Int�l Conf� on Parallel Processing�
August ���

�EHJ��� R� Eigenmann� J� Hoe�inger� G� Jaxon� Z� Li�
and D� Padua� Restructuring fortran programs
for cedar� In Proc� of the ���� Int�l Conf� on

Parallel Processing� August ���

�EHLP�� R� Eigenmann� J� Hoe�inger� Z� Li� and
D� Padua� Experience in the automatic paral�
lelization of four perfect�benchmark programs�
In Proc� of the ��th Workshop on Languages and

Compilers for Parallel Computing� also available
as CSRD Tech� Rept No� ����� Univ� of Illinois
at Urbana�Champaign� August ���

�Fea��� P Feautrier� Array expansion� In Proc� of the

���� ACM Int�l Conf� on Supercomputing� pages
��
���� July ����

�GS�� T� Gross and P Steenkiste� Structured data�ow
analysis for arrays and its use in an optimizing
compiler� Software � Practice and Experience�
���������
���� February ���

�Li�� Z� Li� Array privatization� A loop transforma�
tion for parallel execution� Tech� Rept� No� ����
Dept� of Computer Science� Univ� of Minnesota�
April ���

�LT��� A� Lichnewsky and F� Thomasset� Introduc�
ing symbolic problem solving techniques in the
dependence testing phases of a vectorizer� In
Proc� of the ���� Int�l Conf� on Supercomput�

ing� pages ��
���� July ����

�PER�� M� berry et al� the PERFECT club benchmarks�
E�ective performance evaluation of supercom�
puters� International Journal of Supercomput�

ing Applications� ������
��� ���

�Ros		� B� K� Rosen� High�level data �ow analysis�
Communication of the ACM� �������	��
	���
�		�

�TIF��� R� Triolet� F� Irigoin� and P Feautrier� Direct
parallelization of CALL statements� In Proc�

of SIGPLAN �� Symp� Compiler Construction�
pages �	�
���� July ����

	�

