Array Privatization for Parallel Execution of Loops

Zhiyuan Li*
Department of Computer Science
University of Minnesota

200 Union St. SE, Minneapolis, Minnesota 55455

li@cs.umn.edu

Abstract

In recent experiments, array privatization played a crit-
ical role in successful parallelization of several real pro-
grams. This paper presents compiler algorithms for the
program analysis for this transformation. The paper
also addresses issues in the implementation.

1 Introduction

The diversity of parallel architectures makes it difficult
to write efficient parallel programs in a machine inde-
pendent language. For a long time, many researchers
have pursued the goal of automatic transformation of
sequential programs into parallel machine code. Un-
fortunately, the result has been unsatisfactory. Many
transformation techniques used in existing compilers do
not prove to be effective in practice [EB91], mainly be-
cause they handle relatively simple cases. On the other
hand, recent experiments show significant results by
solving more complex cases, using hand-performed new
analyses and transformations [EHJT91], [EHLP91]. A
technique called array privatization, along with other
techniques, improves the performance of all four pro-
grams reported in [EHLP91]. Tables 1 and 2 summa-
rize the effect of array privatization on those programs.
The fifth column of Table 2 shows the percentage of
the sequential execution time (over the whole program)
of each loop which is made parallel after array pri-
vatization. The percentage indicates the significance
of each loop. For every program except OCEAN, no
improvement would result without array privatization.
We have improved other application programs through
array privatization, although we have yet to compile
the result data to show the effect. These programs in-
clude ADM and SPECT77 in the Perfect program suite

*This work is supported by the Graduate Collage of Univer-
sity of Minnesota.

[PER89] and WHAMS3D [BT82], a program for struc-

tural analysis.

In this paper, we discuss compiler algorithms for au-
tomatic array privatization. This technique may be
viewed as an extension of scalar privatization which has
been used in parallelizing compilers [ABC*88], [CF87].
We may call both techniques variable privatization. If
a variable is modified in different iterations of a loop,
writing conflicts result when the iterations are executed
by multiple processors. Variable privatization removes
such conflicts by allocating in each processor a private
storage for the offending variable. Parallelism in the
program is increased. Data access time may also be
reduced, since privatized variables can be allocated to
local memories. Of course, the effectiveness of privati-
zation is limited by the memory size.

Table 1. Speedups before and after
hand transformations on the Alliant
FX/80 (8 vector processors).

Code Before | After | Array Priv.
MDG 1.1 5.5 Yes
OCEAN 1.42 8.3 Yes
TRACK 0.90 5.1 Yes
TRFD 2.36 13.2 Yes
Table 2. Loops in which arrays are
privatized (speedup is over seq. time).
Prog Loop | Routine | Loop | % of
Label Spdup | Seq
TRACK 300 | nlfilt 5.2 | 40%
300 | fptrak 6.0 9%
400 | extend 7.0 | 34%
MDG 1000 | interf 6.0 | 90%
2000 | poteng 5.2 8%
TRFD 100 | olda 16.4 | 69%
300 | olda 12.3 | 29%
OCEAN 270 | ocean 8.0 3%
480 | ocean 6.1 4%
500 | ocean 65| 3%

Privatization is not always valid. If the value of a



Do j=1, 0 Do j=1, 0
DO i=3, 0N DO i=3, 0N

= AG-1D) () AGL) = (w1)
A(i) = (wl) = A(i+1) (7’1)
AGi+1) = (w2) END DO
END DO END DO
END DO

(a) (b)
Figure 1: Examples of SDDs and NSDDs

variable is defined in one iteration and used in another,
then the variable cannot be privatized. Privatizable
scalars can easily be identified. If any scalar defini-
tion reaches the end of the loop body and any use of
the same scalar is exposed to the beginning of the loop
body, then the definition will certainly reach the use
from one iteration to another, which prohibits priva-
tization. However, such a criterion does not apply to
array references. In the simple example in Figure 1(a),
wy and ws reach the end of the loop body and ry is
exposed to the beginning of the loop body. However,
r1 does not read any value generated in previous iter-
ations of the outer loop. Array A, therefore, can be
privatized in the outer loop. In contrast, A cannot be
privatized in the outer loop in Figure 1(b), because its
values are carried from one iteration to another. From
the examples, it is clear that new criteria are needed
for array privatization.

We organize this paper as follows. In Section 2, we
discuss the basic idea and various aspects of array pri-
vatization. We also review the related work. In Section
3, we present algorithms to determine array privatiz-
ability, which is the key to the technique. In Section 4,
we present an algorithm for live array analysis which is
used to determine whether copy-out is necessary. We
summarize in Section 5.

2 Overview and Related Work

Two types of writing conflicts may exist between differ-
ent iterations of a loop. The first type involves a single
definition which overwrites the same array elements in
different iterations. The second type involves two dif-
ferent definitions. Privatization is suitable for the first
type, while renaming is suitable for the second. In Fig-
ure 1(a), the writing conflicts between w; and ws can
be removed by renaming, i.e., by letting wy write to a
new array. This paper covers privatization only.

The problem of privatization may be divided into
three issues. The first is the privatizability of an array
in a loop. The second is the need to copy out the last
defined values. The third is the storage allocation for
privatized arrays. We describe these issues separately
in the following.

2.1 Array privatizability

First, we define the object of privatization.

Definition
same array element(s) in different iterations of a loop L,
we call this definition a self dependent definition (SDD)
in loop L.

In Figure 1(a), both w; and w2 are SDDs in the
outer loop, because in every iteration, w; writes the
same elements, A(3:N), and wy writes the same ele-
ments, A(4:N+1). However, w; and ws are not SDDs
in the inner loop, because they write different elements
in different iterations. Similarly, in Figure 1(b), wy is
an SDD in the outer loop, but not in the inner loop.
SDDs can be recognized by the well-understood analy-
sis of output dependences [Ban88].

Definition An SDD w is privatizable in loop L iff the
value generated by w is not used across the iterations

of L.

In Figure 1(a), both w; and wa are privatizable in
the outer loop. In Figure 1(b), w; is not privatizable.
These facts will be explained as our discussion pro-
ceeds.

If a definition of a variable overwrites the

In a DO loop, we can divide the definitions of an ar-
ray into three categories: the non-self dependent defi-
nitions (NSDDs), privatizable definitions, and nonpri-
vatizable definitions. We privatize an array in a DO
loop only if the following criteria are both met.

Criterion A The SDDs of the array are all privatiz-
able in the loop.

Criterion B The SDDs do not overlap the NSDDs in
the loop. *

Breaking the two criteria would make the compiler
analysis substantially more complicated. To break Cri-
terion A, the compiler may privatize the privatizable
definitions while leave others unchanged. However, the
compiler will have to identify which definitions are pri-
vatizable and which are not. To break Criterion B, the
compiler must be able to handle the situation in which
both a privatizable definition and an NSDD may reach
an array use. If either of the criteria is broken, the
compiler has to analyze array reaching definitions fully
and exactly, which is extremely time-consuming. On
the other hand, it seems unlikely in practice that a
better performance could result by breaking the two
criteria. In the experiment reported in [EHLP91], the
privatized arrays meet both the above criteria.

To check whether an array A meets Criterion B in a
DO loop, we intersect the set of the A elements defined
by SDDs and the set of the A elements defined by NS-
DDs. This i1s a typical data dependence test problem

1They may overlap in an outer loop.



and has been studied extensively [Ban88]. Hence, we
need to examine Criterion A only.

Once the privatizable arrays are identified, the com-
piler can prune the data dependence graph. All loop
carried dependences whose sources are SDDs can be
eliminated. Of course, other transformations such as
scalar privatization can also contribute to the graph
pruning. Based on the new dependence graph, the com-
piler decides which loops should be executed in parallel.
Variables are privatized in parallel loops only.

2.2 The copy-out issue

If any self dependent definitions (SDDs) in a loop
reach the array uses outside the loop, then the last
values written by the SDDs must be copied out. When
a processor executes a particular iteration, it needs to
determine which array elements should be copied out.
Figure 2 shows simple examples. In each example, A is
privatizable in the outer loop according to Criteria A
and B. Copy-out is necessary in (a), but is unnecessary
in (b) because the SDDs are killed in the following loop
by an assignment to A(k). For program TRFD (cf.
Table 2), two privatized arrays are copied out from each
of the two listed loops. For other programs in Table 2,
copy-out is unnecessary either because the privatized
arrays are not referenced outside the loops, or because
the definitions are killed before reaching any uses.

Definition  The last defining iteration (LDI) of an
array element is the iteration in which the element is
last defined in the loop.

IF statements in a loop tend to make it unclear which
iteration 1s the last defining iteration for a particular
arary element. In this case, a processor cannot deter-
mine independently, i.e. without communicating with
others, whether the current iteration is the LDI. We
say that, in this case, the LDI is independently unde-
terminable. The LDIs in Figures 2(a) and 2(b) are in-
dependently, and easily, determinable. For every A el-
ement, the LDI is ¢ = N. LDIs of the privatized arrays
in program TRFD (cf. Table 2) are also independently,
and easily, determinable. In Figure 2(c), however, the
LDIs are independently undeterminable. In this case,
we do not privatize the array. In our experience so far,
the LDIs are independently determinable whenever we
need to copy out. However, it is unclear whether this
is generally true in practice.

To summarize, we handle the copy-out issue as fol-
lows. First, the compiler performs a fast live array
analysis to see whether the SDDs in a loop reach any
outside use. If no SDDs of array A reach any out-
side use, then no copy-out is necessary for A and we
mark A as a candidate for privatization. Otherwise, we
examine whether the LDIs are independently undeter-

DOi=1, N DOi=1, N DOi=1, N
DD j =1, M DD j =1, M DD j =1, W
A(H) = A(j) = IF () THEN

= A(j) = A(j) A(§) =
END DO END DO = A(j)
END DO END DO END IF

END DO

DOk = 2, H-1 DOk =1, H END DO

= A(k) ACk) =
END DO = A(k)

END DO

Figure 2: Copy-out and LDIs

minable. If they are, we do not privatize A. If they
are not, then we mark A as a candidate for privatiza-
tion. The copy-out code will be described in the next
subsection. The algorithms for the live array analysis
will be briefly discussed in Section 4. Reference [Li92]
discusses algorithms for determining LDIs.

2.3 Storage allocation

The storages are allocated as follows. For each par-
allel loop, the compiler checks to see whether it imme-
diately contains any self dependent definitions (SDDs)
of a candidate for privatization. If it does, then in each
processor that participates in executing the loop, the
compiler allocates a private storage for each of such
candidates. This materializes the array privatization.
(The storage will be reclaimed as soon as the loop is
completed.) Note that sometimes the SDDs in a loop
modify a part of an array only. In these cases, 1t suf-
fices to allocate a private storage just for that part of
the array.

In all programs listed in Table 2, the privatized ar-
rays are privatizable at one loop level only. Given a
perfect nest of loops that have no intervening state-
ments between the loop headers or the loop ends, it
always suffices to privatize the array in the innermost
loop in which the array is privatizable. However, if
a loop nest is imperfect and an array is privatizable in
more than one loop, then the array should be privatized
in more than one loop. It is clear that a privatizable
SDD should write into the private storage allocated to
the innermost enclosing loop in which the array is pri-
vatized. We call this loop the home loop or simply the
home of the SDD. If the array of an SDD is not priva-
tized in any enclosing loop, then the SDD should write
into the storage for the original array. In this case,
we say the home of the SDD 1is the whole scope of the
original array, say, a subroutine. For an array definition
which is not an SDD in any loop, the home is also the
scope of the original array. The hierarchy among the



homes for the same array can be represented by a tree
whose root is the scope of the original array. In the pro-
grams in Table 2, all privatized SDDs have one home
only. Nonetheless, in program SPECT7 in the Perfect
code suite [PER8Y], some SDDs have two homes, one
of which being the scope of the original array.

For each array use, the compiler must determine the
storage from which it reads. This depends on which ar-
ray elements are used. The compiler locates the nearest
home that satisfies the following: (1) the home contains
the array use; and (2) the used element is defined by
SDDs in that home. In other words, the used element
should not be upward exposed (defined in Section 3) in
the home.

Copy-out, when necessary, is performed as follows.
When a processor executes a loop iteration, it checks
to see whether the iteration is the last defining iteration
of some privatized array elements that must be copied
out. The processor writes these elements into the stor-
age allocated to the home, H, at the next upper level.
If H 1s a DO loop and there exist statements outside
H which use the copied elements, then the processor
which executes the last iteration of H is responsible for
copying the elements all the way up to the parent of H.
This process continues until all statements that use the
copied elements are served. Copy-out in such “relay”
style simplifies the analysis of reaching definitions. In
our experience so far, e.g. in program TRFD (Table
2), only one step of copy-out is necessary.

We use examples (Figure 3) to show the code before
and after array privatization. To make them easy to
understand, we present the examples in a self-evident
pseudo parallel language. The keyword DOALL indicates
a parallel loop and the keyword private indicates the
new name for a privatized array. In example (a), the
inner loop is the only home loop. The array use reads
most elements generated within the loop. But 1t also
reads an element from outside the loops. Here, we sim-
ply copy in that element A(1). In example (b), there
are two home loops. An array element is copied from
one home to the other.

Implementation of the mechanism described in this
subsection is quite straightforward. Therefore, we do
not provide algorithms here to formalize the mecha-
nism. Analysis of array privatizability, on the other
hand, is essential but not straightforward. Hence, we
present its algorithms in Section 3.

2.4 Related work

Literature on data dependence analysis abounds and
1s well-known. Data dependence analysis, in the com-
monly understood terms, are concerned about inter-
section of array regions, which does not support array

ACL) = A(1) =
DOi=1, N DOALL i = 1, N
DO j=1, T DOALL j = 1, U
DOk =2, 0 private A1(1:W)
ACk) = A1(1) = AQD)
= A(k-1) DOk =2, 0
END DO A1(k) =
END DO = A1(k-1)
END DO END DO
END DOALL
END DOALL
(a)
DOi=1, N DOALL i = 1, N
DO j =1, 0 private A1(1:W)
DOk =1, N DOALL j = 1, U
Ak) = private A2(1:W)
= Ak DOk=1, N
END DO A2(k) =
END DO = A2(k)
END DO
IF(j=N) THEN
A1(1) = A2(1) copy-out
END DOALL
DOh =2, N DOh=2, N
ACh) = A1(h) =
= A(h-1) = A1(h-1)
END DO END DO
END DO END DOALL

(b)

Figure 3: Examples of array privatization

privatization. Nonetheless, we have shown that the
results in data dependence analysis are useful for i1den-
tification of self dependent definitions and for verifi-
cation of Criterion B. Qur work has been inspired by
recent related work. Feautrier studies the technique of
array expansion [Fea88]. His method expands arrays
to higher dimensions to allow a program transformed
into a single assignment form. He considers programs
which have DO loops, assignment statements and con-
ditional assignment statements. Gross and Steenkiste
devise a dataflow analysis on arrays [GS90]. Their al-
gorithm examines whether a definition reaches a use in
the same loop iteration and whether it reaches the end
of the loop body.

Our work focuses on the information required to de-
termine array privatizability. The essential information
is whether an array reference can possibly read a value
from previous iterations, suppose the loop is executed
in sequential. This information is not provided by ei-
ther the traditional data dependence analysis or recent
related works. To make it more general, we consider
arbitrary flow graphs including cases in which a DO
loop has multiple exits. Interestingly, in our scheme, if



a program’s flow graph is reducible, we do not need to
propagate information over any cycles.

3 Determination of Array Privatizabil-
ity
3.1 An assumption on IF conditions

Most data flow analyses are insensitive to the exact
content of an IF condition. Unfortunately, for sub-
routine INTERF of MDG and the main program of
OCEAN (cf. Table 2), array privatizability cannot be
recognized without considering the exact contents of
IF conditions. In the case of MDG, the conditions are
in the form of “if (LOC < 1 or LOC4+NW-1 > MEM-
SIZE or NW < 1 )”, which involves scalars only. In
the case of OCEAN), the conditions are in the form of
“if (RS(k) > CUT2 )", which involves arrays as well.
Compiler mechanisms that deal with scalar relations
do exist [LT88], [TTF86]. But mechanisms dealing with
arrays are yet to be devised. Nonetheless, to separate
two different issues, we do not examine the contents of
IF conditions in this paper. As a result, we must make
the assumption that one branch decision will not affect
another.

The above assumption makes our computation of the
upward exposed array elements (defined below) conser-
vative. It also implies that nonprivatizable definitions
exist in loop L if and only if an array element is defined
by self dependent definitions (SDDs) in one iteration
and 1s upward exposed in a later iteration, which is a
conservative statement.

3.2 Upward exposed array elements

Definition If an array element is always defined be-
fore used in iteration ¢, we say the element is covered
in iteration . Otherwise, we say the element is upward
erposed in iteration 1.

In order to determine whether nonprivatizable defini-
tions exist, we introduce the following notations. Con-
sider a nest of DO loops, L1, La, ..., L,, where L is
the outermost, Lo is nested in L;, and so on. Suppose
the loop index variables are I, I, ..., I,, respectively.
(Without loss of generality, we assume index steps of
1.) We represent an iteration of L, 1 < d < n, by an
index vector (i1,4s,...,4q) such that I} = i1, Iy = is,
and Iy = iq. For a given array A, let UE(;, 4, i,
denote the set of all upward exposed elements in iter-
ation (i1,42,...,1q) and let Dy, 4, s, denote the set
of all elements which may be written in (i1, da,...,44)
by SDDs. The following formalizes our condition for
the existence of nonprivatizable definitions.

Claim 1 Loop Ly has nonprivatizable definitions of A
iff, for some iteration (iy,ia,...,iq), the intersection of

UE(i s, iq) and Uldgkgd—1 Diiyis,... k) i nonempty,
where lg is the lower bound of Ly and iq > 4.

Consider the outer loops in Figure 1. In (a), A(2) is the
upward exposed element in every iteration, but A(2) is
not defined in any iterations, because D(;y is A(3:N+1).
Therefore, the definitions of A are privatizable in (a).
In (b), Dy;y is A(3:N). A(4:N) are both upward exposed
and defined in every iteration. Therefore, w; i1s not
privatizable.

The cover set defined below is instrumental in com-
puting the set of upward exposed elements. Suppose
statement S is nested in Ly, L, ..., L. Let Sq de-
note the instance of S in iteration a0 = (41, 4a,...,4p)
and S(;, i,,..i,) denote all instances of S in iteration
(i1,72,...,1q). We may also write Si;, 1, 4,) as Says,
where «q stands for the first d elements of « .

Definition For array A, the cover set of Sq at loop
level d is the set of the A elements that are guaranteed
to be defined within iteration a4 before the execution
of Sev. C4la denotes this cover set.

Take the examples in Figure 1, where we suppose S
is the statement that issues vy and « stands for {j,1).
In (a) and (b), the cover set of Sq at loop level 1
is A(3:). Note that a cover set, like other types of
sets in this paper, often has loop index variables as its
parameters. If we assign different values to the index
variables, we obtain different sets of array elements.
Set representation is briefly discussed in [Li92].

Let U5 denote the array elements used by Sq. In
iteration «|g4, the set of the upward exposed elements
used by Sq are clearly U5 — C3la. The set of the
upward exposed elements used by all instances of §
in iteration (i1,42,...,44) is the union of U5 — C34
over all e such that a|q = {é1,4s,...,4q). Finally, as
claimed below, we can determine the set of the upward
exposed elements in iteration {i1,ds,...,4q).

Claim 2 UFE(; 4, .., equals to the union of Ugt -
Cala over all a such that a|g = (i1, i2,...,14) and
over all S that make use of array A in loop Lg.

We illustrate this claim through Figure 1. Let S be the
statement which issues 1 and let « be (j,4).

(a) U5 |1is A(i-1). U5 — C5]1 is A(i-1) for i = 3 and
is empty for other 7. Hence, U Fy;y is A(2).

(b) U5 is A(i+1). C5 1 is A(3:). Hence, U5 — C3 11
1S A(i—l—l). UE(j) 18 {A(i—l—l) | 3 <1< N} =
A(4:N+1).

3.3 Computing the cover sets

In this subsection, we discuss how the control flows
affect the cover sets. We first consider DO loops that
have no exits due to GOTO.



We build the control flow graphs in a hierarchical
fashion. Consider again the DO loops Ly, Ls, ..., L,.
We assume that Lg; may contain DO loops in addition
to Lay1,d=1,2,...,n — 1. For the loop body of Ly,
we construct a condensed control flow graph, G4. Each
DO loop, including L4y, that is immediately nested
in Lg is represented by a condensed node in Gg. We
denote the condensed nodes by L), L) . Lim)
The remaining statements in L4 are grouped into basic
blocks in the same way as in the conventional control
flow graphs. Each basic block is represented by a regu-
lar node in G4. A condensed node is different from an
interval [AllT0], [Coc70] in that only an indexed DO
loop may be condensed. A loop of any other type is
decomposed into basic blocks and is represented by a
number of regular nodes.

It is convenient to index the instances of a basic
block, B, or a DO loop, L), in L4. Let By ia,ia)
denote the instances of basic block B in iteration
(i1,42,...,iq). 2 Similarly, let LEQ,@,...,Z'd) denote the
instances of DO loop L) in iteration (i1, s, ...,14).
In the following, unless we state otherwise, we use the
symbol P to denote either a basic block or a DO loop
L,
Definition
set of P(il,ig,...,id
is the set of the A elements guaranteed to
defined in iteration {i1,is,...,iq) before P is entered.
The outgoing-cover-set of P;, ;, i, in Gga, denoted
by C'_OUT{;J%HM), is the set of the A elements guar-
anteed to have been defined in iteration (i1, s, ...,%4)
before the exit of P.

Definition The must-modify set of P, i, . 4., de-
noted by M(I;,ig,...,id)’ is the set of the A elements de-
fined in Py, 4, .. i, no matter what control path is
taken within P, i, ;). Similarly, M<€17i27~~7id) de-
notes the set of the A elements defined in S

an instance of statement S.

For a given array A, the incoming-cover-
) in G4, denoted by C'_INJ‘?1 iny.ia)?
iﬂave been

217227~~~yld)’

We now establish the basic flow equations regarding
the sets defined above. First of all, we have

Eql. CLOUT{?1 inyid) =
C_INE o ouME ..
(i1,82,...,04) (i1,82,...,04)
Eq2. Suppose P, P, ..., P, are the prede-
cessors of P in Gy. C'_IN{; iny..id) equals
P;
ﬂi:l,p C-OUT(il,z’Q,...,z’d)'
Eq3. C_INT = C'_OUTg1 iny.ia) is empty,

jg‘zl.,zé,...,z ) .
where 7" 1s the starting node in Ly.

?In the presence of while or goto loops, an instance defined
as such may repeat at run time. This, however, does not disturb
our discussion.

Now, suppose a basic block B contains s statements
which modify A elements. We list these statements by
their textual order: Sy, Sq, ..
have

., Ss. By definitions, we

B _ Si
Bqd. My, i,yiay = Uisip Miil o, ey
Eq5. For any statement S in B which textually

s s _
precedgs S0, iy iaia) (inin,ia)ld =
C_IN

(i1,82,...,8q) "

Eq6. For any statement S between S; and S;;1,
0<i<s—1 C° id)|d=(15’+1

(i1,82,.., (i1,i2,~~~yid)|d -
S Si
C id)|dUM(

(i1,82,..., t1,82,...,0a)"

Eq7. C.OUTE = UM

(i1,82,...,%a) (i1,82,...,%a) (i1,82,...,8a)"

P P
Eq8. C—IN(il,iQ,...,id) < C—OUT<i1,i2,...,z’d)~
Under the present assumption that a DO loop has
one exit only, we insert a single exit node, X, in
X _ .
Lg. C'_OUT“M%HM) (ivrizyomia 1s. the set. of
the A elements that must be defined within iteration
(i1,42,...,1q).
Definition

tion <i1, iz, .

The past-modify set of loop Lg in itera-
., iq), denoted by M<Llf tada) is the set of
A elements defined in the iterations from (i1, iz, ..., {5)

through (¢1,42,...,4¢— 1). This set is empty if ig = {4.
Claim 3 In DO loops Ly, Lo, ..., Ly, the past-modify
sets are determined by the equation

-

M(il,iQ,...,id) = U

1g<Ig<ig—1

C_OUTX* (1)

(41,82, yia—1,1a)"

The must-modify sets are determined by the equation

ML = |y coutf: (2)

(i1,82,..,0a—1) (41,82, ,ia—1,1a)’
ldSIdSUd

where ug 1s the upper bound of Lg. The cover sets of
statements are determined by the equation

Cald = CalaU(CNG | UNMES )
Ld+2 v Ld+2
U(CINGTE oy MG )
u...
U(CINGE iy UME ).

If a DO loop L4 has exits due to GOTO, the above
equations need modification. First of all, we insert an
exit node in G4 for each exit. The exit for the normal
termination of Lg is denoted by Xc(lo), while the other

exits are denoted by Xc(ll), Xc(lz), and so on. In graph
(G 4—1 at the upper level, suppose L4 is represented by
a condensed node P. We make a copy of P in G4_; for



every GOTO exit in Ly. We draw an edge from each
predecessor of P to each copy of P. Suppose an exit
jumps to a statement in Lg_;. That statement must
be the header in a node, @, in G3_;. We draw an edge
from each copy of P to the corresponding target Q. If
an exit of L; jumps outside Lg_1, then we treat the
corresponding copy of P as an exit node in Gg—; and
repeat the above process on the new exit node.

For GOTO exits, Claim 3 should be modified as fol-
lows. The past-modify set is computed for X(® only,
le.

-

M(il,iQ,...,id) = U

1g<Ig<ig—1

(0)
CoUT (3)

(41,32, la—1,1a)"

The must-modify set for the original P (corresponding
to the normal exit) is computed in the same way as in
Claim 3. Suppose the copies of P are denoted by PU),
1 < j < m, corresponding to GOTO exits Xc(l]). The
must-modify set of each copy is computed by

() x )

M£17i27~~7id—1) = C_OUT(ild,ig,...,id_l,ld)' (4)
In the above, we assumed conservatively that a GOTO
exit may be taken as early as in the first iteration.
This may not be true in some cases. However, since
our analysis 1s insensitive to the exact content of an IF
condition, the assumption is necessary.

After the above treatment, GOTO exits no longer
affect our further discussion except in trivial details.
For convenience, we will assume in the rest of the paper
that GOTO exits do not exist.

Based on the equations developed so far, we present
in Figure 4 the main algorithm for determining the ex-
istence of nonprivatizable definitions. A compiler may
apply the algorithm to a DO loop at any loop level. The
algorithm examines array privatizability for that loop
as well as the inner loops (immediately nested or other-
wise). We assume that all subroutine calls are in-lined
so that no interprocedural propagation is necessary.

3.4 Traversal of the flow graphs

In this subsection, we discuss how to propagate cover
sets through the flow graphs. Certain properties of
cover sets allow us to simplify the propagation con-
siderably. Most noticeably, we may break cycles in a
condensed control flow graph before its traversal.

Definition  If (P, P;) is an edge in a control flow
graph G such that P; dominates Py, (Ps, Py} is called
a back edge in G [ASUSE].

Claim 4 If P, dominales Py in a condensed control
flow graph G of the body of a DO loop at level d, then
COUT!, CC.IN?

(41,82, ,8a) (i1,92,..9a)

Algorithm 1

Given: (1) DO loop L and all its inner loops (immedi-
ately nested or otherwise). Let £ denote the set
of these loops. (2) The index variables and the
bounds of the outer loops of L, if any.

QOutput: For each loop in £, an answer to the question
whether there exist nonprivatizable definitions of

A.

1. Call Compute-Block-Sets(L) (Figure 5) which re-
cursively constructs the incoming-cover-sets, the
outgoing-cover-sets, the past-modify sets and the
must-modify sets in L and the inner loops.

2. for each DO loop I/ in £, do

(a) for each (non-DO) statement S within L', do
Compute the cover set C3 |4 according to
Claim 3, where o = (i1, 42, ...,14y,) is the
index vector of the DO loops enclosing S

and d is the loop level of L.

(b) Compute UE;, 4. 4,), the set of the upward
exposed A elements in L4, as prescribed in
Claim 2.

(¢) Determine whether nonprivatizable 4 defini-
tions exist in L4 as prescribed in Claim 1.

Figure 4: The main algorithm

Claim 5 If (P2, P1) is a back edge in G, then
C’JN& iaia) remains the same if (P, Py} is deleted

from G.

Our traversal algorithm (Figure 6) first prunes G ac-
cording to Claim 5 and then propagates cover sets
through the pruned graph. If G is reducible [ASUSE],
the pruned graph will be acyclic, in which each node
needs to be visited only once. If GG is irreducible; the
traversal algorithm partitions the pruned graph into
maximum strong components (MSC) and then visits
the MSCs in a topsort order. The nodes in each MSC,
Q, are traversed iteratively. Each node will be visited
#(Q) times. For a sparsely connected MSC, many of
these visits could be avoided. However, we will not
pursue the details.

4 The Live Array Analysis

As mentioned in Section 2, live array analysis is use-
ful in dealing with the copy-out problem. The purpose
of the analysis is to determine whether the self depen-
dent definitions (SDDs) in a loop are live outside the
loop, 1.e. whether they reach any uses outside the loop.



Procedure Compute-Block-Sets(L)

Parameters: L, a DO loop nested in Ly, Lo, ..., Lg_1
whose index variables are iy, ig, ...,
tively. The index variable of L 1s i4.

lg_1, respec-

1. For each DO loop, L/, immediately nested in L,
call Compute-Block-Sets(L').

2. Construct the condensed control flow graph, G, for
the loop body of L.

3. Initialize C_ INTZ =C OUTT .. to
1,862,008 L 217227 Jd)
empty sets, Where T'is the start node in G.

4. Traverse G according to Algorlthm 2 (in the

next subsection) and compute C' IN<Z iaoonia) and
C_ OUT<“ iny.ia) for every node P in G.
5. Compute the past modify set M<Ln inonsia) and the

must-modify set ]\4<
3.

Tz iacy) according to Claim

Figure 5: Visit loops bottom-up

The merit of such information is twofolds. First, if no
SDDs are live, then we are not concerned about the
last defining definitions, because no copy-out is neces-
sary. Second, if we can limit the copied-out elements to
a minimum, run time overhead will be reduced. How-
ever, we want to avoid a full analysis of reaching defini-
tions. Recall that the information we need is quite lim-
ited. We only need to know whether SDDs reach any
outside uses and do not need to identify the reached
uses. Moreover, we perform the live array analysis for
the privatizable arrays only. We describe one scheme
for the live array analysis in this paper. Two other
schemes are described in [Li92].

The UEE scheme

Consider privatizable SDDs of array A in loop Lgyq
at loop level d+1. Lgy1 is represented by a condensed
node in G4, where (G4 is the condensed flow graph at
the d-th level as defined in Section 3. We use (G to de-
note the condensed control flow graph whose condensed
nodes include all outermost DO loops in the program.
Gy is thus the flow graph at the highest level. Let
SM{:;; ia) denote J,, <h<ug Dlinsia,..iaky Which is
the set of A elements defined by SDDs in Lgqq.

In the UEE scheme, we examine the set of the up-
ward exposed elements of any condensed node L in G,

which is denoted by UEE<LZ inyia)’ The set 1s deter-

mined by the following equatlon

UEE<

i1,82,...,84)

Algorithm 2

Given: (1) A DO loop, L, at level d. (2) The con-
densed flow graph, G, of the loop body. (3) The
dominance relations in G'.

Outputl: The incoming-cover-set and the outgoing-
cover-set of each node in G.

1. Delete all back edges from G and obtain the pruned
graph, G’.

2. For each node in G’, compute its must-modify set.

3. Find the maximum strong components (MSCs) in
G’ and construct the reduced graph G”, which is
acyclic. Each node in G represents an MSC in
G

4. Traverse G” in a topsort order.
visited, do

for each node

(a) If the node corresponds to a single node P in
(', then compute the incoming-cover-set and
the outgoing-cover-set of P according to the
basic flow equations Eql and Eq2.

(b) If the node corresponds to an MSC, Q, of
several nodes in (’, then call procedure
Tterate(€2).

Figure 6: The traversal algorithm

U (Mél,@,...,id,k) mUE<ilyi2,~~~,idyk))(5)

lgg1<k<ugq1

where ]\4<Z1 iny..ia,k) is the past-modify set of L as de-
termined in Claim 3, and UE(ZI’Z'%W%;C) is the set of
the upward exposed elements in the loop body of L,
as determined in Claim 2. Note that these sets are al-
ready computed before the live array analysis. We also
compute UEE<“ iaia)’ the upward exposed elements
in each regular node B (¢, which is straightforward.

We now compute the UEE set for every node in
G, that is reachable from Lj41, where 0 < k& < d.
We then intersect the set SM<LZ‘“Z ia) defined above,
with each of the UEFE sets. If every intersection is
empty, then we are sure that no copy-out is necessary.
Otherwise, we conservatively assume that copy-out is

necessary.

The motivation behind the UEE scheme 1s a hypoth-
esis that if the SDDs in a DO loop do not reach any
outside uses, then the array either disappears outside
the loop or the array, as a temporary, is reinitialized
in different places. In the latter case, any use of the
array outside the loop will likely read a value that is
“locally” defined. The scheme is conservative because



Procedure Tterate(2)

for each P in 2, do /* initialize the cover sets */

e Suppose Py, Ps, ..., Py, are the predecessors

of P outside 2, initialize C'_IN{; in,.id) to
P;
ﬂj:l,m C-OUT<i1,i2,...,z’d)'
e If P has no predecessors outside €2, then ini-
tialize C'_IN{; i to T, which is the set
of all A elements.

C_OUT<€1 ia,... id)
y U ME

(i1,82,...,0q) "

...,id)

o Initialize to

C_I]V(l',D

i1yi2,0 0 0a
for each P in 2, do /* propagate the cover sets */
1. SnowBall[P] := C'_OUT{;J%HM).
2. Glivers := {P}.
3. Idle := {All nodes in £ but P}.
4. while Idle is nonempty, do

for each @ in Givers, do
(a) Receivers .= { R | R € Idle, (@), R)
is an edge in Q}.
(b) Idle := Idle — Receivers.

(¢) for each node R in Receivers, do

if C'_IN{EI in0onmia) 2 SnowBall[Q]
then C'_IN{EI inyeoia) =
C'_IN{EI inyonia) () SnowBall[@Q)].
SnowBall[R] = C'_OUT&’Z»%HM)
= C_INE . L UME L
(i1,82,...,04) (i1,82,...,84)
Givers := Receivers.

Figure 7: Traversal of an MSC

even if the intersection of SM and an UEE (of node
P) is nonempty, it is possible that the elements in the
intersection are killed in every path from Lg41 to P.

The UEE scheme works well with the programs in
Table 2. In TRACK and MDG, the privatizable arrays
are local variables of subroutines. Within each subrou-
tine, there are no references to the privatizable arrays
beyond the loop nest. In OCEAN, a privatizable ar-
ray CWORK is used in all three loops listed in Table
2. CWORK is also passed to a few subroutines called
within those loops. However, CWORK is not upward
exposed to the outside of any of those loops. The UEE
scheme will hence report the definitions of CWORK as
dead. Therefore, no copy-out is necessary. In TRFD,
two privatizable arrays, XIJ and XRSIQ, are subrou-
tine parameters. The uses of the two arrays outside the
subroutines involve array subscripts that have compli-
cated symbolic terms. The difficult subscripts, not the

UEE scheme, force a conservative decision to copy out
the two privatized arrays.

5 Summary

We have presented compiler algorithms for array pri-
vatization, a program transformation technique that is
critical in the successful program parallelization in re-
cent experiments. Where appropriate, we also report
the behavior in real programs that we have examined.
Although the analysis for array privatization is more
complicated than commonly known data dependence
analysis, the significant performance improvement it
brings seems to well justify the additional compile time.

A review of the algorithms in Section 3 yields the
following time complexity analysis. The time con-
sumed by the algorithms can be divided into two parts.
The first part is spent on constructing the condensed
flow graphs and partitioning the graphs into maximum
strong components. This part is proportional to the
number of basic blocks in the program. The second
part is spent on performing symbolic set operations to
derive the cover sets and the modify sets. For a pro-
gram whose flow graph is reducible, the number of such
operations is proportional to the number of statements
multiplied by the maximum number of loop levels, as-
suming the number of predecessors of each node in the
flow graph is bounded by a small constant. If a program
has components whose flow graphs are irreducible, an
extremely rare case, then the second part is further
multiplied by the maximum number of graph nodes in
such components. The time for each symbolic set op-
eration depends on the complexity of array references.
Set representations are discussed in [Li92]. Due to lack
of space, we do not explore further. In the loops listed
in Table 2, array references are quite simple. Set opera-
tions are therefore quite simple. However, the compiler
does need machineries that can manipulate symbolic
expressions in the subscripts. Interprocedural analysis
is also often required.

We summarize the practical aspects in array priva-
tization as follows. (1) The UEE algorithm in Sec-
tion 4 seems adequate for live array analysis in prac-
tice. (2) The storage allocation scheme in Section 2 is
more than what we need for the programs examined
so far, because in practice, we have found privatizable
arrays at one loop level only. (3) The last defining iter-
ations are easy to determine in our experience. (4) The
flow graphs of the loops encountered are all reducible.
Therefore, Procedure ITterate (c¢f. Figure 7) may be
unnecessary. (5) The set computations described in
Section 3 seem adequate. Unioning and intersection of
the sets do occur over control paths. Further, array
definitions and uses may interleave in the statements.
Therefore, a simple summary of the references over a



whole loop is insufficient. (6) The privatizable arrays
range from one-dimensional to three-dimensional, and
the array subscripts may be constants or may contain
loop indices and other symbolic terms. (7) We do not
consider the exact contents of IF conditions here. But
in at least two programs, we have found the contents
important.

We are currently building an interprocedural ana-
lyzer to experiment on aggressive transformations, in-
cluding array privatization. We adopt a hierarchical
approach to dealing with complexity of data flows in
large programs. (A similar approach is proposed by
Rosen in [Ros77] for scalar analysis.) This approach
takes advantage of structures in high level languages,
which makes data flow analysis and dependence anal-
ysis efficient. Array privatization fits naturally in this
approach, because a condensed node is just one exam-
ple of using structures. The algorithms presented here
will be tested in our experimental compiler. Many ef-
ficiency vs. precision issues raised in this paper will be
explored through experiments.

6 Acknowledgement

The author is grateful to his former compiler group
colleagues at CSRD: Rudy Eigenman, Jay Hoeflinger,
and Dave Padua. The group performed hand analysis
and transformation on several programs, which led to
the cited paper [EHLP91] and eventually motivated the
author to pursue the study in this paper. The practi-
cal cases cited here constitute only a small part in that
tremendous effort. The author takes the sole respon-
sibility for any potential errors in the description of
those cases. The author also thanks the reviewers who
suggested to include practical cases in this paper.

References

[ABC'88] F. Allen, M. Burke, R. Cytron, J. Ferrante,
W. Hsieh, and V. Sarkar. A framework for deter-
mining useful parallelism. In Proc. of the 1988
ACM Int’l Conf. on Supercomputing, pages 207—
215, July 1988.

[ANI70] F. E. Allen. Control flow analysis. ACM SIG-
PLAN Notices, 5(7):1-19, 1970.

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Com-
pilers:  Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass., 1986.

[Ban88] U. Banerjee. Dependence Analysis for Super-
computing. Kluwer Academic Publishers, New
York, 1988.

[BT82] T. Belytschko and C. S. Tsay. Whamse: A

program for three-dimensional nonlinear nonlin-
ear structural dynamics. Tech. Rept. No. NP-
2250, Dept. of Civil Engin., Northwestern Univ,
Evanston, IL, Feb. 1982.

10

[CF87]

[CocT0]

[EB91]

[EHJ191]

[EHLP91]

[Fead3]

[GS90]

[Li92]

[LT88]

[PER8Y]

[RosTT7]

[TIF86]

R. Cytron and J. Ferrante. What’s in a name?
or the value of renaming for parallelism detec-
tion and storage allocation. In Proc. of the 1987
Int’l Conf. on Parallel Processing, pages 19-27,
August 1987.

J. Cocke. Global common subexpression elim-
ACM SIGPLAN Notices, 5(7):20-24,

ination.
1970.

R. Eigenmann and W. Blume. An effectiveness
study of parallelizing compiler techniques. In
Proc. of the Int’l Conf. on Parallel Processing,
August 1991.

R. Eigenmann, J. Hoeflinger, G. Jaxon, Z. Li,
and D. Padua. Restructuring fortran programs
In Proc. of the 1991 Int’l Conf. on
Parallel Processing, August 1991.

for cedar.

R. Eigenmann, J. Hoeflinger, Z. Li, and
D. Padua. Experience in the automatic paral-
lelization of four perfect-benchmark programs.
In Proc. of the 4-th Workshop on Languages and
Compilers for Parallel Computing. also available

as CSRD Tech. Rept No. 1114, Univ. of Illinois
at Urbana-Champaign, August 1991.

P Feautrier. Array expansion. In Proc. of the
1988 ACM Int’l Conf. on Supercomputing, pages
429441, July 1988.

T. Gross and P Steenkiste. Structured dataflow
analysis for arrays and its use in an optimizing

compiler. Software — Practice and Experience,
20(2):133-155, February 1990.

7. Li. Array privatization: A loop transforma-
tion for parallel execution. Tech. Rept. No. 9226,
Dept. of Computer Science, Univ. of Minnesota,
April 1992.

A. Lichnewsky and F. Thomasset.
ing symbolic problem solving techniques in the
dependence testing phases of a vectorizer. In
Proc. of the 1988 Int’l Conf. on Supercomput-
ing, pages 396—-405, July 1988.

M. berry et al. the PERFECT club benchmarks:
Effective performance evaluation of supercom-
puters. International Journal of Supercomput-
ing Applications, 3(3):5-40, 1989.

B. K. Rosen. High-level data flow analysis.
Communication of the ACM, 20(10):712-724,
1977.

R. Triolet, F. Irigoin, and P Feautrier. Direct
parallelization of CALL statements. In Proc.
of SIGPLAN ’86 Symp. Compiler Construction,
pages 176-185, July 1986.

Introduc-



