
Energy Impact of Secure Computation on a Handheld Device∗

Zhiyuan Li † Rong Xu
Department of Computer Sciences, Purdue University

West Lafayette, IN 47907
{li,xur}@cs.purdue.edu

Abstract

Computation offloading is an important approach to
save the energy consumption while improving perfor-
mance for wireless networked handheld devices. With
such an approach, computational tasks are offloaded
from the handheld device to a server, depending on the
tradeoff between the communication cost and the com-
putation cost. Adding security to the wireless network
changes the relative cost of computation and commu-
nication. In this paper, we measure the energy con-
sumption characteristics of multimedia applications on
a handheld device, supported by computation offload-
ing though a wireless LAN which is secured with IPsec.
The measurement indicates that despite the overhead
of the security mechanism, offloading remains quite ef-
fective as a method to reduce program execution time
and energy consumption.

1 Introduction

Handheld computing devices with wireless network
connections have the potential to become powerful mo-
bile tools to access information and software resources
from anywhere at any time. However, the short bat-
tery life on these devices has been a major obstacle.
For example, current high-end pocket PCs with wire-
less connection can stay active for just a few hours.
Battery conservation is widely recognized as a key re-
search issue for handheld and mobile computing. Many
architectural and software efforts have been initiated
to improve the energy efficiency of handheld devices
[4, 5, 6].

∗ c©IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copy-
righted component of this work in other works must be obtained
from the IEEE.

†The author names are listed in alphabetical order.

Computation offloading is one of the most effective
ways to save the energy consumption while improving
performance for wireless networked handheld devices.
By offloading, the handheld devices obtains the desired
results without performing all the operations. The bat-
tery energy spent on computation is thus saved. How-
ever, there is an energy cost for data transfer via the
wireless connection. Careful tradeoff must be made
between energy consumed by network communication
versus computation. In our recent work, we studied
computation offloading techniques for reducing energy
consumption and execution time. Our result showed
substantial reduction in both execution time and en-
ergy consumption for a suite of benchmark programs.

Another critical issue is security. Despite the great
benefits which wireless networks can provide, the secu-
rity of wireless LANs remains a big concern. It is well
known that IP protocol is inherently insecure. IP pack-
ets can be easily forged. It is easy to inspect and ma-
nipulate the addresses or contents of packets. For tra-
ditional wired network, this may not be a big problem,
because one has to access the physical wire to break the
security. In contrast, wireless technology has no inher-
ent physical protection. Radio waves can travel freely
through most physical barriers, easily spreading confi-
dential data beyond the walls of an office or a home. If
not handled properly, this potentially creates a major
security hole in a network.

Most current wireless networks are based on widely
adopted IEEE 802.11 standard. Unfortunately the se-
curity specification, called WEP, in this standard has
been proven insecure and is thus inadequate for pro-
tecting a wireless network from eavesdropping or abuse
[2]. As a result, users who have high security concerns
turn to other protection measures. Secure Socket Layer
(SSL), IP security protocol (IPsec) [3], for example,
have been used to provide strong encryption and au-
thentication for wireless connections.

In our previous work [9, 10], we presented algorithms
for computation offloading based on models which do



not take into account the performance and energy cost
of the security mechanisms. The experiments were also
performed on insecure wireless links. Adding security
to the network affects offloading in several ways. First,
it consumes extra energy to decrypt the inbound com-
munication and encrypt the outbound communication.
Considering the limited computation power of hand-
held devices, these encrypt/decrypt operations may in-
cur delays to communication, which decreases the ef-
fective bandwidth and thus increases the energy for
communication. Second, the encryption and authenti-
cation may increase the size of the IP packets, which
in turn may lower the effective bandwidth and increase
the communication cost. Third, running the secure
protocol, including key exchanges, incurs extra network
traffic.
Adding security to wireless network changes the rel-

ative cost of computation and communication. This,
therefore, has an impact on the tradeoff between the
computation cost and the communication cost. Re-
cently, we have implemented IPsec on a handheld de-
vice and a proxy server for offloading. In this paper,
we measure the energy consumption characteristics of
the handheld device and reexamine the offloading tech-
nique in the wireless network environment which is se-
cured with IPsec.
In the remaining sections of the paper, we first re-

view our previous work of offloading in Section 2. We
then briefly review IPsec (Section 3). In Section 4,
we report and compare the results of offloading in the
IPsec environment. This is followed by a discussion of
related work and a conclusion.

2 Computation Offloading

Given a program, computation offloading scheme
identifies the computation tasks which can be offloaded
from the handheld device to a server such that the
program execution time and energy consumption can
be reduced. For many programs, for example mul-
timedia programs, the energy tradeoff is nonobvious.
We performed off-line profiling and used an energy
model to estimate energy spent on executing individ-
ual procedures (on the handheld) and on data com-
munication between procedures which are separated
(between the server and the handheld). Based on
an energy-minimization objective function, we apply
a task-partition algorithm to determine the procedures
that can be beneficially offloaded. We have considered
the following two areas in which computation offload-
ing can be useful.

All Data Local: This is the case in which both the
input and the output are local to the handheld

device, and inherently the application has no need
to communicate with the external world. On the
other hand, offloading the computation in part or
as a whole requires sending data needed by the of-
floaded tasks and receiving the results back. Fig-
ure 1 illustrates this case.

Output

Input

Computation offloading

Figure 1. Computation of¤oading where all
data are local.

Data Transferred with Heavy Processing:

When the handheld device downloads data for pro-
cessing (e.g. decompressing and replaying down-
loaded multimedia data) or uploading data after
processing (e.g. sending multimedia data via email
after compression), where the processing should
take place (i.e. whether on the server or on the
handheld) becomes an interesting question. The
tradeoff can be nonobvious. Downloading data af-
ter decompression will save energy for computa-
tion but at the expense of spending more energy
on communication. Performing decompression lo-
cally, on the other hand, will reverse the tradeoff
argument. Figure 2 illustrates this case.

server
handheld
device

download
& process

upload
& process

Internet

Figure 2. Computation of¤oading where data
are transferred with heavy processing.

We find that a common energy consumption model
can be developed for a class of application scenarios,
including both cases mentioned above [9, 10]. Using a



simplified data-sharing model, the task partition prob-
lem can be transformed to amax-flow/min-cut problem
[10], for which low-degree polynomial algorithms exist.
A more refined data-sharing model requires Branch-
and-Bound for its solutions. Graph-pruning is per-
formed to ensure fast partitioning [9].

3 IPsec

IPsec provides a viable solution for securing IP traf-
fic. It uses strong encryption and authentication al-
gorithms to protect the integrity and confidentiality of
traffic at the IP level. Working at this level, IPsec is
transparent to applications while protecting any traffic
carried over IP, unlike other encryption mechanisms
which generally protect only a particular higher-level
protocol, for example, PGP for mail, SSH for remote
shell, and SSL for TCP socket.
IPsec can be used on any machine which performs

IP networking. IPsec is typically installed on gateway
machines to protect traffic. It can also be installed
on a variety of other nodes such as routers, firewall
machines, application servers, and end-user desktop or
laptop machines.
IPsec offers two services, authentication and encryp-

tion. These can be used separately but are often used
together. Packet-level authentication assures the in-
tegrity of a packet. It ensures that a packet comes from
an expected data origin and that its contents are not
tampered. The encryption component encrypts con-
tents of a packet to protect them from eavesdroppers.
Three protocols used in an IPsec implementation:

AH (Authentication Header) provides a packet-level
authentication service but does not encrypt the
packet.

ESP (Encapsulating Security Payload) provides en-
cryption plus authentication for a packet.

IKE (Internet Key Exchange) negotiates connection
parameters, including keys, for the other two pro-
tocols.

Establishing secured communication between end
systems is a two-phase process. In phase one, the two
gateways establish a security association (SA). After
an SA is established, each end system possesses a set
of keys that the systems use to encrypt the phase-two
traffic. As part of phase one, each end system must
identify and authenticate itself to the other. In phase
two the gateways negotiate SAs and generate the keys
that the end systems use to encrypt the IP traffic sent
between them. The systems can reuse valid SAs from

phase one to establish multiple SAs in phrase two. SAs
in both phase one and phase two regularly expire and
reestablish to ensure the integrity of IPsec communi-
cations.
IPsec has two modes of operations. The transport

mode supports a host-to-host connection involving only
two machines. In the tunnel mode, the IPsec machines
act as gateways to carry traffic for any number of client
machines. The tunnel mode is considered more expen-
sive than transport mode.
The application of IPsec to IP traffic can result in a

considerable increase in the size of IP datagrams. For
example, in tunnel mode, a new IP header is created
for each datagram. More over, there may exist multiple
layers of IPsec protocols applied to a datagram. To re-
duce such extra data traffic, IPsec includes the IP Com-
pression protocol (IPComp) [12, 13, 1]. IPComp uti-
lizes lossless compression algorithms to reduce the size
of the IP datagram. It compresses outbound IP data-
grams and decompresses inbound datagrams. However,
IPComp does not guarantee a decrease of the size of the
datagram. As shown in the next section, sometime it
results in an increase rather than a reduction.

4 Experimental Result

4.1 Experimentation Setup

The handheld device used in our experiments is a
Compaq iPAQ 3650 which has a 206MHz Intel Stron-
gArm SA1110 processor and 32MB RAM. The proxy
server is a Dell Dimension 4100 which has a 1GHz
P-III processor. Both machines run Linux operating
systems and communicate through TCP socket calls.
The wireless connection is through a Lucent Orinoco
(WaveLAN) Golden PCMCIA card which follows the
IEEE 802.11b standard. Under the 11 Mb/s nominal
peak rate, the effective data rate of the WaveLAN card
is measured as about 5 Mb/s. The bit rate (for both
send and receive) can be adjusted downward in a few
different ways, by changing the settings of the access
point, by increasing the communication distance, or by
increasing structure obstacles between the two anten-
nas.
To measure the electrical current drawn by the

handheld device, we connect it to an HP 3458a low-
impedance (0.1 Ω) digital multi-meter which takes sev-
eral hundred samples per second and automatically
records maximum, minimum and average electrical cur-
rent. In order to get a reliable and accurate reading, we
disconnect the batteries from both the iPAQ and the
extension pack, using an external 5V DC power sup-
ply instead. The start and finish of the meter reading



is controlled by software, using the trigger mechanism
built in the multi-meter. According to our measure-
ment, the overhead associated with the triggering in-
terrupts is less than 0.5% and the readings are consis-
tent over repeated runs. We compute the energy con-
sumption of system during the execution by the simple
equation:

energy = voltage ∗ current drawn ∗ elapsed time

4.1.1 IPsec setup

The implementation of IPsec used in our experiments is
Linux FreeS/Wan 1.96. We use ESP protocol which
encrypts the payload by 3DES and authenticates the
datagram by MD5. The server and iPAQ are in the same
subnet and we setup an IPsec tunnel between them.
The two hosts use RSA digital signatures to authen-
ticate each other. We find the compression protocol
(IPComp) has a rather complex effect on the results of
offloading. We will discuss the impact of IP compres-
sion on Section 4.4. For the other parts of this section,
we do not activate IP compression.

4.1.2 Power parameters

We measure the electrical current drawn in different
running modes. The reading is shown in Table 1. (All
the numbers are measured with the screen turned off.
When using the medium back-light, the current will in-
crease about 140mA for each running mode. Through-
out the experiments, the WaveLAN always remains
connected.) The first column shows two functioning
modes of the iPAQ: idle when it does nothing and busy
when it performs computation. The Send/Recv col-
umn indicates whether there is intensive sending or re-
ceiving. During sending or receiving, the computer is
neither idle nor computation-intensive, hence the ‘–’
entry in the iPAQ column. The IPsec column indi-
cates whether IPsec is deployed. We do not observe
changes in the current due to the IPsec when there ex-
ists no network activities. Again, we put the ‘–’ entry
in IPsec column. The last column lists the electrical
current. drawn from the external DC power.

We maintain a constant voltage power supply of 5V.
Hence, with the current readings, we can easily obtain
the power parameters needed in our algorithms.

The application of IPsec also decreases the data
throughput over the network. Table 2 lists the changes
in the average data throughput measured over exten-
sive data communication test cases. These bandwidth
parameters are used in the algorithms.

Table 1. Power parameters
iPAQ Send/Recv IPsec Current(A)
idle no – 0.33
busy no – 0.48
- send no 0.44
- recv no 0.42
- send yes 0.52
- recv yes 0.45

Table 2. Effective bandwidth w/ and w/o IPsec
Send /Recv IPsec Effective bandwidth(Mbps)
send no 5.0
recv no 5.1
send yes 2.2
recv yes 2.4

4.1.3 Test programs

Table 3 lists the programs used in our experiments,
their descriptions and their input parameters, includ-
ing the input files we use, which can be found in the
Mediabench web-site. We experiment with both modes
(all-data-local and input-output-separated) which can
be applied to the real world situations. A program may
have rather different execution paths to provide differ-
ent functionalities. We perform tests on those different
paths, using different profile information to generate
the cost graph. As a result, it may have different ver-
sions of transformed code.

4.2 Result with Input and Output Separated

We apply the same flow algorithm as in [10], but
using the new power parameters, to the benchmark
program with input and output data separated (one on
the server and the other on the mobile device). Since it
is the handheld device which initiates the data transfer,
by default the application program would all process
locally. For each program, we test either one of the
following two cases as in [10]:

1. the data is transferred from the handheld to the
server if the data get consistently decreased by
processing.

2. the data is transferred from the server to the hand-
held if the data get consistently increased by pro-
cessing.



Table 3. Test programs
Program Name Description Input Parameters

toast GSM, voice transcoding toast -fpl clinton.pcm

untoast GSM, voice transcoding untoast -fpl clinton.pcm

encode G.721, voice compression encode -4 -l <clinton.pcm >out.g721

decode G.721, voice decompression decode -4 -l <clinton.pcm.g721 >out.pcm

epic EPIC, image compression epic test image -b 25

unepic EPIC, image decompression unepic test image.E test image.out

pgp/encrypt PGP, encryption pgp -fes Bill -zbillms -u Bill
<pgptest.plain >pgptest.pgp

pgp/decrypt PGP, decryption pgp -fdb -zbillms <pgptest.pgp >pgptest.dec

rawcaudio/compress ADPCM, speech compression rawcaduio <clinton.pcm >out.adpcm

rawcaudio/decompress ADPCM, speech decompression rawcaduio <clinton.adpcm >out.pcm

ghostscript Postscript interpreter gs -sDEVICE=ppm -S OutputFile=test.ppm
-dNOPAUSE -q –tiger.ps

cjpeg JPEG, image compression cjpeg -dct int -progressive -opt
-outfile out.jpeg nasa.ppm

djpeg JPEG, image decompression djpeg -ppm -outfile out.ppm nasa.jpeg

pegwit/encrypt PEGWIT, encryption pegwit -e my.pub pgptest.plain
pegwit.enc <encryption junk

pegwit/decrypt PEGWIT, decryption pegwit -d pegwit.enc pegwit.dec < my.sec

mpeg2encode MPEG, mpeg2 encoding mpeg2encode test.par out.m2v

mpeg2decode MPEG, mpeg2 decoding mpeg2decode -b mei16v2.m2v -r -f -o0 rec%d

With the new power parameters, our algorithm pre-
dicts that for 13 of 17 test programs, energy will be
saved by mapping the program, in part or on the whole,
to the server. For the remaining 4 programs, namely,
cjpeg, djpeg, rawcaudio and rawdaudio our algo-
rithm finds that the default running mode is the most
energy-efficient. Figure 3 plots the measured energy
consumed by each program. The energy of processing
on the handheld is normalized to 1. The “default” la-
bel in the figure indicates that processing is done com-
pletely on the handheld device and the “algorithm” la-
bel indicates that the computation is according to our
algorithm. The data showed in the figure validates the
decision of our algorithm. To verify the four no-benefit
cases, we also tried to let the server completely process
the program and then measured the energy consump-
tion. We found that energy consumed by complete
offloading to be larger than complete local processing
on the handheld. The former is 2.0, 2.7, 2.9 and 2.5
times of cjpeg, djpeg , rawcaudio and rawdaudio re-
spectively,

Comparing to our previous result for offloading from
an insecure wireless LAN [10], the decision to offload
or not remains the same on the secured environment
in all the test cases. However, as expected, the benefit
margin has narrowed. We obtained an average of 72%
energy reduction compared with the default (process-

ing locally). Now, we have 52% of energy reduction.

Figure 4 shows the average electrical current drawn
during the execution of the program. To assess the
IPsec overhead, we normalize the electrical current
reading to the case of local processing without IPsec.
From the “default” bar, we see the current increasing
when IPsec runs. In contrast to previous data [10],
where offloading lowers the current on the local device,
here the current is usually a little higher (average 6%)
than the default due to the cost of IPsec.

Figure 5 compares the running time of benchmark
programs. Again, we normalize the data based on the
time when running the program locally without IPsec.
The “default” bar clearly shows the overhead of IPsec.
In almost all the cases, the running time increases com-
pared with no IPsec. For ghostscript, the running
time doubles. The “algorithm” bar shows that offload-
ing can obtain significant performance improvement.
This is true for several programs even compared local
processing without IPsec. On the other hand, com-
pared with previous data [10], the gap of performance
difference between default and algorithm decreases.

4.3 Results with All Data Local

We also reexamine the results of our offloading
scheme with both input and output data local to the



0

0.2

0.4

0.6

0.8

1

1.2

en
co
de

de
co
de

ra
wc
au
di
o

ra
wd
au
ti
o
ep
ic

un
ep
ic

gh
os
ts
cr
ip
t

to
as
t

un
to
as
t

e
n
e
r
g
y

default
algorithm

0

0.2

0.4

0.6

0.8

1

1.2

cj
pe
g

dj
pe
g

mp
eg
2e
nc
od
e

mp
eg
2d
ec
od
e

pe
gw
it
/e
nc
ry
pt

pe
gw
it
/d
ec
ry
pt

pg
p/
en
cr
yp
t

pg
p/
de
cr
yp
t

e
n
e
r
g
y

default
algorithm

Figure 3. normalized energy consumption on
the handheld device using IPsec, where the
input and output are separated

handheld device. We find that 10 of 17 programs can
get better energy usage by offloading in the secure wire-
less environment. Previously there were 12 of them
benefiting from offloading in the insecure environment.
The decisions for untoast and pegwit/encrypt have
changed from offloading to local processing due to the
IPsec overhead.

Figure 6 plots the energy consumed by the handheld
for each program. The “default” label indicates the
program is executed entirely on the local device. The
“algorithm” label indicates that our algorithm gener-
ates the task mapping. Compared with our previous
data [9], we see that, as expected, the benefit of offload-
ing decreases due to the overhead of IPsec. The average
energy reduction rate (excluding the locally processed
cases) decreases from 66% to 50%. Nevertheless, of-
floading still achieves significant energy-saving for the
handheld device.

For untoast and pegwit/encrypt, if we continued
to apply the same task partition as in our previous
experiments, the energy consumption would have been
26% and 65% higher than that of running locally.

Figure 7 compares the average electrical current
drawn during execution. The “w/o IPsec” label means
the code generated by our algorithm in insecure wire-

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

en
co
de

de
co
de

ra
wc
au
di
o

ra
wd
au
ti
o
ep
ic

un
ep
ic

gh
os
ts
cr
ip
t

to
as
t

un
to
as
t

n
o
r
m
a
l
i
z
e
d
 
c
u
r
r
e
n
t

default
algorithm

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cj
pe
g

dj
pe
g

en
co
de

de
co
de

pe
gw
it
/e
nc
ry
pt

pe
gw
it
/d
ec
ry
pt

pg
p/
en
cr
yp
t

pg
p/
de
cr
yp
t

n
o
r
m
a
l
i
z
e
d
 
c
u
r
r
e
n
t

default
algorithm

Figure 4. normalized current drawn on the
handheld device using IPsec, where the in-
put and output are separated

less environment. The “w/ IPsec” label means the
code is running under IPsec. The figure shows that,
the computation and networking activities required for
securing the wireless communication does increase the
current by a nontrivial amount (a 18% increase on av-
erage).
Figure 8 shows the running time comparison be-

tween IPsec and insecure wireless. Due to variety of
time for different programs, we normalize data relative
to the baseline which is running on iPAQ. We can see
that for those program which the algorithm decides to
not running locally, the running time can increase sig-
nificantly.

4.4 Impact of Compression

Running IPsec can increase the size of IP datagrams
because of the longer headers. IP Compression proto-
col (IPComp) employs lossless compression algorithms
to reduce the IP datagram size. If the content of the
package has high redundancy, i.e a high compression
radio, IPComp can reduce the network traffic signifi-
cantly. IPComp compresses individual datagrams sep-
arately. A large datagram potentially yields a better
compression ratio. On the other hand, data compres-



0

0.5

1

1.5

2

2.5

en
co
de

de
co
de

ra
wc
au
di
o

ra
wd
au
ti
o
ep
ic

un
ep
ic

gh
os
ts
cr
ip
t

to
as
t

un
to
as
t

n
o
r
m
a
l
i
z
e
d
 
t
i
m
e

default
algorithm

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

cj
pe
g

dj
pe
g

mp
eg
2e
nc
od
e

mp
eg
2d
ec
od
e

pe
gw
it
/e
nc
ry
pt

pe
gw
it
/d
ec
ry
pt

pg
p/
en
cr
yp
t

pg
p/
de
cr
yp
t

n
o
r
m
a
l
i
z
e
d
 
t
i
m
e

default
algorithm

Figure 5. normalized running time on the
handheld device using IPsec, where the in-
put and output are separated

sion does not guarantee energy saving even though the
network traffic is reduced. The CPU energy used for
compression and decompression should also be taken
into account. The effect of IPComp therefor highly
depends on the characteristics of programs.

In order to obtain the parameters needed by our
task mapping algorithms in the IPsec environment us-
ing IPComp, we measure the data throughput and en-
ergy consumption when transmitting and receiving a
range of data sets with different compression ratios.
The compression factor ranges from 18 to 1. We also
varies the datagram sizes. The effective data through-
put for downloading data from the server varies from
2.3Mbps to 4.5Mbps and the electric current ranges
from 460mA to 570mA. The data throughput for up-
load data from iPAQ to server varies from 2.0Mbps to
4.5Mbps and the electric current drawn ranges from
510mA to 580mA.

To evaluate the impact of IPComp on computation
offloading, we remeasure the energy consumption under
IPComp. Figure 9 shows the result of offloading with
all data local. Figure 10 shows the result of offload-
ing with input and output separated and with all data
local respectively. The data are normalized against
the case of local processing running IPsec without IP-

0

0.2

0.4

0.6

0.8

1

1.2

en
co
de

de
co
de

ra
wc
au
di
o

ra
wd
au
ti
o
ep
ic

un
ep
ic

gh
os
ts
cr
ip
t

to
as
t

un
to
as
t

e
n
e
r
g
y

local
algorithm

0

0.2

0.4

0.6

0.8

1

1.2

cj
pe
g

dj
pe
g

mp
eg
2e
nc
od
e

mp
eg
2d
ec
od
e

pe
gw
it
/e
nc
ry
pt

pe
gw
it
/d
ec
ry
pt

pg
p/
en
cr
yp
t

pg
p/
de
cr
yp
t

e
n
e
r
g
y

local
algorithm

Figure 6. normalized energy consumption on
the handheld device using IPsec, with all data
local

Comp. The figures show that the overhead of compres-
sion decreases the benefit of offloading unless the data
transferred are highly compressible data (for example,
ghostscript program performs much better than no-
compression cases.)

5 Related Work

The idea of offloading computation on mobile com-
puters has been explored previously [14, 11, 8, 9, 10],
and most of them assume all data to be local. To the
best of our knowledge, our work is the first to mea-
sure the impact of securing the wireless LAN on the
performance and battery life on handheld devices.

Ramesh Karri [7] examines the energy consumption
characteristics of secure wireless session. Their exper-
iments are performed on Symbol PT2800 Pocket PC
running Windows CE. Their work compares energy
consumption of different algorithms and different pro-
tocols in secure wireless session, but they do not con-
sider computation offloading.



0

100

200

300

400

500

600

en
co
de

de
co
de

ra
wc
au
di
o

ra
wd
au
ti
o
ep
ic

un
ep
ic

gh
os
ts
cr
ip
t

to
as
t

un
to
as
t

c
u
r
r
e
n
t
 
(
m
A
)

w/o ipsec
w/ ipsec

0

100

200

300

400

500

600

cj
pe
g

dj
pe
g

mp
eg
2e
nc
od
e

mp
eg
2d
ec
od
e

pe
gw
it
/e
nc
ry
pt

pe
gw
it
/d
ec
ry
pt

pg
p/
en
cr
yp
t

pg
p/
de
cr
yp
t

c
u
r
r
e
n
t
 
(
m
A
)

w/o ipsec
w/ ipsec

Figure 7. current drawn on the handheld de-
vice for programs using the algorithm, with
all data local

6 Conclusion

In this paper, we measure the energy consumption
characteristics of offloading multimedia applications on
a handheld computer in a wireless network LAN se-
cured with IPsec. Our experiments show that among
25 test cases which previously benefited from offload-
ing, 23 of them remain to benefit. The average energy
saving of offloading is 51% which decreases from the
average of 70% in a nonencrypted environment. The
measurement indicates that, despite the overhead of
the security mechanism, offloading remains quite ef-
fective as a method to reduce program execution time
and energy consumption. In the future work, we shall
further investigate the energy consumption attributed
to different factors, such as communication, encryp-
tion/decryption, and compression/decompression.

References

[1] Shacham A, Monsour R, Pereira R., and Thomas
M. IP payload compression protocol (IPComp).
RFC 2393, December 1998.

0

0.2

0.4

0.6

0.8

1

1.2

en
co
de

de
co
de

ra
wc
au
di
o

ra
wd
au
ti
o
ep
ic

un
ep
ic

gh
os
ts
cr
ip
t

to
as
t

un
to
as
t

n
o
r
m
a
l
i
z
e
d
 
t
i
m
e

w/o ipsec
w/ ipsec

0

0.2

0.4

0.6

0.8

1

1.2

cj
pe
g

dj
pe
g

mp
eg
2e
nc
od
e

mp
eg
2d
ec
od
e

pe
gw
it
/e
nc
ry
pt

pe
gw
it
/d
ec
ry
pt

pg
p/
en
cr
yp
t

pg
p/
de
cr
yp
t

n
o
r
m
a
l
i
z
e
d
 
t
i
m
e

w/o ipsec
w/ ipsec

Figure 8. normalized running time on the
handheld device for programs using the al-
gorithm, with all data local

[2] Nikita Borisov, Ian Goldberg, and David Wag-
ner. Intercepting mobile communications: the in-
security of 802.11. In 7th Annual International
Conference on Mobile Computing and Networking,
Rome, Italy, July 2001.

[3] IP Security Protocol (IPSEC) Char-
ter. http://www.itef.org/html.charters/ipsec-
charter.html.

[4] James W. Davis. Power benchmark strategy for
systems employing power management. IEEE In-
ternational Symposium on Electronics and Envi-
ronment, 1993.

[5] Kinshuk Govil, Edwin Chan, and Hal Wasserman.
Comparing algorithms for dynamic speed-setting
of a low-power cpu. Proceedings of the First In-
ternational Conference on Mobile Computing and
Networking, MobiCom’95, pages 13–25, November
1995.

[6] David P. Helmbold, Darrell D. E. Long, and Bruce
Sherrod. A dynamic disk spin-down technique
for mobile computing. Proceedings of the second
annual ACM International Conference on Mobile
Computing and Networking, November 1996.



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

en
co

de

de
co

de

ra
wca

ud
io

ra
wda

ut
io

ep
ic

un
ep

ic

gh
os

tsc
rip

t
to

as
t

un
to

as
t

n
o

rm
al

iz
ed

 e
n

er
g

y

w/o ipcomp
w/ ipcomp

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

cjp
eg

djp
eg

en
co

de
de

co
de

pe
gw

it/e
nc

ry
pt

pe
gw

it/d
ec

ry
pt

pg
p/

en
cr

yp
t

pg
p/

de
cr

yp
t

n
o

rm
al

iz
ed

 e
n

er
g

y

w/o ipcomp
w/ ipcomp

Figure 9. normalized energy consumption on
the handheld device using IPsec w/ compres-
sion (all data are local)

[7] Ramesh Karri and Piyush Mishra. Minimization
of energy consumption of secure wireless session
with qos constraints. In Proceedings of IEEE In-
ternational Conference on Communications, New
York city, NY, April 2002.

[8] Ulrich Kermer, Jamey Hicks, and James M. Rehg.
A compilation framework for power and energy
management on mobile computers . In 14th
International Workshop on Parallel Computing
(LCPC’01), August 2001.

[9] Zhiyuan Li, Cheng Wang, and Rong Xu. Compu-
tation offloading to save energy on handheld de-
vices: A partition scheme. In International Con-
ference on Compiler, Architecture and Synthesis
for Embedded Systems, pages 238–246, Atlanta,
Georgia, November 2001. ACM Press.

[10] Zhiyuan Li, Cheng Wang, and Rong Xu. Task al-
location for distributed multimedia processing on
wirelessly networked handheld devices. In Interna-
tional Parallel and Distributed Processing Sympo-
sium, Fort Lauderdale, Florida, April 2002. IEEE
Computer Society Press.

0

0.5

1

1.5

2

2.5

3

3.5

4

en
co

de
de

co
de

ra
wca

ud
io

ra
wda

ut
io

ep
ic

un
ep

ic
gh

os
tsc

rip
t

to
as

t
un

to
as

t

n
o

rm
al

iz
ed

 e
n

er
g

y

default
algorithm

0

0.5

1

1.5

2

2.5

3

3.5

cjp
eg

djp
eg

pg
p/

en
cr

yp
t

pg
p/

de
cr

yp
t

pe
gw

it/e
nc

ry
pt

pe
gw

it/d
ec

ry
pt

m
pe

g2
en

co
de

m
pe

g2
de

co
de

n
o

rm
al

iz
ed

 e
n

er
g

y

default
algorithm

Figure 10. normalized energy consumption
on the handheld device using IPsec w/ com-
pression (input and output are separated)

[11] Mazliza Othman and Stephen Hailes. Power con-
servation strategy for mobile computers using load
sharing. Mobile Computing and Communications
Review, 2(1):44–50, January 1998.

[12] Friend R and Timothy M. IP compression using
LZS. RFC 2395, December 1998.

[13] Pereira R. IP payload compression using DE-
FLATE. RFC 2394, December 1998.

[14] Alexey Rudenko, Peter Reiher, Gerald J. Popek,
and Geoffrey H. Kuenning. Saving portable com-
puter battery power through remote process ex-
ecution. Mobile Computing and Communications
Review, 2(1):19–26, January 1998.


