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Abstract

Array dataflow information plays an important role for successful automatic parallelization of Fortran
programs. This paper proposes a powerful symbolic array dataflow analysis to support array privatization
and loop parallelization for programs with arbitrary control flow graphs and acyclic call graphs. Our
scheme summarizes array access information using guarded array regions and propagates such regions
over a Hierarchical Supergraph (HSG). The use of guards allows us to use the information in IF
conditions to sharpen the array dataflow analysis and thereby to handle difficult cases which elude other
existing techniques. The guarded array regions retain the simplicity of set operations for regular array
regions in common cases, and they enhance regular array regions in complicated cases by using guards to
handle complex symbolic expressions and array shapes. Scalar values that appear in array subscripts and
loop limits are substituted on the fly during the array information propagation, which disambiguates the
symbolic values precisely for set operations. We present efficient algorithms that implement our scheme.
Initial experiments of applying our analysis to Perfect Benchmarks show promising results of improved
array privatization.

Key words: Parallelizing compiler, array dataflow analysis, interprocedural analysis, array privatization,
symbolic analysis.

1 Introduction

Recent experiments show that there exists significant performance difference between automatically and
manually parallelized codes [7, 8]. Omne important factor causing such a discrepancy is related to array
variables. Quite often, array elements written in one iteration of a DO loop are used in the same iteration
before being overwritten in the next iteration. This kind of arrays usually serves as a temporary working
space within an iteration and the array values in different iterations are unrelated. Using the same array
for all iterations causes unnecessary loop-carried output and anti- dependences [20, 2] which prevent DO
loops from being parallelized. Array privatization is a technique that creates a distinct copy of an array for
each processor such that storage conflicts can be eliminated without violating program semantics. Table 1
summarizes the effect of array privatization on five Perfect benchmarking programs [22, 13, 12]. The fourth
column of Table 1 shows the percentage of the sequential execution time (over the whole program) of each
loop which is made parallel after array privatization. This percentage indicates the significance of each loop.
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DAAHO04-95-C-0008, the content of which does not necessarily reflect the position or the policy of the government, and no
official endorsement should be inferred. This work is also supported in part by the National Science Foundation, Grant
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Table 1: Summary of loops and privatization techniques
Program Routine Loop! | % of | T1? | T2% | T3?
/Loop Spdup | Seq
TRACK nlfilt/300 5.2 40% | No | No | Yes

MDG interf/1000 6.0 90% | Yes | Yes | Yes
poteng/2000 5.2 8% | No | No | Yes
TRFD olda/100 16.4 | 69% | Yes | No | No
olda/300 12.3 | 29% | Yes | No | No
OCEAN | ocean/270 8.0 3% | Yes | Yes | Yes
ocean/480 6.1 4% | Yes | Yes | Yes
ocean/500 6.5 3% | Yes | Yes | Yes
ARC2D filerx/15 4.0 7% | Yes | Yes | No

filery/39 4.0 7% | Yes | No | No
stepfx/300 3.0 21% | Yes | No | Yes
stepfy /420 3.0 16% | Yes | No | Yes
1: Speedup is over sequential time. Speedups for ARC2D loops are estimates based on the
maximal number of parallel iterations. Speedups for all others are measured on Alliant Fx/8

of 8 processors with vector units in each [13].
2: T1: Symbolic Analysis. T2: IF Condition Analysis T3: Interprocedural Analysis.

Array privatization requires a thorough analysis of array data flow and often involves the handling of
routine calls. While the effects of IF conditions and CALL statements are shown to be important in practice
[22, 37], no existing works handle such cases. The examples in Figure 1 illustrate such cases. In these
three examples, privatizing the array A will make it possible to parallelize the I loops. Figure 1(a) shows
a simplified version of a loop from the MDG program (routine interf) [6]. It is a difficult example which
requires inferences between IF conditions. Although both A and B are privatizable, we will discuss A only,
since B is a simple case. Suppose that the condition (kc.NE.0) is false and, as the result, the last loop with
index K within loop I gets executed and A(6 : 9) gets used. We want to determine whether A(6 : 9) may
use values written in previous iterations of loop I. The condition (ke.NE.Q) being false implies that, within
the same iteration of I, the statement kc = kc+ 1 is not executed. Thus, another condition (B(K).GT.cut2)
is false for all K = 1,---,9 of the first DO loop with index K. This fact further implies that the condition
(B(K +4).GT.cut2) is false for K’ = 2,--+,5 of the second DO loop with index K, which ensures that A(6 : 9)
gets written before its use in the same iteration I. Therefore, A is privatizable in loop I.

Figure 1(b) illustrates a simplified version of a segment of the ARC2D program(routine filerx)[6]. Using
existing algorithms[27, 22, 37], an use of A(jmaz) will be deemed as possibly upwards exposed [1, ch 10]
in each iteration, and A(jmax) is also deemed as possibly written in the previous iterations. Therefore the
existing algorithms would assume a loop-carried flow dependence which prevents array A to be privatized.
However, a closer examination reveals that the condition (.NOT.p) is invariant for DO loop I. As the result,
if A(jmaz) is not modified in one iteration, which exposes its use, A(jmax) should not be modified in any
iteration. Therefore, A(jmax) never uses any value written in previous iterations of I. Moreover, it is casy
to see that the use of A(jlow : jup) is not upwards exposed. Hence, A is privatizable and loop I is a parallel
loop. In this example, the IF condition being loop invariant guarantees that there are no loop-carried flow
dependences.

Figure 1(c¢) shows a simplified version of a segment of the OCEAN program(routine ocean)[6]. Interpro-
cedural analysis is needed in this case. In order to privatize A in the I loop, the compiler must recognize
the fact that the use of array A must take the values defined in the same iteration of I because if a call to
out in the I loop does use A(1: m), then the call to in in the same iteration must modify A(1: m). This
is because the condition (# > SIZE) in subroutine out implies the condition (z > SIZE) in subroutine
in. For all three examples above, it is also necessary for the compiler to manipulate symbolic expressions.



DO I=1, nmoll DOI=1,/4 DOI=1n
ke=0 DO J = jlow, jup T = ...
DO K=1,9 A(J) =. call in(A, z, m)
B(K) = . ENDDO
IF(B(K).GT.cut2) ke=kc+1 call out(A, =, m)
ENDDO IF (NOT.p) ENDDO
A(jmaz) = . SUBROUTINE in(B, =, mm)
DO K=2.5 ENDIF IF (z>SIZE) RETURN
IF(B(K+4).GT.cut2) goto 1 DO J =1, mm
A(K+4) = DO J = jlow, jup B(J) = .
1: ENDDO .= A(J) + A(jmaz) ENDDO
ENDDO
IF (ke.NE.0) goto 2 ENDDO
DO K=11,14 SUBROUTINE out(B, z, mm)
themp = . A(K-5). IF (z>SIZE) RETURN
ENDDO DO J = Z, mm
2: = B(J)
END
(a) (b) (c)

Figure 1: Examples of Privatizable Arrays.

To summarize the above, a powerful compiler must handle IF conditions and perform symbolic analysis
and interprocedural analysis. Table 1 lists information from several Perfect Benchmark programs, in which
the last three columns show the techniques needed to privatize arrays within each loop. It is important
to note that the difference between the handling of IF statements and the handling of IF conditions. In
traditional dataflow analysis, IF statements may be handled by conservatively merging information from all
branches without considering the contents of the IF conditions. Such a treatment is insufficient for the cases
in Figure 1.

Previous works on array dataflow analysis can be divided into two categories. The first one attempts to
gather flow information for each array element and to acquire an exact, complete array data flow information
for all array elements. Feautrier [14] suggests to establish a source function for each array use to indicate
which definitions will define the value for each distinct array element of the array use reference. Maydan et
al [27, 28] simplify Feautrier’s method by using a Last-Write-Tree(LWT). Duesterwald et al [11] compute
the dependence distance for each reaching definition within a loop. Pugh and Wonnacott [32] use a set
of constraints to describe array dataflow problems and solve them basically by Fourier-Motzkin variable
elimination. Most works in this category so far do not handle IF statements, symbolic expressions, or routine
calls because these complications make the computation of source functions, LWT’s, dependence distances,
or the operations on constraints more difficult. Recently, Maslov [26] extends the previous works in this
category by handling certain IF conditions, but he restricts the program to be well structured and to have
no multiple exits from structures, which is not the case in many practical programs. Maslov does not discuss
how to legally propagate IF conditions for symbolic comparison. In the second category, array elements are
not analyzed individually. Instead, a set of array elements of a regular shape, called a regular array region
or section, is treated as a single unit. Simple set operations such as union, intersection, and difference, are
performed on such units. Works by Gross and Steenkiste [16], Rosene [33], Li [22], Tu and Padua [37], and
Granston and Veidenbaum [15], can roughly be included in this category. These works do not provide as
many details about reaching-definitions as the first category. However, they handle more complex program
constructs such as IF statements. Neither of those two categories, however, has taken the IF conditions into
account except Tu and Padua’s work, in which the handling of IF conditions is mensioned briefly and seems
not to be in a systematic way. Hence, existing array dataflow algorithms are not sophisticated enough to
handle practical programs such as those in Table 1.



In this paper, we present an interprocedural symbolic array dataflow analysis which takes not only IF
statements into account , but also IF conditions. Our analysis belongs to the second category mentioned
above in that we normally perform set operations on regular array regions such as rectangles, and we are
not concerned about reaching-definitions for individual array elements. However, in order to take account
of IF conditions under which an array reference is issued and to represent the set operation results in the
presence of symbolic terms, we introduce a reference predicate which further qualifies a regular array region.
Using such a guarded array region{GAR) to summarize array references during propagation is unique to
our method of array dataflow analysis. The GAR’s retain the simplicity of set operations for regular array
regions in common cases, and they enhance regular array regions in complicated cases by using guards to
handle complex symbolic expressions and array shapes. Scalar values that appear in array subscripts and
loop limits are substituted on the fly during the array information propagation, which disambiguates the
symbolic values precisely for set operations. Our analyzer handles Fortran programs in particular, but it can
be extended to handle other imperative languages. The analyzer uses the array dataflow analysis results to
privatize arrays and to parallelize DO loops.

The remaining of the paper is organized as follows. Section 2 presents the background. Section 3 discusses
GAR operations and the applications of GAR’s for array privatization and loop parallelization. Section 4
gives algorithimns to collect and manipulate summary information. Section 5 discusses a few extensions and our
current implementation. Section 6 reports our preliminary experiments with automatic array privatization.
We conclude this paper in Section 7.

2 Background

In this section, we provide the background of this paper, especially the difference between conventional data
dependence analysis and our array dataflow analysis.

Array dataflow analysis refers to computing the flow of values for array elements. It can be described
as follows: given one or several use references of an array, find their reaching-definitions, i.e. the mod
(modification) references which produce the values for those references; or reversely, given one or several mod
references of an array, find the use references which consume the values written by those mod references.
Array dataflow analysis can be at a very low level, analyzing reference by reference and even element by
element. It can also be at a higher level, analyzing program segments rather than individual references. For
array privatization and loop parallelization, analysis at the loop iteration level normally suffices.

Conventional data dependence analysis is the predecessor of all current works on array dataflow analysis.
In his pioneering work, D.J. Kuck defines flow dependences, anti- dependences and output dependences [20].
While the latter two are due to multi-assignments in imperative languages, a flow dependence is defined
between two statements, one of which reads the value written by the other. Thus, the original definition of
flow dependences is precisely a reaching-definition relation. Nonetheless, early compiler techniques were not
able to compute array reaching-definitions and therefore, for a long time, flow dependences are conservatively
computed by asserting that one statement depends on another if the former may execute after the latter
and both may access the same memory locations. Thus, the analysis of all three kinds of data dependences
degenerates to the problem of memory disambiguation, which is insufficient for array privatization. There
exist three main approaches to memory disambiguation. The first one, numerical methods, establishes
algebraic equations between array subscripts and determines whether the equations are solvable subject to
the loop limits and dependence directions [4, 5, 31, 24, 25, 19, 38]. Numerical methods normally do not
apply to array subscripts and loop limits that contain unknown symbolic terms[34]. The second approach,
originally proposed to handle call statements, uses array range triples to represent regular array regions
which summarize the array elements accessed by one or several references [10, 17, 3, 9]. The third approach,
which is the most general but also the most time consuming, represents the set of referenced array elements



by a set of inequalities and equations and uses Fourier-Motzkin pairwise elimination or integer programiming
to determine the feasibility of the set [21, 36, 35, 31]. The third approach can take IF conditions into account,
while the other two do not. Pugh and Wonnacott [30] also discuss an extension of the Omega test [31] which
computes certain array reaching-definitions for special cases without IF statements.

In this paper, we adopt a combination of the array range triple representation and the (in)equality
representation to summarize array references. We use such summaries to perform array dataflow analysis
which is much more powerful than conventional data dependence analysis.

3 Guarded array regions

In order to perform array privatization automatically, array reference information must be summarized for
program segments. We adopt a format called guarded array regions(GAR’s) for the summaries. A GAR
contains a regular array region and a guard. In the following, we define our regular array regions first and
then define GAR’s.

Definition A regular array region of array A is denoted by A(r1,7r2,---,7,,), where m is the dimension
of A, r;, ¢ = 1,---,m, is a range in the form of (! : u : s), and [, u, s are symbolic expressions. The triple
(I : w: s) represents all values from ! to u with step s. An empty array region is represented by ) and an
unknown array region is represented by €.

The regular array region defined above is more restrictive than the regular sections used in the ParaScope
environment at Rice University [10, 3, 17]. Where more complex array shapes arise, however, we can always
add more information to the guards in GAR’s to describe the shapes more precisely (more on this issue in
Section 5), which we have not found necessary for array privatization in practice so far. The primary purpose
of the guards, nonetheless, is to describe IF conditions under which regular array regious are accessed.

Definition A guarded array region(GAR) is a tuple [P, R] which contains a regular array region R and a
guard P, where P is a predicate that specifies the condition under which R is accessed. We use A to denote
a guard whose predicate cannot be written explicitly, i.e. an unknown guard. If both P = A and R = (2, we
say the GAR [P, R] = Q is unknown. Similarly, if either P’ is False or R is §), we say [P, R] is (.

Note that if R contains symbolic terms, then the inequalities implied by the valid ranges of R are explicitly
included in P. Thus, the emptiness of [P, R] can be detected by examining P only. For any given program
segment, we use GAR’s to summarize the sets listed below. The side effect of a program segment can be
captured completely by these mod sets and upwards exposed sets. Since we use guards, all these sets are
exact sets unless the GAR’s contain unknown components.

o UE — The set of the upwards exposed array elements which are used within this segment and take
values defined outside this segment.

e UE; — For an arbitrary iteration i of a DO loop, the set of the upwards exposed array elements which
are used within this iteration and take values defined outside this iteration.

o MOD — The set of array elements written within this segment.

e MOD; — For an arbitrary iteration ¢ of a DO loop, the set of the array elements written within that
iteration.

o MOD; — For an arbitrary iteration 7 of a DO node, the set of the array elements written within the
iterations prior to i.

Ut
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Figure 2: Overview of reference tuple and expression operations

e MOD-; — For an arbitrary iteration 7 of a DO node, the set of the array elements written within the
iterations following i.

Take Figure 1(c) for example. For loop J of subroutine in, UE; is empty and MOD; equals [True, B(j : j : 1)]
(or [True, B(j)]), therefore MODjis [1 < j,B(1:j—1:1)] and MOD~;is [j < mm,B(j+1:mm:1)].
The set MOD for the loop J is [1 < mm,B(1 : mm : 1)]. Thus, the set MOD of subroutine in is
[@ < SIZEA1 < mm,B(1:mm: 1)]. Similarly, UE; for loop .J of subroutine outis [T'rue, B(j : j : 1)], and
UE for the same loop is [1 < mm,B(1 : mm : 1)]. The set UFE of the subroutine out is [+ < SIZEA1 <
mm, B(1: mm : 1)].

3.1 Operations on GAR’s

The work in this paper requires three kinds of operations on GAR’s, namely, union, intersection, and
difference. These operations in turn are based on union, intersection, and difference operations on regular
array regions as well as logical operations on predicates. Since symbolic terms may appear in both arithmetic
expressions and predicates, we implement a GAR simplifier and a predicate simplifier to simplify GAR’s and
predicates. Figure 2 gives a diagram to show the componentsin our analyzer that handles GAR operations.
The general expression operation library provides routines performing the operations of addition, subtraction,
multiplication, and division with an integer counstant divisor on integer symbolic expressions, which are
normalized to an ordered sum of products. The predicate operation Library provides routines which perform
operations such as AND, OR, and NOT as well as the other logical operators in FORTRAN on predicates
written in an ordered conjunctive normal form(CNF). The GAR simplifier simplifies GAR’s and removes
redundant ones. The predicate stmplifier is used to determine whether a predicate in a GAR is false or
true and to remove redundant predicate components. If symbolic expressions become too complex, e.g. if
they contain multiplications of more than one index variable, then the described array regions are marked
as unknown. We leave the discussion of the simplifiers to Section 5 and focus on the definitions of GAR
operations and regular array regions in this subsection.

In most cases in practice, the results of GAR operations are quite simple. However, in general, we need
to use a list of GAR’s as a representation for the UE and M OD sets defined previously. An important note
to make is that for the ranges in a regular array region, the requirement that the lower bound never exceeds
the upper bound is always imposed explicitly by including this condition in the guard. (Where no confusion



results, however, we may omit such conditions in our representation in this paper just for simplicity.).
This treatment allows the operations on range triples to proceed in a straightforward way without having
to distinguish many different cases. As an example, consider two GAR’s T7 = [@ < b,A(e : b : 1)],
Ty =[b<c A(b:c:1)]. As we will define later, we have

WU = [a<bAb<c,Ala:b:1)UA(b:c:1)]
Ula <bAb>c,Ala:b:1)]UJa >bAb < c,A(b:c: 1))

where A(a:b:1)UA(b: c: 1) can be merged into A(a: ¢: 1) without the concern of whethera > borb > ¢
is the case.

Regular array region operations: In general cases, the results of regular array region operations may bhe
a list of several regular array regions instead of just one, possibly with new conditions produced. So, we use
a list of GAR’s to represent them.

In order to decompose regular array region operations into the operations on different array dimensions,
it is convenient to use the notation of guarded ranges which impose conditions on symbolic terms which
appear in range triples. For example, [True,(1:10: 1)] is a one-dimensional guarded range and [c < d, (¢ :
d:1,c:d+1:1)]is a two-dimensional guarded range. Thus, a regular array region of a m-dimensional array
A can be written as an m-dimensional guarded range. As operands of the region operations must belong to
the same array, we will drop the array name from the array region notation hereafter whenever there is no

. . . D] .
confusion. Given two regular array regions, Ry = A(r{,rd,---,rL), Ro = A(r?,r3,---,72)), where m is the
dimension of array A, we define the following operations:

e RiNRy: For the sake of simplicity of presentation, here we assume steps of 1 and leave Section 5 to

discuss other step values. Let r} = (I} 1 ul 1 1), 72 = (12 :u?:1),i=1,---,m. Let D; be rl Nr?, we
have D; = [True, (maxz(1},12) : min(u},u?) : 1)]. We handle the maxz and min operations by replacing

them with inequalities as shown in the following formula:

D; =[I} <G Au} <u? (IZ:u):1)U
(1< lz Aup > u?)(ll2 cu? 1)U
(1> Au} <u? (1l 1)U
[lF > A} > i, ([ a2 1)
=Ujo1,al 1 di]
where pg,df,j =1,---,4 are:
pr=U<CAut<udy df=(:ul:1)
pz = l% < Ig A 1121 > u,z; dg = (lli : u;j : 1)
pi =1 > 1 ANujp < ufs di:(li:u,.,izl)
pi =1 > B Aul > df = (I} u?: 1)

Then Ry N Ry equals:

0 ' ' 3.D; =0
Ups o ettt Ao Al (0o dig)] - Otherwise

One should realize that in practice, the intersection is usually much simpler than the above general
formula indicates, as many of the unioned components can be immediately recognized as empty. For
example, let 7} = (¢ : 100 : 1) and 7? = (b: 100 : 1). We have r} Nr? = [a > b,(a: 100 : 1)] U [a <
b,(b: 100 : 1)]. Note that we do not keep max and min operators in a regular array region. Instead,
we replace them by explicit inequalities and place them in the guards, which makes it possible for our
simplifiers to remove empty and redundant GAR’s as early as possible.



o i URy: If the union can be represented as one regular array region Rj, then the result is Rs.
Otherwise, the result is a list of two regular array regions R;, Ry. For example, (1:a: 1)U (a+1:
100:1)=(1:100:1).

o 11 — Ry: For an m-dimensional array, the general result of the difference operation is 2™ regular
regions if each range difference results in two new ranges, whose representation could be quite complex
for large m. However, it is useful to describe the general formulas of set difference operations. Suppose
Ry O Ry ( otherwise, use Ry — Ry = Ry — Ry N Ry). We first define Ry (k) and Ry(k), k=1,---,m, as
the last k ranges within Ry and R; respectively. We have Ri(m) = (r}, r%, r%, e ,7‘2n) and Ry(m) =
(r2,r3,r3,---r2), and Ry(m — 1) = (rd,rd, - rl) and Ro(m — 1) = (r2,03,---,12,)), for example.
The computation of Ry — R is recursively given by the following formula:

/ IR T Ifm=1
By (m) = Fo(m) = { (r{ —rird el r YU (P2, (Biy(m —1) — Re(m —1))) Ifm>1

m

In general, r{ — r{ splits into two guarded ranges(see Section 5). Let them be [py,d]] U [p2, d?], where
dl and d? are ranges. Rj(m — 1) — Ry(m — 1) is in turn calculated by reusing the above formula.
Assuming the final result of Ry(m — 1) — Ry(m — 1) is

Ri(m—1)=Ry(m =1y = | J [P;.(d].d5. -, di,)],
=1,k

we then have,

(r% - 7%) = [plvd%] U [de%] )
(’1 - "'%*7'%*7%* e 77'371) = [[)17 (d%f"%a"'%a T -,7"1171)].U [p27 (d%,l%,l%, T *’}n)]
(rf, (Bi(m = 1) = Ro(m = 1)) = Ujoy . 1 [P (rF o ds df, - -+ )]

The final result of Ry — Ry is equal to R, ('m) — Ry (m) which is a list of m-dimensional guarded ranges.
For example,
(1:100:1)—(a:30:1)=[1<a,(1:a—1:1)]U[True,(31:100: 1)].
(1:100:1,1:100:1)—(20:30:1,¢:30:1)
=((1:100:1)-(20:30:1),1:100:1) U(20:30:1,(1:100:1) — («:30:1))
=[True,(1:19:1,1:100: 1)] U[True,(31:100:1,1:100: 1)]
Ul<a,(20:30:1,1:a—=1:1)] U[True,(20:30:1,31:100: 1)].

—

GAR operations: Since the result of regular region operations may be written as guarded ranges(see
above), to facilitate the presentation of GAR operations, we find it convenient to use a notation [[P, Tlist]],
where Tlist is a list of GAR’s instead of a single regular array region. Given Tlist = Uj:l,---,k[Pj7Rj]?
[P, Tlist]] stands for Uj:1,~~,k[Pj A P, R;]. We call the notation [[P,Tlist]] a nested GAR.

Given two GAR’s, Ty = [Py, R1] and Ty = [P», Ry], we have the following:

[ ] TlﬂTQI[[Pl/\PQ,Rl mRz]]

L] T] UTZ = [[P] /\Pg,R] URz]] U [P1 /\E,R]] U [FAPz.Rz]
The above formula can be simplified in the following three common cases:

— If P, = P,, the union becomes
[[P1, Ri UR)JU [P A Py, Ry
— If P, = Py, the union becomes

[P, Ri URy)JU[P, A Py, Ry]



— If Ry = Ry, the result is
[PV Py, Ry]

L] T] —Tz Z[[P1 /\Pz,R] —Rz]]U[P1 /\E,R]]

The results of regular array region operations are often simple in practice and the emptiness of the result is
easy to detect. Hence, GAR’s retain the efficiency of regular array region operations in common cases, while
enhancing the precision when necessary.

3.2 Applications of GAR’s
3.2.1 Array Privatization

An array A is a privatization candidate in a loop L if its elements are overwritten in different iterations of
L (see [22]). Such a candidacy can be established by examining the array subscripts: if the subscripts of
array A do not contain any induction variables of L, then A is a candidate [22]. A privatization candidate is
privatizable if there exist no loop-carried flow dependencesin L. For an array A in a loop L with an index I, if
MOD_;NUE; = 0, then there exists no flow dependence carried by loop L. Take Figure 1(c) for example, A
is obviously a privatization candidate. We have UE; = (), mod<; = [# < SIZEAL < mAl1 < i, A(1:m:1)],
and MOD_;NUE; = MOD;N = @. So A is privatizable within loop I. As this example shows, the
emptiness of the UE set can serve as a simple sufficient condition for privatizability.

Live analysis must be performed for privatized arrays in order to determine whether and which last

values of the privatized arrays must be copied out of the DO loop. Previous works have addressed this issue
[22, 37, 27].

3.2.2 Loop parallelization

The essence of loop parallelization is to prove the absence of loop-carried dependences. For a given DO loop
L with index I, the existence of different types of loop-carried dependences can be detected in the following
order:

1. loop-carried flow dependences: They exist if and only if UE; N MOD_; # .
2. loop-carried output dependences: They exist if and only if MOD; N (MOD.;UMOD-;) # 0.

3. loop-carried anti- dependences: They exist if and only if UE; N MOD-~; # ().

This formula is valid in the absense of loop-carried output dependences. It is applied only after our
algorithm successfully proves the absence of loop-carried flow and loop-carried output dependences in
step 1 and 2. (If loop-carried anti- dependences are considered separately, they should be detected
using D E; instead of UE; in the above formula, where D E; is the downwards exposed use set of iteration

i)

Although the formulas above resemble those in previous works, e.g. [10], previous works do not use the
flow-sensitive sets and thus are less precise.



IF (X >10) THEN
B= 10
CALL subl(A B)
ELSE
B=20
CALL subl(A B)
ENDIF
C=..

SUBROUTINE subl(A,M)

DOI=1,m ’
g sfoorim | )
ENDDO

END

Figure 3: Example of the HSG.

4 Algorithms for symbolic array dataflow analysis

In this section, we present algorithms to calculate the MOD and UFE information by propagating the GAR’s
over a hierarchical supergraph (HSG). The HSG in this paper is an enhancement of Myers’ supergraph [29]
which is a composition of the flow subgraphs of all routines in a program. In a supergraph, each call statement
is represented by a node, termed a call node in this paper, which has an outgoing edge pointing to the entry
node of the flow subgraph of the called routine. The call node also has an incoming edge from the unique
exit node of the called routine. To facilitate the information summary for DO loops, we add a new kind of
nodes, the loop nodes, to represent DO loops. The resulting graph, which we call the hierarchical supergraph
(HSG), contains three kinds of nodes — basic blocks, loop nodes and call nodes. An IF condition itself
forms a single basic block node. A loop node is a compound node which has its attached flow subgraphs
describing the control flow within the DO loop. Due to the nested structures of DO loops and routines,
a hierarchy is derived among the HSG nodes, with the flow subgraph at the highest level representing the
main program. The HSG resembles the HSCG used by the PIPS project [18]. Figure 3 and Figure 5 show
two HSG examples. Note that the flow subgraph of a routine is never duplicated for different calls to the
same routine unless the called routine is duplicated to enhance its potential parallelism. We assume that
the program contains no recursive calls. For simplicity of presentation, we further assume that a DO loop
does not contain GOTO statements which make premature exits. We also assume that the HSG contains no
cycles due to backward GOTO statements. Our implementation, however, does take care of multiple exits
in DO loops and backward GOTO statements, making conservative estimates when necessary(see Section
5). In the flow subgraph of a loop node, the back edge from the exit node to the entry node is deliberately
deleted, as it conveys no additional information for array summaries. Under the above assumptions and
treatment, the HSG is a hierarchical dag (directed acyclic graph). The following subsection presents the
information summary algorithms.

4.1 Summary Algorithms

As listed in Section 3, the summary information of our interest has two main kinds, the M OD summary and
the U E summary. One unique aspect of this paper is that, because we attach guards to regular array regions,
the calculation of the M OD information involves only union operations. (One needs to carefully distinguish
our MOD summary from the conventional kil set summary which requires the intersection of the MOD
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sets at the IF statements because the conventional summary does not include guards.) The calculation of
the UE information, on the other hand, requires all three kinds of set operations.

We present algorithms for computing the MOD and UFE information in this subsection. As the whole
computation involves many delicate details, it is necessary to leave the nonessential ones out of the discussion
due to the space limit. Throughout the remaining of the text, wherever no confusion results, we refer to the
program segment represented by a HSG node by the node itself.

We first define an ezpansion function which is invoked by the information summary algorithms.
Expansion

For a loop with index ¢, where | < i < u, and a GAR, T, if T does not contain ¢ in its representation, then
the expansion of T by ¢ is T itself. If T" contains ¢ in its representation, then the expansion of T' by 7 is a
GAR obtained by the following steps:

o If ¢ appears in the guard of T, then i should be solved from the guard which, in general, is written
as I’ <7 < v/, where I’ and ' may be symbolic expressions. We obtain new bounds on ¢ which is
max(l',1) <i < min(u',u). The inequalities and equalities involving i in the guard are then deleted.

e If s appears in only one dimension of T and the result of substituting I < ¢ < w, or the new bounds on
i obtained above, into the old range in that dimension can still be represented by a range (I : v/ : "),
then we replace the old range by (I : u” : s”). Recall that the condition of I < u' is placed in the
guard and must be checked whenever necessary.

o If. in the above, the result of substitution of I < ¢ < u into the old range can no longer be represented
by a range, then mark that dimension as Q (unknown).

e If ¢ appears in more than one dimension of T, then these dimensions are marked as {2.

As an example, suppose a DO loop indexed by ¢ has loop bounds @ < ¢ < b. Further suppose the given GAR
isT=[c<i+1<d,(1:¢:1)]. As the result of solving i from the guard, we have new bounds on 7 which
are maz(a,c — 1) < i < min(b,d — 1). The expansion of T by i is [True,1 : min(b,d — 1) : 1)]. The max
and man operations are then replaced by explicit conditions as described in Section 3.

We now present our algorithms for information summary propagation. The algorithms SUM_segment,
SUM_call, and SUM_loop are indirectly recursive. Figure 5 shows a complete example to illustrate the steps
of the following algorithms. For simplicity, these algorithms are applied to one array only (In concept, the
summary of more than one array can be acquired by applying these algorithms once for each of these arrays.
In practice, the algorithms summarize all arrays at the same time).

SUM _segment: The algorithm for computing MOD and UFE for a flow subgraph

Let UE(n) and MOD(n) be the upwards exposed use set and be the mod set for node n respectively, and
let UEIN(n) and MOD_IN(n) be the upwards exposed use set and mod set at the entry point of node n
respectively. The algorithm is given below:

SUM_segment(mod, ue, G(s,e))
/* G(s,e): flow subgraph with starting node s and existing node e. */
/* mod is the mod set of G(s,e). */
/* ue is the upwards exposed use set of G(s,e). */
Step 1: find UE(n) and MOD(n) for cach node n in G(s,e).

FOR each node n in G(s,e) DO

IF (n is a basic block)
SUM_bb(mod(n), ue(n), n);

11



ELSE IF (n is a loop node)
SUM_loop(mod(n), ue(n), n);
ELSE IF (n is a call node)
SUM_call(mod(n), ue(n), u);
ENDFOR
Step 2: Propagate mod and ue of each node backward, from e to s.
mod-in(n) = mod(n) U (Upesyce(n) mod-in(p))
ue-in(n) = ue(n) U (U, eueeqn) we-in(p) — mod(n))
(Note that succ(e) = 0.)

IF (n is a basic block containing IF-condition )
add the condition to the guard of each GAR in mod_in(n) and ue_in(n)

IF any expression in the mod_in(n) and we_in(n) contains a variable that is defined within
n, then that variable must be substituted by the right-hand-side of the defining statement
within n. If the right-hand-side is too complicated, the expression is marked as unknown.
If a variable is defined by a procedure or a function, we propagate information through
the subgraph of this procedure or function.

At the end of the propagation, we have mod = mod-in(s), ue = ue_in(s).

SUM_bb: The algorithm for a basic block
For each basic block, the following algorithm calculates the UE and M OD sets. Note that, in the beginning,
each array region in the basic block represents a single array element.

SUM_bb(mod, upexp, 1)
/* n is the basic block node */
* SUM_bb gives mod and upexp sets *
g pexp

upexp = §; mod = §;
FOR each use u of A, DO
tmp = [True, uf;
FOR each mod m of A such that m is prior to u, DO
tmp = tmp - [True, m];

ENDFOR
upexp = upexp U tmp;
ENDFOR

/* calculate mod */

FOR each mod m of A, DO
mod = mod U [True, m];

ENDFOR

Algorithm for a call node

SUM_call(mod, ue, n)

/* nis a call node */

/* mod is the mod set of n. */

/* ue is the upwards exposed set of n. */
Let G(s,e) be the called subroutine
1. SUM_segment(mod, ue, G(s,e));

2. Map real parameters to the formal parameters in mod and ue.

Algorithm for a loop node



SUM_loop(mod, ue, n)
/* nis a loop node */
/* mod is the mod set of n. */
/* ue is the upwards exposed set of n. */
Let G(s,e) be the subgraph for this loop body.
1. SUM_segment(mod;, ue;, G(s,e));
2.1 Calculate the upwards exposed set:
Compute mod ;;
ue;_out = ue; — mody;
/* expand the we;_out */
ue = expand ue;_out;
2.2 Calculate the mod set:
mod = expand mod;;

5 Extensions and implementation details

In this section, we provide several details and possible extensions which we left out in previous sections. We
also address our current implementation.

5.1 The range operations

In Section 3, we assumed step values of one in the discussion of range intersection. Here, we give a complete
discussion of our treatment for other step values.

To describe the range operations, we use the functions of min(es,ey) and maz(eq,e,) in the following.
However, these functions are removed by the technique stated in Section 3.

Given two ranges 1 and ro, 11 = (Iy 1wy : 51), 12 = (I2 : ug = s2).

1. If51:52:1,
e rNry =
[maz(ly,l2) < min(uy, us), (maz(ly,la) : min(uy,ug) : 51)]
o Assuming r C ry (otherwise use ry —ry =71 — 71 Nra), we have
r—ry = [lh <maz(ly, 1), (I : maz(l,ly)—1: s1)|U[min(ur, ug) < ur, (min(uq,us)+1:ug : s7)]
e Union operation. If (I, > uy + 51) or (I > uy + 52), r1 U7y cannot be combined into one range.

Otherwise, 71 Urg = [True, (min(ly,ly) : maz(uy,ug) : 51)]

2. If s = sy = ¢ > 1, where ¢ is a known constant value, we do the following:
If (I} — I3) is divisible by ¢, then we use the formulas in case 1 to compute the intersection, difference
and union. Otherwise, r{ N7y =@ and r{ — r9 = ry. The union r; U ry usually can not be combined.

3. If 51 = s3 and I} = I3 (which may be symbolic expressions),
then we use the formulas in case 1 to perform the intersection, difference and union.

4. If s1 is divisible by s2, we check if ro covers ry. If so, we have r{ Nry = 71 and r; Ury = r9. For other
cases, we divide ry into several smaller ranges with step sy and then apply the above formulas.

5. Otherwise, the results of intersection and difference are marked as unknown and the union keeps to be
a list of two ranges.
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5.2 The GAR simplifier and the predicate simplifier

The GAR simplifier is the top level simplifier which calls the predicate simplifier. It examines GAR’s to
eliminate redundant ones, and it combines several GAR’s into one if possible. Our analyzer invokes the GAR
simplifier whenever there are changes to GAR’s during the summary propagation.

A predicate is represented by the Conjunctive Normal Form such as Cy A Cy A -+ A C),, where each C},
called a disjunction, which in turn is represented as re; UresU---Ure,,. Each re; is a relational expression in
the form of either (e op 0) or (lvar opl val), where lvar is a logical variable, opl is either = or #, and val is
True or False. The expression (e op 0) is a relational expression, where e stands for an arithmetic expression
and op is a relational operator, <, =, or #. The other relational operators can be easily transformed to a
combination of these three operators.

The predicate simplifier is a key part in the handling of predicates. It is invoked by the GAR simplifier
or by GAR operations whenever there are changes to predicates. There exist powerful, but rather time-
consuming, general methods, such as integer programming, for predicate simplification [30]. Currently, for
the sake of efficiency, we implement a limited simplifier which evaluates the truth value of the conjunction
of two disjunctions or the disjunction of two relational expressions. CNF’s of arbitrary lengths, as defined
in the last paragraph, are handled by feeding one pair of disjunctions (or relational expressions) to the
simplifier at a time. Similarly, the simplifier removes redundant components by examining two disjunctions
or two relational expressions at a time. Simplification involving more than two operands simultaneously is
not implemented yet. This limited simplifier seems to suffice in our experiment so far. However, we plan to
experiment with a more powerful simplifier if the need arises.

IF counditions handled in our implementation do not contain array references. Our implementation can
process IF conditions which contain scalars only. We handle integer conditions more thoroughly than floating
point ones. For induction variables, we first convert them to expressions of index variables, so they will fit our
implementation model. We have not implemented existential and universal qualifiers 3 and V. The example
in Figure 1(a), however, does need this kind of qualifiers to guard the regular array regions. Reduction
systems in the Artificial Intelligence area can certainly handle these more complicated predicates.

5.3 Regular array regions and GAR’s

Regular array regions defined in Section 3 are rectangular regions in which different dimensions are indepen-
dent. To represent nonrectangular regions, our GAR can be extended by introducing a special dimension
symbol v; for each dimension i. For example, the array diagonal A(i,i),i = 1,---,n, can be represented as
a GAR [vn = ¢9, A(1:n:1,1:n:1)]. Similarly, an upper triangle of array A, such as A(d,j),i =1,---,n,
Jj=1,-++,n, becomes a GAR [¢; <92, A(1:n:1,1:n:1)]. A predicate, therefore, may contain two kinds
of conditions, one for restricting array regions and the other for guarding array regions as stated in previous
sections. Our experience with array privatization so far has not required such an extension.

If a GAR or predicate operation involves an unknown operand, the result in general is unknown. However,
unknown GAR’s and predicates can be removed in certain cases. For example, suppose M OD; contains
all elements of array A and MOD5 is ), then MOD, UMOD, = MOD,. As an example for predicate
operations, suppose P, = A. Obviously P, V True = True and Py A False = False. We have implemented
such special cases.



Table 2: Experimental Results on Loops with Privatizable Arrays

Program Routine Array Names Status™
/Loop

TRACK nlfilt/300 | P1,P2,P,PP1,PP2.PP,XSD yes
MDG interf/1000 RS,FF,GG,XL,YL,ZL yes
RL no
poteng/2000 RS.RL.XL,YL,ZL yes
TRFD olda/100 XRSIQ, X1 yes
olda/300 XIJKS, XKL yes
OCEAN | ocean/270 CWORK yes
ocean/480 CWORK, CWORK?2 ves
ocean /500 CWORK yes
ARC2D filerx/15 WORK yes
filery/39 WORK yes
stepfx /300 WORK ves
stepfy /420 WORK yes

*: Status shows whether these privatizable arrays can be automatically privatized now.

5.4 Goto statements

In Section 4, we assumed there exist no backward goto’s and no premature exits out of DO loops. Certain
cycles due to backward goto’s can be transformed to DO loops which can then be covered by our model
in Section 4. For the other cycles due to backward goto’s, we first condense them into condensed nodes
in our HSG. Thus the resulting graph is still a dag. The GAR’s for condensed nodes are conservatively
approximated. For loops with premature exits due to goto’s, we treat loop variant and loop invariant
GAR’s differently. The former are approximated by marking the loop variant components in the GAR’s as
unknown. The latter are propagated precisely by following the exit edges. Since these are special cases, we
do not describe more details.

6 Preliminary experimental results

We have implemented our symbolic, interprocedural array dataflow analysis in our prototyping par-
allelizing analyzer, Panorama, and collected preliminary results for array privatization from some of the
Perfect benchmark programs. The array dataflow analysis is built upon the interprocedural scalar reaching-
definition chains and the Hierarchical Supergraph[23]. Several conventional data dependence tests are also
implemented. The more expensive array dataflow analysis is applied only to loops whose parallelizability
cannot be determined by the conventional data dependence tests. The preliminary results are shown in
Table 2 and Figure 4. The last columun of Table 2 presents the current status of array privatization achieved
by Panorama. Since the current implementation cannot handle subscripts containing subscript variables,
i.e. array elements, we replace subscript variables by their equivalent scalar expressions through forward
substitution by hand if such expressions exist and are needed. For example, suppose A[JM]I]] is an array
reference and the integer array JM is defined as JM[I] = I — 1. We replace JM|[I] with I — 1 so that the
reference to A4 becomes A[I —1]. Such a case happens in ARC2D which uses integer arrays JPLUS, JMINUS
in the subscript expressions. All arrays listed in Table 2 can be privatized under our scheme except array
RL in the MDG program. This case was illustrated in Figure 1(a), where array A is a pseudo name for array
RL. Our implementation is currently unable to deal with this difficult case and the reason has been given
in Section 5.2.
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Figure 4: Comparison between Panorama and F77 concerning resource utilization (The ‘panorama’ bar
includes the parser, conventional loop parallelization algorithms, and our array dataflow analysis in
Panorama. The ‘parser’ bar includes the the Panorama parser only.)

At the time of writing this paper, the Panorama compiler does not generate parallel FORTRAN source
code for any specific machine, although work is underway for Silicon Graphics power challenges. Meanwhile,
we mark parallel loops internally. Thus, no speedup data is available yet. On the other hand, since the
complexity of a sophisticated analysis as ours is of an important general concern, we provide data regarding
the panorama’s execution time and memory requirement.

Figure 4 gives a comparison between Panorama and FORTRAN compiler F77 regarding the elapsed time
and the used memory. FT77 is chosen for comparison because it is familiar to most readers. On the other
hand, other research prototypes that perform analysis similar to ours have not published their execution
time and memory requirement yet. A comparison with F77 gives a good indication whether our analysis is
practical. Execution times shown for both Panorama and F77 are taken from the executions on Sun Sparc
2. The running time of Panorama is shorter than F77 with option -O, which suggests that the time spent by
our analyzer is quite acceptable. However, the maximal memory utilization of Panorama is larger than that
of F77 because the array summary information and interprocedural scalar information can occupy quite a
large amount of memory.

7 Conclusion

Array dataflow information plays an important role for successful automatic program parallelization. How-
ever, existing techniques are not able to perform array dataflow analysis well because of the difficulty
in handling interprocedural array dataflow, IF conditions, and symbolic expressions, resulting significant
difference between automatically parallelized codes from manually parallelized ones.

In this paper, we have proposed a powerful interprocedural symbolic array dataflow analysis to support
array privatization and program parallelization based on a Hierarchical Supergraph(HSG) and guarded array
regions. Symbolic processing is integrated into the process of propagating array access information. The use
of guards allows our analysis to handle IF conditions and to process symbolic terms efficiently.

Preliminary results for array privatization suggest that the prospect of efficient implementation of our
powerful analysis is quite promising. Global privatization results can be obtained efficiently both in the
amount of analysis time and in the amount of required memory. Our future work will focus on developing a
more powerful symbolic manipulator and on improving our dataflow analyzer.
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DOI=1,4
DO J=JLOW, JUP
AQ=...
ENDDO

basic block
2

R 2B

2 sl

basic block
4 3

5

3 IF (.not. P)
s A(MAX) = .... 9
ENDIF
DO J=JLOW, JUP \
.=A) + A(JMAX) \
ENDDO N
ENDDO

basic block
A

% &

.»7 |

basic blcok
6

A simplified loop of ARC2d

A. ue;(1) =7, mod;(1) =?

1. Compute mod and ue for each nodes.
ue(2) = 0; mod(2) = [T, (jlow : jup : 1)]
ue(4) = mod(4) =0
ue(5) = 0; mod(5) = [T, (jmaz)]
we(6) = [T, (ylow : jup : D] U [T, (ymax)]; mod(6) =

Propagate information up.
we_in(6) = ue(6); mod_in(6) = mod(6)
we_in(b) = [jmax < jlow V jmax > jup, (jlow : jup: 1)U
[jlow < jmazx < jup, (jlow : jmaxr —1: 1)U (jmaz + 1 : jup : 1)]
mod_in(5) = [T, (jmaz)]
ue_in(4) = [P, (jlow : jup : 1)]U [P, (jmaz)|U
[P A (jmaz < jlowV jmaz > jup), (jlow : jup : 1)]U
[P A (jlow < jmax < jup), (jlow : jmax —1: 1)U (jmaz + 1 : jup : 1)]
=[P, (jmax)|U [PV jmaz < jlowV jmazx > jup, (jlow : jup: 1)]U
[P A (jlow < jmaz < jup), (jlow : jmax —1: 1)U (jmaz + 1 : jup : 1)]
mod_in(4) = [P, (jmax)]
we_in(2) = [P A (jmax < jlow V jmax > jup), (jmax)]
mod_in(2) = [T, (jlow : jup: D] U [P, (jmaz)]
ue; (1) = uestin(2);  mod;(1) = mod_in(2)

(o)

B. Is array A privatizable 7
mod<;(1) = [i > 1,(jlow : jup: D] U[i > 1A P, (jmaz)]
ue; Nmod<i(1) = [P A (jmaz < jlow V ymaz > jup) Ai > 1, (jlow : jup : 1) N (jmaz)]U
[P A (jmaz < jlowV jmaz > jup) Ai > 1A P, (jmaz)]
= (0 — A is privatizable

Figure 5: Privatizing array A in the example of Figure 1(b).
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