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Abstract

Array data�ow information plays an important role for successful automatic parallelization of Fortran
programs� This paper proposes a powerful symbolic array data�ow analysis to support array privatization
and loop parallelization for programs with arbitrary control �ow graphs and acyclic call graphs� Our
scheme summarizes array access information using guarded array regions and propagates such regions
over a Hierarchical Supergraph �HSG�� The use of guards allows us to use the information in IF
conditions to sharpen the array data�ow analysis and thereby to handle di�cult cases which elude other
existing techniques� The guarded array regions retain the simplicity of set operations for regular array
regions in common cases� and they enhance regular array regions in complicated cases by using guards to
handle complex symbolic expressions and array shapes� Scalar values that appear in array subscripts and
loop limits are substituted on the �y during the array information propagation� which disambiguates the
symbolic values precisely for set operations� We present e�cient algorithms that implement our scheme�
Initial experiments of applying our analysis to Perfect Benchmarks show promising results of improved
array privatization�
Key words� Parallelizingcompiler� array data�ow analysis� interprocedural analysis� array privatization�
symbolic analysis�

� Introduction

Recent experiments show that there exists signi�cant performance di�erence between automatically and
manually parallelized codes ��� 	
� One important factor causing such a discrepancy is related to array
variables� Quite often� array elements written in one iteration of a DO loop are used in the same iteration
before being overwritten in the next iteration� This kind of arrays usually serves as a temporary working
space within an iteration and the array values in di�erent iterations are unrelated� Using the same array
for all iterations causes unnecessary loop�carried output and anti� dependences ��
� �
 which prevent DO
loops from being parallelized� Array privatization is a technique that creates a distinct copy of an array for
each processor such that storage con�icts can be eliminated without violating program semantics� Table �
summarizes the e�ect of array privatization on �ve Perfect benchmarking programs ���� ��� ��
� The fourth
column of Table � shows the percentage of the sequential execution time �over the whole program� of each
loop which is made parallel after array privatization� This percentage indicates the signi�cance of each loop�
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contract number
DAAH������C������ the content of which does not necessarily re�ect the position or the policy of the government� and no
o
cial endorsement should be inferred� This work is also supported in part by the National Science Foundation� Grant
CCR�������	 and a funding from Samsung Electronics�



Table �� Summary of loops and privatization techniques
Program Routine Loop� � of T�� T�� T��

�Loop Spdup Seq
TRACK nl�lt��

 ��� �
� No No Yes
MDG interf��


 ��
 �
� Yes Yes Yes

poteng��


 ��� 	� No No Yes
TRFD olda��

 ���� ��� Yes No No

olda��

 ���� ��� Yes No No
OCEAN ocean���
 	�
 �� Yes Yes Yes

ocean��	
 ��� �� Yes Yes Yes
ocean��

 ��� �� Yes Yes Yes

ARC�D �lerx��� ��
 �� Yes Yes No
�lery��� ��
 �� Yes No No
stepfx��

 ��
 ��� Yes No Yes
stepfy���
 ��
 ��� Yes No Yes

�� Speedup is over sequential time� Speedups for ARC�D loops are estimates based on the
maximal number of parallel iterations� Speedups for all others are measured on Alliant Fx��
of � processors with vector units in each ���	�

�� T�� Symbolic Analysis� T�� IF Condition Analysis T�� Interprocedural Analysis�

Array privatization requires a thorough analysis of array data �ow and often involves the handling of
routine calls� While the e�ects of IF conditions and CALL statements are shown to be important in practice
���� ��
� no existing works handle such cases� The examples in Figure � illustrate such cases� In these
three examples� privatizing the array A will make it possible to parallelize the I loops� Figure ��a� shows
a simpli�ed version of a loop from the MDG program �routine interf� ��
� It is a di�cult example which
requires inferences between IF conditions� Although both A and B are privatizable� we will discuss A only�
since B is a simple case� Suppose that the condition �kc�NE�
� is false and� as the result� the last loop with
index K within loop I gets executed and A�� � �� gets used� We want to determine whether A�� � �� may
use values written in previous iterations of loop I� The condition �kc�NE�
� being false implies that� within
the same iteration of I� the statement kc � kc�� is not executed� Thus� another condition �B�K��GT�cut��
is false for all K � �� � � � � � of the �rst DO loop with index K� This fact further implies that the condition
�B�K����GT�cut�� is false forK � �� � � � � � of the second DO loop with indexK� which ensures that A�� � ��
gets written before its use in the same iteration I� Therefore� A is privatizable in loop I�

Figure ��b� illustrates a simpli�ed version of a segment of the ARC�D program�routine �lerx���
� Using
existing algorithms���� ��� ��
� an use of A�jmax� will be deemed as possibly upwards exposed ��� ch �


in each iteration� and A�jmax� is also deemed as possibly written in the previous iterations� Therefore the
existing algorithms would assume a loop�carried �ow dependence which prevents array A to be privatized�
However� a closer examination reveals that the condition ��NOT�p� is invariant for DO loop I� As the result�
if A�jmax� is not modi�ed in one iteration� which exposes its use� A�jmax� should not be modi�ed in any
iteration� Therefore� A�jmax� never uses any value written in previous iterations of I� Moreover� it is easy
to see that the use of A�jlow � jup� is not upwards exposed� Hence� A is privatizable and loop I is a parallel
loop� In this example� the IF condition being loop invariant guarantees that there are no loop�carried �ow
dependences�

Figure ��c� shows a simpli�ed version of a segment of the OCEAN program�routine ocean���
� Interpro�
cedural analysis is needed in this case� In order to privatize A in the I loop� the compiler must recognize
the fact that the use of array A must take the values de�ned in the same iteration of I because if a call to
out in the I loop does use A�� � m�� then the call to in in the same iteration must modify A�� � m�� This
is because the condition �x � SIZE� in subroutine out implies the condition �x � SIZE� in subroutine
in� For all three examples above� it is also necessary for the compiler to manipulate symbolic expressions�
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DO I��� nmol�
kc��
DO K����
B�K� � 	
IF�B�K�	GT	cut
� kc�kc��

ENDDO
			
DO K�
��
IF�B�K�
�	GT	cut
� goto �
A�K�
� � 	

�� ENDDO
			
IF �kc	NE	�� goto 

DO K�����

ttemp � 			A�K���		

ENDDO

�
ENDDO

DO I � �� 

DO J � jlow� jup
A�J� � 	

ENDDO
			

IF �	NOT	p�
A�jmax� � 	

ENDIF
			

DO J � jlow� jup
	 � A�J� � A�jmax�

ENDDO
ENDDO

DO I � �� n
x � 			
call in�A� x� m�
			
call out�A� x� m�

ENDDO

SUBROUTINE in�B� x� mm�
IF �x�SIZE� RETURN
DO J � �� mm
B�J� � 	

ENDDO

SUBROUTINE out�B� x� mm�
IF �x�SIZE� RETURN
DO J � �� mm
� B�J�

ENDDO
END

�a� �b� �c�

Figure �� Examples of Privatizable Arrays�

To summarize the above� a powerful compiler must handle IF conditions and perform symbolic analysis
and interprocedural analysis� Table � lists information from several Perfect Benchmark programs� in which
the last three columns show the techniques needed to privatize arrays within each loop� It is important
to note that the di�erence between the handling of IF statements and the handling of IF conditions� In
traditional data�ow analysis� IF statements may be handled by conservatively merging information from all
branches without considering the contents of the IF conditions� Such a treatment is insu�cient for the cases
in Figure ��

Previous works on array data�ow analysis can be divided into two categories� The �rst one attempts to
gather �ow information for each array element and to acquire an exact� complete array data �ow information
for all array elements� Feautrier ���
 suggests to establish a source function for each array use to indicate
which de�nitions will de�ne the value for each distinct array element of the array use reference� Maydan et
al ���� �	
 simplify Feautrier�s method by using a Last�Write�Tree�LWT�� Duesterwald et al ���
 compute
the dependence distance for each reaching de�nition within a loop� Pugh and Wonnacott ���
 use a set
of constraints to describe array data�ow problems and solve them basically by Fourier�Motzkin variable
elimination� Most works in this category so far do not handle IF statements� symbolic expressions� or routine
calls because these complications make the computation of source functions� LWT�s� dependence distances�
or the operations on constraints more di�cult� Recently� Maslov ���
 extends the previous works in this
category by handling certain IF conditions� but he restricts the program to be well structured and to have
no multiple exits from structures� which is not the case in many practical programs� Maslov does not discuss
how to legally propagate IF conditions for symbolic comparison� In the second category� array elements are
not analyzed individually� Instead� a set of array elements of a regular shape� called a regular array region

or section� is treated as a single unit� Simple set operations such as union� intersection� and di�erence� are
performed on such units� Works by Gross and Steenkiste ���
� Rosene ���
� Li ���
� Tu and Padua ���
� and
Granston and Veidenbaum ���
� can roughly be included in this category� These works do not provide as
many details about reaching�de�nitions as the �rst category� However� they handle more complex program
constructs such as IF statements� Neither of those two categories� however� has taken the IF conditions into
account except Tu and Padua�s work� in which the handling of IF conditions is mensioned brie�y and seems
not to be in a systematic way� Hence� existing array data�ow algorithms are not sophisticated enough to
handle practical programs such as those in Table ��
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In this paper� we present an interprocedural symbolic array data�ow analysis which takes not only IF
statements into account � but also IF conditions� Our analysis belongs to the second category mentioned
above in that we normally perform set operations on regular array regions such as rectangles� and we are
not concerned about reaching�de�nitions for individual array elements� However� in order to take account
of IF conditions under which an array reference is issued and to represent the set operation results in the
presence of symbolic terms� we introduce a reference predicate which further quali�es a regular array region�
Using such a guarded array region�GAR� to summarize array references during propagation is unique to
our method of array data�ow analysis� The GAR�s retain the simplicity of set operations for regular array
regions in common cases� and they enhance regular array regions in complicated cases by using guards to
handle complex symbolic expressions and array shapes� Scalar values that appear in array subscripts and
loop limits are substituted on the �y during the array information propagation� which disambiguates the
symbolic values precisely for set operations� Our analyzer handles Fortran programs in particular� but it can
be extended to handle other imperative languages� The analyzer uses the array data�ow analysis results to
privatize arrays and to parallelize DO loops�

The remaining of the paper is organized as follows� Section � presents the background� Section � discusses
GAR operations and the applications of GAR�s for array privatization and loop parallelization� Section �
gives algorithms to collect and manipulate summary information� Section � discusses a few extensions and our
current implementation� Section � reports our preliminary experiments with automatic array privatization�
We conclude this paper in Section ��

� Background

In this section� we provide the background of this paper� especially the di�erence between conventional data
dependence analysis and our array data�ow analysis�

Array data�ow analysis refers to computing the �ow of values for array elements� It can be described
as follows� given one or several use references of an array� �nd their reaching�de�nitions� i�e� the mod
�modi�cation� references which produce the values for those references� or reversely� given one or several mod
references of an array� �nd the use references which consume the values written by those mod references�
Array data�ow analysis can be at a very low level� analyzing reference by reference and even element by
element� It can also be at a higher level� analyzing program segments rather than individual references� For
array privatization and loop parallelization� analysis at the loop iteration level normally su�ces�

Conventional data dependence analysis is the predecessor of all current works on array data�ow analysis�
In his pioneering work� D�J� Kuck de�nes �ow dependences� anti� dependences and output dependences ��

�
While the latter two are due to multi�assignments in imperative languages� a �ow dependence is de�ned
between two statements� one of which reads the value written by the other� Thus� the original de�nition of
�ow dependences is precisely a reaching�de�nition relation� Nonetheless� early compiler techniques were not
able to compute array reaching�de�nitions and therefore� for a long time� �ow dependences are conservatively
computed by asserting that one statement depends on another if the former may execute after the latter
and both may access the same memory locations� Thus� the analysis of all three kinds of data dependences
degenerates to the problem of memory disambiguation� which is insu�cient for array privatization� There
exist three main approaches to memory disambiguation� The �rst one� numerical methods� establishes
algebraic equations between array subscripts and determines whether the equations are solvable subject to
the loop limits and dependence directions ��� �� ��� ��� ��� ��� �	
� Numerical methods normally do not
apply to array subscripts and loop limits that contain unknown symbolic terms���
� The second approach�
originally proposed to handle call statements� uses array range triples to represent regular array regions
which summarize the array elements accessed by one or several references ��
� ��� �� �
� The third approach�
which is the most general but also the most time consuming� represents the set of referenced array elements
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by a set of inequalities and equations and uses Fourier�Motzkin pairwise elimination or integer programming
to determine the feasibility of the set ���� ��� ��� ��
� The third approach can take IF conditions into account�
while the other two do not� Pugh and Wonnacott ��

 also discuss an extension of the Omega test ���
 which
computes certain array reaching�de�nitions for special cases without IF statements�

In this paper� we adopt a combination of the array range triple representation and the �in�equality
representation to summarize array references� We use such summaries to perform array data�ow analysis
which is much more powerful than conventional data dependence analysis�

� Guarded array regions

In order to perform array privatization automatically� array reference information must be summarized for
program segments� We adopt a format called guarded array regions�GAR�s� for the summaries� A GAR
contains a regular array region and a guard� In the following� we de�ne our regular array regions �rst and
then de�ne GAR�s�

De�nition A regular array region of array A is denoted by A�r�� r�� � � � � rm�� where m is the dimension
of A� ri� i � �� � � � �m� is a range in the form of �l � u � s�� and l� u� s are symbolic expressions� The triple
�l � u � s� represents all values from l to u with step s� An empty array region is represented by � and an
unknown array region is represented by ��

The regular array region de�ned above is more restrictive than the regular sections used in the ParaScope
environment at Rice University ��
� �� ��
� Where more complex array shapes arise� however� we can always
add more information to the guards in GAR�s to describe the shapes more precisely �more on this issue in
Section ��� which we have not found necessary for array privatization in practice so far� The primary purpose
of the guards� nonetheless� is to describe IF conditions under which regular array regions are accessed�

De�nition A guarded array region�GAR� is a tuple �P�R
 which contains a regular array region R and a
guard P � where P is a predicate that speci�es the condition under which R is accessed� We use � to denote
a guard whose predicate cannot be written explicitly� i�e� an unknown guard� If both P � � and R � �� we
say the GAR �P�R
 � � is unknown� Similarly� if either P is False or R is �� we say �P�R
 is ��

Note that if R contains symbolic terms� then the inequalities implied by the valid ranges of R are explicitly
included in P � Thus� the emptiness of �P�R
 can be detected by examining P only� For any given program
segment� we use GAR�s to summarize the sets listed below� The side e�ect of a program segment can be
captured completely by these mod sets and upwards exposed sets� Since we use guards� all these sets are
exact sets unless the GAR�s contain unknown components�

� UE  The set of the upwards exposed array elements which are used within this segment and take
values de�ned outside this segment�

� UEi  For an arbitrary iteration i of a DO loop� the set of the upwards exposed array elements which
are used within this iteration and take values de�ned outside this iteration�

� MOD  The set of array elements written within this segment�

� MODi  For an arbitrary iteration i of a DO loop� the set of the array elements written within that
iteration�

� MOD�i  For an arbitrary iteration i of a DO node� the set of the array elements written within the
iterations prior to i�

�



Figure �� Overview of reference tuple and expression operations

General expression operation

GAR operations

 region operations
Regular array

Predicate operation

Simplifier
    GAR

Simplifier

Predicate

          library        library

� MOD�i  For an arbitrary iteration i of a DO node� the set of the array elements written within the
iterations following i�

Take Figure ��c� for example� For loop J of subroutine in� UEj is empty andMODj equals �True�B�j � j � ��

�or �True�B�j�
�� thereforeMOD�j is �� � j�B�� � j � � � ��
 and MOD�j is �j � mm�B�j � � � mm � ��
�
The set MOD for the loop J is �� � mm�B�� � mm � ��
� Thus� the set MOD of subroutine in is
�x � SIZE �� � mm�B�� � mm � ��
� Similarly� UEj for loop J of subroutine out is �True�B�j � j � ��
� and
UE for the same loop is �� � mm�B�� � mm � ��
� The set UE of the subroutine out is �x � SIZE � � �
mm�B�� � mm � ��
�

��� Operations on GAR�s

The work in this paper requires three kinds of operations on GAR�s� namely� union� intersection� and
di�erence� These operations in turn are based on union� intersection� and di�erence operations on regular
array regions as well as logical operations on predicates� Since symbolic terms may appear in both arithmetic
expressions and predicates� we implement a GAR simpli�er and a predicate simpli�er to simplify GAR�s and
predicates� Figure � gives a diagram to show the components in our analyzer that handles GAR operations�
The general expression operation library provides routines performing the operations of addition� subtraction�
multiplication� and division with an integer constant divisor on integer symbolic expressions� which are
normalized to an ordered sum of products� The predicate operation library provides routines which perform
operations such as AND� OR� and NOT as well as the other logical operators in FORTRAN on predicates
written in an ordered conjunctive normal form�CNF�� The GAR simpli�er simpli�es GAR�s and removes
redundant ones� The predicate simpli�er is used to determine whether a predicate in a GAR is false or
true and to remove redundant predicate components� If symbolic expressions become too complex� e�g� if
they contain multiplications of more than one index variable� then the described array regions are marked
as unknown� We leave the discussion of the simpli�ers to Section � and focus on the de�nitions of GAR
operations and regular array regions in this subsection�

In most cases in practice� the results of GAR operations are quite simple� However� in general� we need
to use a list of GAR�s as a representation for the UE and MOD sets de�ned previously� An important note
to make is that for the ranges in a regular array region� the requirement that the lower bound never exceeds
the upper bound is always imposed explicitly by including this condition in the guard� �Where no confusion
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results� however� we may omit such conditions in our representation in this paper just for simplicity���
This treatment allows the operations on range triples to proceed in a straightforward way without having
to distinguish many di�erent cases� As an example� consider two GAR�s T� � �a � b�A�a � b � ��
�
T� � �b � c�A�b � c � ��
� As we will de�ne later� we have

T� � T� � �a � b � b � c�A�a � b � ���A�b � c � ��


��a � b � b � c�A�a � b � ��
� �a � b � b � c�A�b � c � ��


where A�a � b � ���A�b � c � �� can be merged into A�a � c � �� without the concern of whether a � b or b � c

is the case�

Regular array region operations� In general cases� the results of regular array region operations may be
a list of several regular array regions instead of just one� possibly with new conditions produced� So� we use
a list of GAR�s to represent them�

In order to decompose regular array region operations into the operations on di�erent array dimensions�
it is convenient to use the notation of guarded ranges which impose conditions on symbolic terms which
appear in range triples� For example� �True� �� � �
 � ��
 is a one�dimensional guarded range and �c � d� �c �
d � �� c � d�� � ��
 is a two�dimensional guarded range� Thus� a regular array region of a m�dimensional array
A can be written as an m�dimensional guarded range� As operands of the region operations must belong to
the same array� we will drop the array name from the array region notation hereafter whenever there is no
confusion� Given two regular array regions� R� � A�r��� r

�
� � � � � � r

�
m�� R� � A�r��� r

�
� � � � � � r

�
m�� where m is the

dimension of array A� we de�ne the following operations�

� R�	R�� For the sake of simplicity of presentation� here we assume steps of � and leave Section � to
discuss other step values� Let r�i � �l�i � u�i � ��� r�i � �l�i � u�i � ��� i � �� � � � �m� Let Di be r

�
i 	 r

�
i � we

have Di � �True� �max�l�i � l
�
i � � min�u

�
i � u

�
i � � ��
� We handle the max and min operations by replacing

them with inequalities as shown in the following formula�

Di ��l�i � l�i � u
�
i � u�i � �l

�
i � u

�
i � ��
�

�l�i � l�i � u
�
i � u�i � �l

�
i � u

�
i � ��
�

�l�i � l�i � u
�
i � u�i � �l

�
i � u

�
i � ��
�

�l�i � l�i � u
�
i � u�i � �l

�
i � u

�
i � ��


�
S
j
��������p

j
i � d

j
i 


where pji � d
j
i � j � �� � � � � � are�

p�i � l�i � l�i � u
�
i � u�i � d�i � �l�i � u

�
i � ��

p�i � l�i � l�i � u
�
i � u�i � d�i � �l�i � u

�
i � ��

p�i � l�i � l�i � u
�
i � u�i � d�i � �l�i � u

�
i � ��

p�i � l�i � l�i � u
�
i � u�i � d�i � �l�i � u

�
i � ��

Then R� 	R� equals�

�
� 
i�Di � �S
j������jm�����	�p

j�
� � � � � � pjmm � �dj�� � � � � � d

j
m

m �
 Otherwise

One should realize that in practice� the intersection is usually much simpler than the above general
formula indicates� as many of the unioned components can be immediately recognized as empty� For
example� let r�i � �a � �

 � �� and r�i � �b � �

 � ��� We have r�i 	 r

�
i � �a � b� �a � �

 � ��
 � �a �

b� �b � �

 � ��
� Note that we do not keep max and min operators in a regular array region� Instead�
we replace them by explicit inequalities and place them in the guards� which makes it possible for our
simpli�ers to remove empty and redundant GAR�s as early as possible�
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� R� � R�� If the union can be represented as one regular array region R�� then the result is R��
Otherwise� the result is a list of two regular array regions R�� R�� For example� �� � a � �� � �a � � �
�

 � �� � �� � �

 � ���

� R� � R�� For an m�dimensional array� the general result of the di�erence operation is �m regular
regions if each range di�erence results in two new ranges� whose representation could be quite complex
for large m� However� it is useful to describe the general formulas of set di�erence operations� Suppose
R� � R� � otherwise� use R��R� � R� �R� 	R��� We �rst de�ne R��k� and R��k�� k � �� � � � �m� as
the last k ranges within R� and R� respectively� We have R��m� � �r��� r

�
� � r

�
� � � � � � r

�
m� and R��m� �

�r��� r
�
� � r

�
� � � � � � r

�
m�� and R��m � �� � �r��� r

�
� � � � � � r

�
m� and R��m � �� � �r��� r

�
� � � � � � r

�
m�� for example�

The computation of R� � R� is recursively given by the following formula�

R��m�� R��m� �

�
�r�� � r��� If m � �
�r�� � r��� r

�
� � r

�
� � � � � � r

�
m� � �r��� �R��m� ���R��m� ���� If m � �

In general� r�� � r�� splits into two guarded ranges�see Section ��� Let them be �p�� d��
 � �p�� d��
� where
d�� and d�� are ranges� R��m � �� � R��m � �� is in turn calculated by reusing the above formula�
Assuming the �nal result of R��m� ��� R��m� �� is

R��m� ��� R��m� �� �
�

j
������k

�Pj � �d
j
�� d

j
�� � � � � d

j
m�
�

we then have�

�r�� � r��� � �p�� d��
 � �p�� d��

�r�� � r��� r

�
� � r

�
� � � � � � r

�
m� � �p�� �d��� r

�
� � r

�
� � � � � � r

�
m�
 � �p�� �d��� r

�
� � r

�
� � � � � � r

�
m�


�r��� �R��m� ��� R��m� ���� �
S
j
������k�Pj � �r

�
� � d

j
�� d

j
�� � � � � d
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The �nal result of R��R� is equal to R��m��R��m� which is a list of m�dimensional guarded ranges�
For example�

�� � �

 � ��� �a � �
 � �� � �� � a� �� � a � � � ��
 � �True� ��� � �

 � ��
�
�� � �

 � �� � � �

 � ��� ��
 � �
 � �� a � �
 � ��

� ��� � �

 � ��� ��
 � �
 � ��� � � �

 � �� ���
 � �
 � �� �� � �

 � ��� �a � �
 � ���
� �True� �� � �� � �� � � �

 � ��
 ��True� ��� � �

 � �� � � �

 � ��

��� � a� ��
 � �
 � �� � � a � � � ��
 ��True� ��
 � �
 � �� �� � �

 � ��
�

GAR operations� Since the result of regular region operations may be written as guarded ranges�see
above�� to facilitate the presentation of GAR operations� we �nd it convenient to use a notation ��P� T list

�
where T list is a list of GAR�s instead of a single regular array region� Given T list �

S
j
������k�Pj � Rj 
�

��P� T list

 stands for
S
j
������k�Pj � P�Rj 
� We call the notation ��P� T list

 a nested GAR�

Given two GAR�s� T� � �P�� R�
 and T� � �P�� R�
� we have the following�

� T� 	 T� � ��P� � P�� R� 	R�



� T� � T� � ��P� � P�� R� �R�

 � �P� � P�� R�
 � �P� � P�� R�

The above formula can be simpli�ed in the following three common cases�

� If P� � P�� the union becomes

��P�� R� �R�

 � �P� � P�� R�


� If P� � P�� the union becomes

��P�� R� �R�

 � �P� � P�� R�


	



� If R� � R�� the result is
�P� 
 P�� R�


� T� � T� � ��P� � P�� R� �R�

 � �P� � P�� R�


The results of regular array region operations are often simple in practice and the emptiness of the result is
easy to detect� Hence� GAR�s retain the e�ciency of regular array region operations in common cases� while
enhancing the precision when necessary�

��� Applications of GAR�s

����� Array Privatization

An array A is a privatization candidate in a loop L if its elements are overwritten in di�erent iterations of
L �see ���
�� Such a candidacy can be established by examining the array subscripts� if the subscripts of
array A do not contain any induction variables of L� then A is a candidate ���
� A privatization candidate is
privatizable if there exist no loop�carried �ow dependences in L� For an array A in a loop L with an index I� if
MOD�i	UEi � �� then there exists no �ow dependence carried by loop L� Take Figure ��c� for example� A
is obviously a privatization candidate� We have UEi � �� mod�i � �x � SIZE�� � m�� � i�A�� � m � ��
�
and MOD�i 	 UEi � MOD�i 	 � � �� So A is privatizable within loop I� As this example shows� the
emptiness of the UE set can serve as a simple su�cient condition for privatizability�

Live analysis must be performed for privatized arrays in order to determine whether and which last
values of the privatized arrays must be copied out of the DO loop� Previous works have addressed this issue
���� ��� ��
�

����� Loop parallelization

The essence of loop parallelization is to prove the absence of loop�carried dependences� For a given DO loop
L with index I� the existence of di�erent types of loop�carried dependences can be detected in the following
order�

�� loop	carried 
ow dependences� They exist if and only if UEi 	MOD�i �� ��

�� loop	carried output dependences� They exist if and only if MODi 	 �MOD�i �MOD�i� �� ��

�� loop	carried anti	 dependences� They exist if and only if UEi 	MOD�i �� ��

This formula is valid in the absense of loop�carried output dependences� It is applied only after our
algorithm successfully proves the absence of loop�carried �ow and loop�carried output dependences in
step � and �� �If loop�carried anti� dependences are considered separately� they should be detected
usingDEi instead of UEi in the above formula� whereDEi is the downwards exposed use set of iteration
i��

Although the formulas above resemble those in previous works� e�g� ��

� previous works do not use the
�ow�sensitive sets and thus are less precise�

�



Figure �� Example of the HSG�

... ....

IF (X > 10) THEN

    B =  10

    CALL sub1(A,B)

ELSE

    B = 20

    CALL sub1(A,B)

ENDIF

SUBROUTINE sub1(A,M)

  DO I=1, m

      A(I) = ..

  ENDDO

END

C=...

... ....

X > 10

B = 10 B = 20

CALL sub1

C = ..

DO I=1,m

CALL sub1

A(I) = ..
sub1

� Algorithms for symbolic array data�ow analysis

In this section� we present algorithms to calculate theMOD and UE information by propagating the GAR�s
over a hierarchical supergraph �HSG�� The HSG in this paper is an enhancement of Myers� supergraph ���

which is a composition of the �ow subgraphs of all routines in a program� In a supergraph� each call statement
is represented by a node� termed a call node in this paper� which has an outgoing edge pointing to the entry
node of the �ow subgraph of the called routine� The call node also has an incoming edge from the unique
exit node of the called routine� To facilitate the information summary for DO loops� we add a new kind of
nodes� the loop nodes� to represent DO loops� The resulting graph� which we call the hierarchical supergraph
�HSG�� contains three kinds of nodes ! basic blocks� loop nodes and call nodes� An IF condition itself
forms a single basic block node� A loop node is a compound node which has its attached �ow subgraphs
describing the control �ow within the DO loop� Due to the nested structures of DO loops and routines�
a hierarchy is derived among the HSG nodes� with the �ow subgraph at the highest level representing the
main program� The HSG resembles the HSCG used by the PIPS project ��	
� Figure � and Figure � show
two HSG examples� Note that the �ow subgraph of a routine is never duplicated for di�erent calls to the
same routine unless the called routine is duplicated to enhance its potential parallelism� We assume that
the program contains no recursive calls� For simplicity of presentation� we further assume that a DO loop
does not contain GOTO statements which make premature exits� We also assume that the HSG contains no
cycles due to backward GOTO statements� Our implementation� however� does take care of multiple exits
in DO loops and backward GOTO statements� making conservative estimates when necessary�see Section
��� In the �ow subgraph of a loop node� the back edge from the exit node to the entry node is deliberately
deleted� as it conveys no additional information for array summaries� Under the above assumptions and
treatment� the HSG is a hierarchical dag �directed acyclic graph�� The following subsection presents the
information summary algorithms�

��� Summary Algorithms

As listed in Section �� the summary information of our interest has two main kinds� theMOD summary and
the UE summary� One unique aspect of this paper is that� because we attach guards to regular array regions�
the calculation of theMOD information involves only union operations� �One needs to carefully distinguish
our MOD summary from the conventional kill set summary which requires the intersection of the MOD

�




sets at the IF statements because the conventional summary does not include guards�� The calculation of
the UE information� on the other hand� requires all three kinds of set operations�

We present algorithms for computing the MOD and UE information in this subsection� As the whole
computation involves many delicate details� it is necessary to leave the nonessential ones out of the discussion
due to the space limit� Throughout the remaining of the text� wherever no confusion results� we refer to the
program segment represented by a HSG node by the node itself�

We �rst de�ne an expansion function which is invoked by the information summary algorithms�

Expansion

For a loop with index i� where l � i � u� and a GAR� T � if T does not contain i in its representation� then
the expansion of T by i is T itself� If T contains i in its representation� then the expansion of T by i is a
GAR obtained by the following steps�

� If i appears in the guard of T � then i should be solved from the guard which� in general� is written
as l� � i � u�� where l� and u� may be symbolic expressions� We obtain new bounds on i which is
max�l�� l� � i � min�u�� u�� The inequalities and equalities involving i in the guard are then deleted�

� If i appears in only one dimension of T and the result of substituting l � i � u� or the new bounds on
i obtained above� into the old range in that dimension can still be represented by a range �l�� � u�� � s����
then we replace the old range by �l�� � u�� � s���� Recall that the condition of l�� � u�� is placed in the
guard and must be checked whenever necessary�

� If� in the above� the result of substitution of l � i � u into the old range can no longer be represented
by a range� then mark that dimension as � �unknown��

� If i appears in more than one dimension of T � then these dimensions are marked as ��

As an example� suppose a DO loop indexed by i has loop bounds a � i � b� Further suppose the given GAR
is T � �c � i� � � d� �� � i � ��
� As the result of solving i from the guard� we have new bounds on i which
are max�a� c � �� � i � min�b� d � ��� The expansion of T by i is �True� � � min�b� d � �� � ��
� The max
and min operations are then replaced by explicit conditions as described in Section ��

We now present our algorithms for information summary propagation� The algorithms SUM segment�
SUM call� and SUM loop are indirectly recursive� Figure � shows a complete example to illustrate the steps
of the following algorithms� For simplicity� these algorithms are applied to one array only �In concept� the
summary of more than one array can be acquired by applying these algorithms once for each of these arrays�
In practice� the algorithms summarize all arrays at the same time��

SUM segment� The algorithm for computing MOD and UE for a 
ow subgraph

Let UE�n� and MOD�n� be the upwards exposed use set and be the mod set for node n respectively� and
let UE IN�n� and MOD IN�n� be the upwards exposed use set and mod set at the entry point of node n
respectively� The algorithm is given below�

SUM segment�mod� ue� G�s�e��
�" G�s�e�� �ow subgraph with starting node s and existing node e� "�
�" mod is the mod set of G�s�e�� "�
�" ue is the upwards exposed use set of G�s�e�� "�
Step �� �nd UE�n� and MOD�n� for each node n in G�s�e��

FOR each node n in G�s�e� DO
IF �n is a basic block�

SUM bb�mod�n�� ue�n�� n��

��



ELSE IF �n is a loop node�
SUM loop�mod�n�� ue�n�� n��

ELSE IF �n is a call node�
SUM call�mod�n�� ue�n�� n��

ENDFOR
Step �� Propagate mod and ue of each node backward� from e to s�

mod in�n� � mod�n�� �
S
p�succ�n
mod in�p��

ue in�n� � ue�n�� �
S
p�succ�n
 ue in�p��mod�n��

�Note that succ�e� � ���
IF �n is a basic block containing IF�condition �

add the condition to the guard of each GAR in mod in�n� and ue in�n�
IF any expression in the mod in�n� and ue in�n� contains a variable that is de�ned within

n� then that variable must be substituted by the right�hand�side of the de�ning statement
within n� If the right�hand�side is too complicated� the expression is marked as unknown�
If a variable is de�ned by a procedure or a function� we propagate information through
the subgraph of this procedure or function�

At the end of the propagation� we have mod � mod in�s�� ue � ue in�s��

SUM bb� The algorithm for a basic block

For each basic block� the following algorithm calculates the UE andMOD sets� Note that� in the beginning�
each array region in the basic block represents a single array element�

SUM bb�mod� upexp� n�
�" n is the basic block node "�
�" SUM bb gives mod and upexp sets "�

upexp � �� mod � ��
FOR each use u of A� DO

tmp � �True� u
�
FOR each mod m of A such that m is prior to u� DO

tmp � tmp � �True� m
�
ENDFOR
upexp � upexp � tmp�

ENDFOR
�" calculate mod "�
FOR each mod m of A� DO

mod � mod � �True� m
�
ENDFOR

Algorithm for a call node

SUM call�mod� ue� n�
�" n is a call node "�
�" mod is the mod set of n� "�
�" ue is the upwards exposed set of n� "�

Let G�s�e� be the called subroutine
�� SUM segment�mod� ue� G�s�e���
�� Map real parameters to the formal parameters in mod and ue�

Algorithm for a loop node

��



SUM loop�mod� ue� n�
�" n is a loop node "�
�" mod is the mod set of n� "�
�" ue is the upwards exposed set of n� "�

Let G�s�e� be the subgraph for this loop body�
�� SUM segment�modi� uei� G�s�e���
��� Calculate the upwards exposed set�

Compute mod�i�
uei out � uei �mod�i�
�" expand the uei out "�
ue � expand uei out�

��� Calculate the mod set�
mod � expand modi�

� Extensions and implementation details

In this section� we provide several details and possible extensions which we left out in previous sections� We
also address our current implementation�

��� The range operations

In Section �� we assumed step values of one in the discussion of range intersection� Here� we give a complete
discussion of our treatment for other step values�

To describe the range operations� we use the functions of min�e�� e�� and max�e�� e�� in the following�
However� these functions are removed by the technique stated in Section ��

Given two ranges r� and r�� r� � �l� � u� � s��� r� � �l� � u� � s���

�� If s� � s� � ��

� r� 	 r� �
�max�l�� l�� � min�u�� u��� �max�l�� l�� � min�u�� u�� � s��


� Assuming r� � r� �otherwise use r� � r� � r� � r� 	 r��� we have
r��r� � �l� � max�l�� l��� �l� � max�l�� l���� � s��
� �min�u�� u�� � u�� �min�u�� u���� � u� � s��


� Union operation� If �l� � u� � s�� or �l� � u� � s��� r� � r� cannot be combined into one range�
Otherwise� r� � r� � �True� �min�l�� l�� � max�u�� u�� � s��


�� If s� � s� � c � �� where c is a known constant value� we do the following�
If �l� � l�� is divisible by c� then we use the formulas in case � to compute the intersection� di�erence
and union� Otherwise� r� 	 r� � � and r� � r� � r�� The union r� � r� usually can not be combined�

�� If s� � s� and l� � l� �which may be symbolic expressions��
then we use the formulas in case � to perform the intersection� di�erence and union�

�� If s� is divisible by s�� we check if r� covers r�� If so� we have r� 	 r� � r� and r� � r� � r�� For other
cases� we divide r� into several smaller ranges with step s� and then apply the above formulas�

�� Otherwise� the results of intersection and di�erence are marked as unknown and the union keeps to be
a list of two ranges�

��



��� The GAR simpli�er and the predicate simpli�er

The GAR simpli�er is the top level simpli�er which calls the predicate simpli�er� It examines GAR�s to
eliminate redundant ones� and it combines several GAR�s into one if possible� Our analyzer invokes the GAR
simpli�er whenever there are changes to GAR�s during the summary propagation�

A predicate is represented by the Conjunctive Normal Form such as C� � C� � � � � � Cn� where each Ci�
called a disjunction� which in turn is represented as re��re��� � ��rem� Each rei is a relational expression in
the form of either �e op 
� or �lvar op� val�� where lvar is a logical variable� op� is either � or ��� and val is
True or False� The expression �e op 
� is a relational expression� where e stands for an arithmetic expression
and op is a relational operator� �� �� or ��� The other relational operators can be easily transformed to a
combination of these three operators�

The predicate simpli�er is a key part in the handling of predicates� It is invoked by the GAR simpli�er
or by GAR operations whenever there are changes to predicates� There exist powerful� but rather time�
consuming� general methods� such as integer programming� for predicate simpli�cation ��

� Currently� for
the sake of e�ciency� we implement a limited simpli�er which evaluates the truth value of the conjunction
of two disjunctions or the disjunction of two relational expressions� CNF�s of arbitrary lengths� as de�ned
in the last paragraph� are handled by feeding one pair of disjunctions �or relational expressions� to the
simpli�er at a time� Similarly� the simpli�er removes redundant components by examining two disjunctions
or two relational expressions at a time� Simpli�cation involving more than two operands simultaneously is
not implemented yet� This limited simpli�er seems to su�ce in our experiment so far� However� we plan to
experiment with a more powerful simpli�er if the need arises�

IF conditions handled in our implementation do not contain array references� Our implementation can
process IF conditions which contain scalars only� We handle integer conditions more thoroughly than �oating
point ones� For induction variables� we �rst convert them to expressions of index variables� so they will �t our
implementation model� We have not implemented existential and universal quali�ers 
 and �� The example
in Figure ��a�� however� does need this kind of quali�ers to guard the regular array regions� Reduction
systems in the Arti�cial Intelligence area can certainly handle these more complicated predicates�

��� Regular array regions and GAR�s

Regular array regions de�ned in Section � are rectangular regions in which di�erent dimensions are indepen�
dent� To represent nonrectangular regions� our GAR can be extended by introducing a special dimension
symbol �i for each dimension i� For example� the array diagonal A�i� i�� i � �� � � � � n� can be represented as
a GAR ��� � ��� A�� � n � �� � � n � ��
� Similarly� an upper triangle of array A� such as A�i� j�� i � �� � � � � n�
j � i� � � � � n� becomes a GAR ��� � ��� A�� � n � �� � � n � ��
� A predicate� therefore� may contain two kinds
of conditions� one for restricting array regions and the other for guarding array regions as stated in previous
sections� Our experience with array privatization so far has not required such an extension�

If a GAR or predicate operation involves an unknown operand� the result in general is unknown� However�
unknown GAR�s and predicates can be removed in certain cases� For example� suppose MOD� contains
all elements of array A and MOD� is �� then MOD� �MOD� � MOD�� As an example for predicate
operations� suppose P� � �� Obviously P� 
 True � True and P� � False � False� We have implemented
such special cases�

��



Table �� Experimental Results on Loops with Privatizable Arrays
Program Routine Array Names Status"

�Loop
TRACK nl�lt��

 P��P��P�PP��PP��PP�XSD yes
MDG interf��


 RS�FF�GG�XL�YL�ZL yes

RL no
poteng��


 RS�RL�XL�YL�ZL yes

TRFD olda��

 XRSIQ�XIJ yes
olda��

 XIJKS�XKL yes

OCEAN ocean���
 CWORK yes
ocean��	
 CWORK� CWORK� yes
ocean��

 CWORK yes

ARC�D �lerx��� WORK yes
�lery��� WORK yes
stepfx��

 WORK yes
stepfy���
 WORK yes

�� Status shows whether these privatizable arrays can be automatically privatized now�

��� Goto statements

In Section �� we assumed there exist no backward goto�s and no premature exits out of DO loops� Certain
cycles due to backward goto�s can be transformed to DO loops which can then be covered by our model
in Section �� For the other cycles due to backward goto�s� we �rst condense them into condensed nodes
in our HSG� Thus the resulting graph is still a dag� The GAR�s for condensed nodes are conservatively
approximated� For loops with premature exits due to goto�s� we treat loop variant and loop invariant
GAR�s di�erently� The former are approximated by marking the loop variant components in the GAR�s as
unknown� The latter are propagated precisely by following the exit edges� Since these are special cases� we
do not describe more details�

� Preliminary experimental results

We have implemented our symbolic� interprocedural array data�ow analysis in our prototyping par�
allelizing analyzer� Panorama� and collected preliminary results for array privatization from some of the
Perfect benchmark programs� The array data�ow analysis is built upon the interprocedural scalar reaching�
de�nition chains and the Hierarchical Supergraph���
� Several conventional data dependence tests are also
implemented� The more expensive array data�ow analysis is applied only to loops whose parallelizability
cannot be determined by the conventional data dependence tests� The preliminary results are shown in
Table � and Figure �� The last column of Table � presents the current status of array privatization achieved
by Panorama� Since the current implementation cannot handle subscripts containing subscript variables�
i�e� array elements� we replace subscript variables by their equivalent scalar expressions through forward
substitution by hand if such expressions exist and are needed� For example� suppose A�JM �I

 is an array
reference and the integer array JM is de�ned as JM �I
 � I � �� We replace JM �I
 with I � � so that the
reference to A becomes A�I��
� Such a case happens in ARC�D which uses integer arrays JPLUS� JMINUS
in the subscript expressions� All arrays listed in Table � can be privatized under our scheme except array
RL in the MDG program� This case was illustrated in Figure ��a�� where array A is a pseudo name for array
RL� Our implementation is currently unable to deal with this di�cult case and the reason has been given
in Section ����
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Figure �� Comparison between Panorama and F�� concerning resource utilization �The #panorama� bar
includes the parser� conventional loop parallelization algorithms� and our array data�ow analysis in
Panorama� The #parser� bar includes the the Panorama parser only��

At the time of writing this paper� the Panorama compiler does not generate parallel FORTRAN source
code for any speci�c machine� although work is underway for Silicon Graphics power challenges� Meanwhile�
we mark parallel loops internally� Thus� no speedup data is available yet� On the other hand� since the
complexity of a sophisticated analysis as ours is of an important general concern� we provide data regarding
the panorama�s execution time and memory requirement�

Figure � gives a comparison between Panorama and FORTRAN compiler F�� regarding the elapsed time
and the used memory� F�� is chosen for comparison because it is familiar to most readers� On the other
hand� other research prototypes that perform analysis similar to ours have not published their execution
time and memory requirement yet� A comparison with F�� gives a good indication whether our analysis is
practical� Execution times shown for both Panorama and F�� are taken from the executions on Sun Sparc
�� The running time of Panorama is shorter than F�� with option �O� which suggests that the time spent by
our analyzer is quite acceptable� However� the maximal memory utilization of Panorama is larger than that
of F�� because the array summary information and interprocedural scalar information can occupy quite a
large amount of memory�

	 Conclusion

Array data�ow information plays an important role for successful automatic program parallelization� How�
ever� existing techniques are not able to perform array data�ow analysis well because of the di�culty
in handling interprocedural array data�ow� IF conditions� and symbolic expressions� resulting signi�cant
di�erence between automatically parallelized codes from manually parallelized ones�

In this paper� we have proposed a powerful interprocedural symbolic array data�ow analysis to support
array privatization and program parallelization based on a Hierarchical Supergraph�HSG� and guarded array
regions� Symbolic processing is integrated into the process of propagating array access information� The use
of guards allows our analysis to handle IF conditions and to process symbolic terms e�ciently�

Preliminary results for array privatization suggest that the prospect of e�cient implementation of our
powerful analysis is quite promising� Global privatization results can be obtained e�ciently both in the
amount of analysis time and in the amount of required memory� Our future work will focus on developing a
more powerful symbolic manipulator and on improving our data�ow analyzer�
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s0     DO I = 1, 4

s1        DO J = JLOW, JUP

s2           A(J) = ...

            ENDDO

            ENDIF

             ENDDO
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loop
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            IF (.not. P)

s5        DO J = JLOW, JUP

s6            . = A(J) + A(JMAX)

s3

s4            A(JMAX) = ....

     s4

s5 s6

A simplified loop of ARC2d
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Figure �� Privatizing array A in the example of Figure ��b��
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