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Locating Software Faults Based
on Minimum Debugging Frontier Set

Feng Li, Zhiyuan Li, Wei Huo, and Xiaobing Feng

Abstract—In this article, we propose a novel state-based fault-localization approach. Given an observed failure that is reproducible
under the same program input, this new approach uses two main techniques to reduce the state exploration cost. Firstly, the execution
trace to be analyzed for the observed failure is successively narrowed by making the set of trace points in each step a cut of the
dynamic dependence graph. Such a cut divides the remaining trace into two parts and, based on the sparse symbolic exploration
outcome, one part is removed from further exploration. This process continues until reaching where the fault is determined to be.
Second, the cut in each step is chosen such that the union of the program states from the members of the cut is of the minimum size
among all candidate cuts. The set of statement instances in the chosen cut is called a minimum debugging frontier set (MDFS). To
evaluate our approach, we apply it to 16 real bugs from real world programs and compare our fault reports with those generated by
state-of-the-art approaches. Results show that the MDFS approach obtains high quality fault reports for these test cases with

considerably higher efficiency than previous approaches.

Index Terms—Fault localization, minimum debugging frontier set, sparse symbolic exploration, dynamic dependence graph

1 INTRODUCTION

PROGRAM debugging is an essential yet time-consuming
task in software development and maintenance. In
order to reduce the human effort spent on such a task,
researchers have conducted extensive investigation in auto-
matic techniques to locate faults in programs that cause exe-
cution errors. To this end, a methodology based on state
alteration [1], [2], [3], [4], [5], [6] has gained much attention.
Under this methodology, given a failed program run, inter-
mediate program states (i.e., the values of certain variables
and branch conditions) at chosen trace points are altered
and the impact on the execution result is observed. Based
on the observation, attempts are made to identify a set of
program states that are potentially responsible for the origi-
nally observed execution error. It is well-known that a
faulty program state may be due to either an incorrect
branch decision or an incorrect variable value, and some-
times both. By definition, examining both branch conditions
(a.k.a. branch predicates) and variable values will result in
more accurate bug reports than examining the former alone.
Hence, in this paper, we include both pieces of information
in the examined program state.

In the absence of information on the correct program
state, it is impractical to expect the debugging tool to recog-
nize a faulty program state with absolute certainty, except
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at the failure point. In practice, little knowledge is known to
the debugging tool about the expected program state.
Therefore, fault localization techniques make best efforts to
produce a bug report on suspected faulty states that are as
close to the fault locations as possible under a reasonable
cost, which is also the objective of this paper. We propose a
new state alteration and exploration approach that has sig-
nificant advantages, in terms of both accuracy and cost,
over existing methods that are based on state alteration.

The central idea of our new approach is to iteratively
select sets of trace points for efficient automatic state alter-
ation and exploration. We first determine a set of dynamic
data, control and summary control dependences (c.f. Sec-
tion 3.1) which contributes to the unexpected state at the
failure site. We then construct a dynamic dependence graph
with statement instances involved in such depedences as
nodes and those dependences as edges. We call such a
graph the initial analysis domain and we successively subdi-
vide it by making the set of trace points in each iterative
step a cut of the corresponding graph. Such a cut divides
the graph in two parts. The cut in each step is chosen such
that the union of the program states from the members of
the cut is of the minimum size among all candidate cuts.
The set of statement instances in the chosen cut is called a
minimum debugging frontier set (abbr. MDFS).

The concept of MDFS was introduced in our previous
work [12] that led to a prototyping tool and a set of experi-
mental results. In this paper, we present a theoretical foun-
dation for MDFS and add important details of the main
algorithm and its supporting analyses, especially those for
extracting important control dependencies that are
obscured in the program execution traces. We also present a
new way to symbolically explore the program states for
MDFS and extend the capability of MDEFS to the handling of
multiple faults, in addition to an improvement in finding
new correctness properties when updating the analysis
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domain. New experiments are performed on a new set of
test cases that are more up to date.

We organize the rest of the paper as follows. Section 2 pro-
vides technical backgrounds. Section 3 introduces the concept
of the minimum debugging frontier set (MDFS). Section 4
presents the core MDEFS algorithm and uses an example pro-
gram that involves multiple faults to illustrate the algorithm.
After describing how we implement our MDFS-based scheme
in a debugging tool (Section 5), we present experimental
results (Section 6). We apply our tool to 16 real bugs from real
world programs and compare our fault reports with those
generated by two state-of-the-art fault-localization methods
that are based on state alteration and a mutation-based
method. We also demonstrate the benefit of selecting points of
state alteration based on MDFS over two alternative ways. We
compare our scheme to related work found in literature (Sec-
tion 7) and make concluding remarks in Section 8.

2 BACKGROUND

A program state at any execution point, p, consists of both the
path conditions leading to p and the values of variables at point
p. For the purpose of debugging, one can perform a simple
transform such that every branch condition is represented by
the truth value of a variable. Hence, for simplicity of discussion,
we will consider the program state to be the values of variables.

In this paper, a program failure at p is the violation of a pro-
gram property P(xq, X, ..., X,) that must hold at p. Such a
property is specified by a predicate that consists of logical con-
nectives (conjunction, disjunction, and negation) over arith-
metic (in)equalifies. (For convenience, in the rest of the paper,
we consider an equality to be a special case of inequalities.)
For example, a divide-by-zero exception caused by integer
division x/y is the violation of the property y#0. For P(x;,
X, ..., Xp) to be false at p, one or more of the variables x; must
hold incorrect values. There are several possibilities for x; to
hold an incorrect value, as listed below.

Definition 2.1 (Incorrect assignments). Without loss of
generality, we assume a variable x obtains its value from an
assignment statement x: = F(y1, Y, . .., Ym), where {y;} is a set
of variables and F is an operator over {y;}. One of the two possi-
bilities for x to hold an incorrect value is for F to be incorrectly
composed by the programmer. This includes the special case in
which an operand is missing from the {y;} set by mistake. Such
an assignment is clearly a fault. The second possibility is for the
correctly composed F to produce an incorrect result, due to the
value of one or more operands y; being incorrect. This assign-
ment by itself is not a fault, but it may propagate a fault
towards the failure site.

A special case of incorrect assignments is an incorrectly
written branch condition, e.g., a while loop condition <100
being written as i <100 by mistake. We call this special case
an incorrect branch composition. Taking a wrong if branch
is also viewed as having an incorrect branch composition,
i.e., the branch condition should have been negated.

At run time, any use of a variable at any execution point
p must have a unique reaching definition. An operand x
may obtain an incorrect value either because its reaching
definition is an incorrect assignment or because its reaching
definition is an unintended one.

Definition 2.2 (Causes for unintended reaching defini-
tions). A variable use u may have an unintended reaching defi-
nition d for reasons listed below.

Case 1: The definition d may reach u at execution point p
by mistake, due to the erroneous omission of the intended
definition (i.e., the intended assignment statement) in the
program. We call this a fault of missing assignments, and
we name the statement corresponding to u as the location of
such a fault in this paper. A special case of missing assign-
ments is a missing condition, e.g., a missing check for a null
pointer. For this special case, we name the first statement
that should have been guarded by the missing condition as
the location of the fault in this paper.

Case 2: Suppose the intended definition, ', for u does
exist in the program, u may still have an unintended reach-
ing definition d. There are three possibilities: (i) The assign-
ment statement for d is not supposed to be in the program,
which we consider to be a fault of incorrect assignment in
Definition 2.1; (ii) The assignment statements for d and 4’
are misordered in the program by mistake. We view d as an
incorrect assignment and name it to be the location of the
fault; (iii) The assignment statements for d and d’ are both
correctly written but an incorrect branch taken previously
causes d to be skipped or d to be executed after d'.

In Case (iii) above, the incorrect branch decision may be
due to the branch statement being written incorrectly,
which is clearly a fault. A correctly written branch condition
may also result in an incorrect branch decision at run time,
due to some operand used in the evaluation of the branch
condition holding an incorrect value. The branch condition
by itself is not a fault. Instead, we view it as a step to propa-
gate the fault towards the failure site.

Definition 2.3 (Direct root causes for a failure). If the vio-
lation of correctness property P(x,, xa, ..., x,) at execution
point p is due, at least in part, to an incorrect assignment
xii= F(yy, Y2, - -+, Yu) that reaches the use of x; in P, we say
that assignment is a root cause for the failure, i.e., the violation
of P, at p. Similarly, if the violation of P is due to an unintended
definition reaching the use of x; in P as the direct result of a miss-
ing assignment or misordered assignments, we say such a fault
is a root cause for the failure. Finally, if the violation of P is due
to an unintended definition reaching the use of x; in P as the
direct result of an incorrect branch composition, we say the
incorrectly written branch condition is a root cause for the fail-
ure. Since all root causes listed above directly impact P without
any propagation, we call them direct root causes for the failure.

Definition 2.4 (Transitive causes for a failure). Suppose
the violation of P is due, at least in part, to variable x; in P hav-
ing an incorrect value, but no direct root causes (according to
Definition 2.3) are responsible for x; being incorrect. We have
one of the following transitive causes for the failure:

Case 1: A correctly written assignment statement
xi:= F(yy, ¥2, - - -, ¥n) makes the correct reaching definition
for the use of x; in P but at least one of its operands, say i
has an incorrect value.

Case 2: An unintended definition reaches the use of x; in
P due to a correctly written branch condition evaluating to a
wrong Boolean value, as the result of having at least one of
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main () { 1 readx /*x=2%
intx,y, z, m; 1 ready /Fy=1%
1 read("Enter 3 numbers: ", X, y, z); 1 read z /¥z=3%
2 m=y; 2 m=y
/* fault-I: should be m =z */ /* fault-1 is triggered */
3 if(y<z) /*if 1% 3 tmpl =y<z
{ 3 if (tmp1)
4 if(x<y) /*if 2% /*if 1, (v <z) == True */
5 m=y; 4 tmp2 = x<y
6 elseif(x>z) /*if 3% 4 if (tmp2)

/* fault-I1: should be x <z */ /*if 2, (x <y) == False */

7 m=X;
8 }else { 6 tmp3 = x>z
9 if(x>y) /*if 4% _| 6 elseif (tmp3)
10 m=y; ( /*if 3, (x > z) == False */
11 elseif (x>z) /*if 5%/ g /* fault-Il is triggered */
12 m=x; /

\

}
13 printf("Middle number is : ",m); 13printm /*m=1%
} /¥P:m==2%

(b) A failed execution trace of P
with Input I = {x<2, y<1,z<3}

(a) a program P with multiple faults

Fig. 1. An example with multiple faults.

its operands holding an incorrect value. This causes a
wrong branch decision and hence a wrong reaching defini-
tion as described in Definition 2.2.

Either case listed above is called a transitive cause for the
failure.

If we take the incorrect value of x or the incorrect branch
condition in Definition 2.4 as the violation of a certain prop-
erty, P, mentioned in Definition 2.1 or Definition 2.2, then
we can apply Definition 2.3 to find the direct root causes or
Definition 2.4 for the transitive causes for such violation. A
root cause found in such a way is called a propagated root
cause for the violation of P, i.e., the original failure. Apply-
ing Definitions 2.3 and 2.4 recursively, we will eventually
reach all root causes (including the direct and the propa-
gated ones) for P.

The example program in Fig. 1(a) take three input values
(x, y, and z) and its intended output in line 13 should be the
middle value. However, an incorrect value is printed when
the program takes (x = 2,y = 1,z = 3) as its input. By our
definitions given above, the cause for this execution failure
can be traced back to two faults in the program. One is the
incorrect value assignment in line 2 and the other is the
incorrect branch composition in line 6. If the branch condi-
tion in line 6 were written correctly, then the incorrect value
assignment in line 2 may not have reached the print state-
ment in line 13. However, under the given input, both faults
are triggered, and the missing events (illustrated by the dot-
ted lines) cause an unintended reaching definition (Defini-
tion 2.2), illustrated by the solid arrow in Fig. 1(b)).
According to Definition 2.3, the incorrect assignment in line
2 and the wrong branch composition in line 6 are the direct
root causes of the failure.

Where no confusion results, in this paper, the term “root
cause” may refer to either a statement in the program or an
execution instance of that statement during the failed run.
To make the latter explicit, we use the term root cause in the
failed run. The program state associated with a root cause is
called an initial faulty state of the failed run. The program
state associated with a transitive cause is called an interme-
diate faulty state. The example given above has two root

causes for the failure and such a failure is called a multi-
fault failure.

The technique presented in this paper is aimed at report-
ing suspected root causes to the programmer in the event of
an execution failure. Additional information based on
dynamic dependence chains, as discussed in Section 3, is
provided to the programmer for searching around the sus-
pected root causes that do not turn out to be the actual ones.

3 MiNiIMum DEBUGGING FRONTIER SETS

In this section, we formally define the minimum debugging
frontier sets (MDFS) that underlies our fault-localization
approach. The MDFS is extracted from a dynamic depen-
dence graph, which is also formally defined below.

3.1 The Dynamic Dependence Graph

Although the concept of an execution trace is useful for
introducing the definition of root causes and transitive
causes in this paper, our technique does not explicitly gen-
erate an execution trace for diagnosis. Instead, after a failure
is observed, we execute an instrumented version of the pro-
gram that reproduces the failure and, at the same time, con-
structs a dynamic dependence graph defined over the
executed statement instances. (In this paper, we handle
only failures that are reproducible.) Each statement instance
has a sequence number in the order of execution. The
dynamic dependence graph (abbr. DDG) for the failed run con-
tains nodes that represent statement instances from the start
of the execution to the failure site p. A dependence edge (s;,
8j) indicates a dependence of statement instance s; on s;.
Such an edge may be a flow dependence, a direct control
dependence, or a summary control dependence, all to be intro-
duced below. Traditional DDGs do not include summary
control dependences. However, for failures due to incor-
rectly skipping certain statement instances during execu-
tion, the root causes may not appear in the DDG unless
summary control dependences are included. Experimental
evidence will be presented later (in Section 6.3). An array
Mapls;] maps statement instance s; to the program statement
s in the (static) program dependence graph (PDG) [7].

The search for the root causes is conducted by following
chains of dependencies between statement instances that
take place during the execution, eventually leading to the
violation of property P. By Definitions 2.1-2.4, each link in
such chains of dependencies corresponds to a transitive
cause. Establishing flow dependencies at run time is done
by recording, for each variable, the most recent instance of
the assignment statement s that writes to the variable. Until
the same variable is modified again, any statement instance
that reads this variable has a flow dependence on this
instance of s.

We also establish two kinds of control dependencies
between statement instances at run time, namely direct con-
trol dependencies (which are also known as dynamic control
dependencies [8]) and summary control dependencies. A state-
ment instance s in the execution trace has a direct control
dependence on b if and only if b is the most recent branch
statement instance such that a different branch decision
would have caused s not to be executed. (Where no confu-
sion results, we may simply say that s has a control
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dependence on b, dropping the “direct” attribute.) The fol-
lowing algorithm describes the actions taken when execut-
ing the next statement instance s in order to detect direct
control dependencies.

Algorithm 1. (Run-time detection of direct control
dependencies)

Suppose the statement instance executed next is s.

If s is an instance of a branch statement B, insert s to a stack,
Q, of live branch statement instances. Otherwise, let s be an
instance of statement S and suppose the top of Q is an instance,
b, of a branch statement B'.

If S is control dependent on B in the PDG, then draw a con-
trol dependence edge from b to s. If not, then b is no longer a
live branch statement instance. (In other words, the execution
has exited the branch.) We remove b from the stack and con-
tinue searching and updating Q until either the correct branch
statement instance is found or Q becomes empty. In the latter
case, s is not control dependent on any statement instance.

A summary control dependence captures the effect of the
branch decision on reaching definitions even if such an
effect cannot be represented at run time as a composition of
direct control dependencies and flow dependencies. To
make a formal definition for summary control dependencies
at run time, we first define summary control dependencies
in terms of the PDG.

Definition 3.1. A statement S is said to have a summary con-
trol dependence on a branch statement B if and only if 1) S is
not control dependent on B; 2) there exists a path from B to' S
that contains an assignment statement T whose value definition
reaches a use of the same value by S; and 3) there exist a branch
decision for B that can cause T not to be executed.

Note that, in the definition above, T does not need to be
directly control dependent on B. A chain of control depen-
dencies connecting B to T suffices. The reason we explicitly
establishes a dependence between B and S statically is
because, at run time, certain statement instances, an
instance of T for example, may not be executed due to the
branch decision, making it infeasible to infer the depen-
dence of the instance of S on the instance of B. Further note
that we may not always be able to exactly verify condition
2) at compile time, due to potential complications such as
pointer aliasing. The default is to conservatively assume
that condition 2) is met. From the summary control depen-
dencies computed based on the PDG, we can establish run-
time summary control dependencies between statement
instances, which subsume potential control dependencies
proposed in prior work [9]. Note that, under the given pro-
gram input, one may not always be able to verify condition
2) in Definition 3.1 between a pair of statement instances at
run time either, because the said path from B to S may not
be actually taken, hence giving no opportunity to check the
potential reaching definition.

In order to establish summary control dependencies
based on PDG, we first transform the program into a static
single assignment (SSA) form [10] such that each use has a
unique reaching definition. If a use has multiple reaching
definitions in the original form, the SSA form will have a
new definition created, denoted by a phi node, that makes a

Contrgll Static control ~ Static data Auxiliary,  Summary Control
x:=1 flow dependence dependence edge dependence”
if b> 0 then =1 =1
X o= 0=
ifa>1then P R

5 ifbg>0 [T
X:=
Si=Ss+X

(a) source code

Xo:=1
if bp > 0 then : /
if ag > 1 then i \
v w2 philio) |/
X5 := Phi(Xo,X1) X 1= Phi(xo,x2) v
X3 := Phi(Xg,X,) S1:=So+ X3
S1:=So+ X3
(c) PDG w/ auxillary (d) summary control
(b) SSA edges dependence on PDG

Fig. 2. An example of establishing summary control depedence.

single selection among those reaching definitions. Such phi
nodes are placed at the dominance frontiers of those original
reaching definitions, which are essentially the merging
points of paths originating from certain branches. The fol-
lowing algorithm computes summary control dependencies.

Algorithm 2. (Computing Summary Control Dependencies)

Step 1 (Establishing relationship between branch statements and
phi nodes) Suppose a phi node is created to select among a num-
ber of reaching definitions. Let C be a set of branch statements
such that each member in C can reach at least one of the reach-
ing definitions through a path consisting of only (direct) control
dependence edges. We add an auxiliary edge from each mem-
ber B to the phi node in PDG.

Step 2 (Finding summary control dependencies) Suppose a flow-
dependence path exists in PDG from a phi node to a statement
S and there is an auxiliary edge from a branch statement B to
the phi node. We add a (static) summary control dependence
edge from B to S in PDG.

Fig. 2(c) and 2(d) show how we extract summary control
dependences based on the SSA form (Fig. 2(b)) of the given
program (Fig. 2(a)). Each dotted arrow in Fig. 2(c) represents
an auxiliary edge added from a branch statement to its corre-
sponding phi node. The dotted arrows in Fig. 2(d) represent
summary control dependences. For brevity, statements from
the same basic block, i.e., statements shown in the same rect-
angle node in Fig. 2, share the same control dependence
edges. The algorithm can be extended to compute inter-proce-
dural summary control dependences in a system dependence
graph (SDG) [7]. An SDG is a collection of PDGs, one for each
procedure. Interprocedural summary control dependences
are calculated in the same way except that flow dependences
involving each call site are calculated beforehand based on
the def/use summary collected for each procedure.

Due to the fact that a summary control dependence
involves a flow dependence in the PDG, any inaccuracy of
flow dependence information, due to the limitation of static
program analysis, can cause inaccuracy of summary control
dependence information. Therefore, the summary control
dependencies may be computed overly conservative, which
can potentially increase the cost of fault localization per-
formed on the DDG.

The following algorithm describes the actions taken
when executing the next statement instance s in order to
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Static

Xp:=1 Control flow

Executed
—_—
Control flow

Dynamic data

dependence

Dynamic Control
Dependence
)
(including direct

and summary)

S1:=So+ X3

Fig. 3. An example of dynamic summary control depedence.

S1:=Sp+ X3

detect summary control dependencies. The summary con-
trol dependencies of each statement instance are detected
after analyzing its data and direct control dependences.
Note that at the time s is executed, the instance of the branch
statement on which s has a summary control dependence
may not be live any more. Hence, we cannot search the stack
Q for such instances of branch statements. Instead, we
maintain the sequence number of each executed instance of
branch statement B, in the reversed order, in a list qB . The
actions taken by Algorithm 3 on s are performed after the
actions taken by Algorithm 3.

Algorithm 3. (Run time detection of summary control
dependencies)

Suppose s is the statement instance (of S) to be executed next.
For each branch statement B’ in the PDG such that S has a sum-
mary control dependence on B/, we draw a summary control
dependence edge from each instance b’ in ¢” to s. If s is an
instance of a branch statement B, append the sequence number
of s to the head of 4.

Note that, at run time, the branch condition may be such
that the assignment statement T in condition 2) of
Definition 3.1 does get executed before s (ie. s is flow
dependent on s’, an instance of T, and s’ is directly control
dependent on b, an instance of B'). In this case, the path in
condition 2) exists at run time. Hence, there exists a chain of
dependences from members of ¢” to s that have already
been established. We remove the summary control depen-
dence edge from ¢” to s, since any root cause reachable, in
the reversed order, by following this edge is also reachable
by following the existing dependence chain. Also note that
a summary control dependence in the PDG can potentially
result in a large number of summary control dependencies
in the DDG, because we do not know a priori which branch
instance b’ may be incorrect. The presence of many sum-
mary control dependencies in the DDG may increase the
cost of fault localization. In our experiments (c.f. Section 6),
we compute intra-procedural summary control dependen-
cies only, in order to save time and space.

Fig. 3 shows different dynamic dependence edges added
for the code snippet shown in Fig. 2(a) when different con-
trol flows are executed.

Given any node, 1, in DDG, all nodes and edges that are
backward reachable from n constitute a subgraph of the
DDG induced by n. Since such a subgraph is always acyclic,
we denote the set of its roots by Vi, and the set of its sinks

by V..i, respectively. The subgraph is then denoted by
DDG < Viegin, Vena >. Once Viegin and V,,q are given, all
nodes V and all edges E in the subgraph are determined.
The DDG has a unique sink that is p, where failure F is
observed. We introduce a unique ENTRY node to be the
unique root of DDG.

Claim 3.1. DDG contains all root causes for the observed
failure, F.

Proof. Dynamic control dependencies computed by Algo-
rithms 1-3 involve all branch statement instances that
may have had an effect on the truth value of the property
P. Dynamic flow dependencies in DDG involve all assign-
ment statement instances that may have had an effect on
the truth value of P. 0

3.2 MDFS

Let v be anode in DDG < Viegin, Vena >, we call a subset of
the nodes, C, in this subgraph a cut for v if, by removing C,
v becomes unreachable from the nodes in Vjeg;p,.

Definition 3.2 (Minimal Debugging Frontier Set). Given
a node v in DDG < Viegin, Vena >, a minimum debugging
frontier set mdfs for v is a cut that, among all possible cuts for
v, has the minimum number of nodes.

Note that, throughout this paper, the capitalized abbrevi-
ation MDFS refers to the concept and the method, but the
lower case abbreviation mdfs denotes such a set used in the
algorithm. Even though in practice the correct program
states are usually unknown at most of the execution points,
it is useful to analyze how the root causes could be located,
suppose the correct program states were available. We have
the following two claims that apply to both single fault and
multi-fault failures.

Claim 3.2. If the program states are correct both at Vicgin
and at all statement instances in an mdfs for v, then a root
cause for the failure observed at v must exist in subgraph
DDG < mdfs, v >.

Proof. Suppose the claim were false, which would mean that
all root causes must be in DDG < Vi, mdfs >. Con-
sider any one of these root causes. By definition, it must be
located at the head of a dependence chain that leads to v
such that the program state at every link in this chain is
faulty. This chain must be a part of a chain from a node in
Viegin to v. Hence, by Definition 3.2, it must contain a mem-
ber in mdfs. This contradicts the assumption that the pro-
gram states at all nodes in mdfs are correct. 0

The claim above gives a sufficient condition for an initial
faulty state to exist between the current mdfs and the failure
point.

Claim 3.3. If any of the statement instances in an mdfs for v
produces an incorrect value, then a root cause for the fail-
ure observed at v must exist in subgraph DDG <
Viegin, md fs >.

Proof. Suppose no root cause of the failure observed at v
exists in any dependence chain from Vg, to any node in
the mdfs for v. This means that no faulty program state
exists at any statement instance in any dependence chain
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leading to the mdfs. All values produced by members of
mdfs then must be correct, which is a contradiction. ]

The claim above gives a sufficient condition for an initial
faulty state to exist prior to the nodes in mdfs in the trace.

We must emphasize again that, at most statement instances,
no correctness criterion is actually available for verification.
The significance of the claims above is to guide the develop-
ment of heuristics for finding suspects of initial faulty states.

Algorithm 4. The Core Algorithm

Input: failure site p and a correctness property P at p.

Output: A fault report consisting of a root cause and a set of
transitive causes.

// Preprocessing

Rerun the faulty program with the same input to construct the
DDG;

Extract the initial analysis domain D = DDG (Viegin, p);

repeat

// Step 1: Extract mdfs

Generate an mdfs for D;

// Step 2: Identify Polluted Entities

Repeat

Symbolically alter a selected set of values produced by the
statement instances in mdfs;

Rerun the program from scratch, using sparse symbolic
exploration to determine whether the altered instances are pol-
luted entities; (See Section 4.2 for details)

until all combination of the statement instances in mdfs are
checked;

/ / Step 3: Re-extract an analysis domain

Update D according to CLAIM 3.2 and CLAIM 3.3;

Simplify D based on the polluted entities, if any, found in this
iteration, excluding those entities directly dependent on pro-
gram inputs;

Attach a new correctness property to the end point of D if
available;

until no more mdfs is found in D;

Generate a fault report based on the set of polluted entities;

In Section 4, we present a scheme that iteratively extracts
an mdfs and assesses which of the two conditions listed
above is satisfied. In either case, the analysis domain will be
narrowed, eventually converging to a root cause candidate.

4 AN MDFS-BASED SCHEME

In this section, we present a scheme for fault-localization
based on the MDFS concept. We first present a core algo-
rithm that locates a single root cause responsible for a single
observed failure. We then discuss the handling of the cases
in which multiple root causes simultaneously trigger a sin-
gle failure. In the event of multiple failures being observed,
we can use the algorithm to locate the root causes of one
failure first. After the programmer makes the correction, the
algorithm can be applied again, suppose the other failures
persist under the same input, to the next failure repeatedly,
until no failures are observed.

4.1 The Core Algorithm

Our core algorithm (Algorithm 4) begins by constructing the
initial analysis domain that consists of the DDG for a failed

run. Next, it takes three major steps: 1) extracting a set of
statement instances, on the basis of MDFS, to examine the
program states; 2) identifying polluted entities, namely those
statement instances that can be altered to make the failure
disappear; and 3) narrowing the analysis domain with the
conclusion of state exploration. These three steps are iterated
until the analysis domain can no longer be narrowed further.
Details of the core algorithm are provided below.

Preprocessing. Without loss of generality, we assume that
the failure manifests itself either by generating an output that
deviates from the expected output or by violating an asser-
tion. In either case, we have a faulty program state at the fail-
ure site, p, and a set of variables that, collectively, are
responsible. Viewing these variables as being used by p, we
extract the subgraph DDG < Vjegin, p > from the DDG con-
structed during the execution, or the re-run, until the occur-
rence of the failure. This subgraph is the initial analysis
domain for our scheme. For clarity, the following steps are
first discussed for the initial analysis domain. After this, we
will discuss what changes may be made in the later iterations.

Step 1: Extracting mdfs. In this step, we determine a mini-
mum debugging frontier set mdfs for DDG < Viegin, Vena >,
where V,,q = p in the first iteration. The problem of the
MDFS calculation on a DDG subgraph can be transformed
into the minimum cut problem [11] on the dual of the DDG
subgraph. The minimum cut set of the dual is then converted
back to a set of nodes in the original DDG. The statement
instances represented by these nodes form the madfs. If the
mdfs is not unique, the one with the shortest average depen-
dence chain from each of its elements to V,,,; is chosen.

Step 2: Identifying polluted entities. To identify polluted
entities, we apply state alteration and exploration on the
statement instances in the mdfs to see if changing any of the
values generated by them can make the failure disappear,
i.e., whether a correctness property, P, specified by the pro-
grammer at p, can be satisfied by the alteration. Since a fault
may be propagated through multiple chains in the DDG,
reaching multiple statement instances in the madfs, we sub-
ject combinations of members in the mdfs to simultaneous
alterations after altering the single members separately,
unless each single member has already been identified as a
polluted entity. When to stop exploring new combinations
will be discussed later below.

Generally, altering an intermediate program state sym-
bolically will in general cause multiple possible paths that
deviate from the original failing trace, with more statement
instances having multiple reaching definitions and, hence,
producing more symbolic values (subject to branch-condi-
tion predicates) as a result. In our previous work [12], while
we tried to execute as many statement instances using con-
crete values as possible, we used the bounded model
checker CBMC [13] to perform symbolic execution wher-
ever concrete values are unavailable. We used the Min-
iSAT?2 tool [14] to solve the constraints generated by CBMC.

Under CBMC, however, the MDFS-based scheme must
explore all possible paths (subject to a limit set by the user
on the degree of loop unrolling) in the current analysis
domain in order to generate the set of constraints to be
solved by MiniSAT2. This can be highly time-consuming.
To reduce the number of explored paths, one can take
advantage of the fact that the direction in which the analysis
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domain is narrowed depends solely on whether polluted
entities exist in the current mdfs. When we apply an alter-
ation trial to a selected combination (or a singleton, which is
viewed as a special combination), as soon as the combina-
tion is found to be polluted by conducting symbolic execu-
tion through a single path, no other paths need to be
explored for this combination any more. This observation
leads to our new exploration strategy that explores one path
at a time. (The cost comparison between our old and new
strategies will be given in Section 6.1, and the method to
find distinct paths is discussed in Section 4.2.)

Under the new strategy, in each alteration trial, let s
denote the first statement instance (in the order of the origi-
nal trace) among a specific combination to be altered, we
rerun the program from scratch using concrete values until
reaching s. From this point on, we explore various execution
paths that can lead to p. On each path, we execute the pro-
gram in a dual mode, i.e., using a set of concrete values to
execute the statements in the path such that the intended
branch selections can be followed. On the other hand, unlike
in our previous work [12], we do not explicitly set up pre-
conditions as predicates that alter the values assigned to any
of the statement instances in the given combination. Instead,
before starting symbolic execution on the currently chosen
path, we introduce a new symbol for each assignment state-
ment instance, if any, in that combination, to represent the
assigned value. If a pointer or any field of a structure whose
value is an address is marked symbolic, then all statements
which may load value from that address must also be
marked symbolic. The ensuing symbolic execution propa-
tates such new symbols, statement by statement, towards p,
such that a set of path constraints, C, is collected from the
encountered branches and, at p, the correctness property P is
also transformed into a set of predicates. Both C and P are
now predicates over the new symbols.

If P AC is satisfiable, then we face two possibilities. It
could mean that the program state of the combination at the
mdfs was correct before altering, hence the root cause of the
failure exists between the mdfs and the failure, but the alter-
ing (before the root cause was triggered) makes the failure
disappear. The second possibility is that the altering indeed
has fixed faulty program states at the madfs, implying the
root cause of the failure to exist prior to the mdfs. From our
empirical experience (c.f. Section 6.2), the first scenario, i.e.,
“two wrongs make it right”, is much less likely than the sec-
ond possibility for programs in practice. Hence, unless
additional information (c.f. Section 6.2) is available, our
algorithm assumes the latter scenario and marks this combi-
nation as a polluted combination. In contrast, if during the
exploration trial, the execution never reaches p or the set of
path constraints generated at p is never compatible with P,
then the combination is assumed as correct.

Since we do not need to always explore all paths, we call
this mode of state exploration sparse symbolic exploration. As
will be clear later, in the interest of finding new correctness
properties that can be used for the new analysis domain, we
want to find as many polluted combinations as we can. The
details of formation of the new properties are given below.
After finding all polluted combinations, members of mdfs
that belong to any polluted combinations are marked as pol-
luted entities.

Step 3: Re-extracting analysis domain. If no polluted entity
is found in step 2, then by Claim 3.2, the root cause is
assumed to exist after the mdfs. The analysis domain is nar-
rowed to Dp = DDG < mdfs, Ve,q >, ie., the bottom
part, for the next iteration. We retain the property P for com-
patibility check at p for the next iteration, in which Dg
becomes the new DDG < Viegin, Vena >

In contrast, if any polluted entities are found in the cur-
rent mdfs, then according to Claim 3.3, the analysis domain
is narrowed by removing the DDG subgraph between the
mdfs and p. The remaining subgraph Dy = DDG < Viegin,
mdfs >,is further simplified by including only those nodes
and edges that are backward reachable from the polluted
entities, excluding those that are directly dependent on the
program inputs (under the assumption that the inputs are
always correct and hence are not a part of any analysis
domain). The resultant subgraph becomes the new analysis
domain, still denoted by DDG < Viegin, Vena >, for the
next iteration. We then check to see whether we can move
compatibility check further towards the program entry in
the interest of more efficient symbolic exploration in the
next iteration. If all polluted entities are due to branch deci-
sions, then we can replace P at p by a new correctness prop-
erty, P/, to be checked at the last executed statement
instance in V4. To form P’, for each polluted combination
found above, we negate the Boolean value of each member
and take the conjunction. This will be a condition to satisfy
P. Take the subjunction of all such conjunctions obtained
from different polluted combinations, we obtain P’, which
implies P. We rename P’ to P for the next iteration to per-
form compatibility check for each explored path. (Each
atomic proposition in the new P will be evaluated when the
corresponding statement instance gets executed. However,
for convenience, we will regard the last executed statement
instance, denoted by p, in V,4 as the point for compatibility
check.) Our core algorithm iterates Steps 1-3 until the analy-
sis domain cannot be narrowed further.

One can see that if we find all polluted combinations in
Step 2, then P’ constructed in Step 3 will be equivalent to P. On
the other hand, there is no need to explore a combination if
it contains a subset that is already found to be polluted,
because the conjunction formed for the subset is weaker but
still implies P. So it is natural for our core algorithm to test
the singletons in the mdfs first and then test combinations
of two (if necessary), and so on, essentially climbing up the
lattice formed by the power set.

The formation of a new correctness property presented
above is rather different from that used in our previous
work [12], where a new property is always formed regard-
less of the kind of polluted entities. For each polluted entity
(whether a branch decision or a value assigned), an atomic
proposition is created to accept any value but the original
one. The conjunction of these atomic propositions is then
used as the correctness property for the new analysis
domain. Although easier to implement, this conjunction
does not generally imply P. One can use a constraint solver
to find certain sufficient conditions to substitute for P. How-
ever, in general it will not be equivalent to P. Hence, we cur-
rently do not replace P by a new property in such cases.

The fault report produced by the core algorithm includes
all polluted entities found during the process. However,
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only those polluted entities found during the last iteration
are marked as the suspected root causes, and their corre-
sponding source code snippets are reported as the sus-
pected error source. For failures caused by missing
statement faults, the statements that use wrong operands
due to such faults are listed in the error report, even though
those statements themselves may be correct. Other polluted
entities are included in the report to show how the fault is
propagated. These are a subset of the transitive causes, but
not all, because we have skipped many intermediate nodes
to speedup convergence. If desired, such omitted intermedi-
ate nodes can be easily added to the report. Note that instan-
ces of input statements are never included in the fault report
as we assume they are correct, but the first usage of the
input value will be marked as the suspected root causes.

4.2 Details of Sparse Symbolic Exploration
Algorithm 5 presents implementation details of our sparse
symbolic exploration. The algorithm is applied to a given
combination of statement instances in the current mdfs, with
a set E containing the new symbols introduced for the assign-
ment statement instances. Note that alterations of branch
statements in the given combination will result in paths dif-
ferent from that in the failing trace. Our algorithm uses the
altered branch decisions for these statement instances as part
of the initial concrete values to drive the sparse symbolic
exploration, but it uses the original concrete values in the
failing trace for symbols in E (line 1). Branch decisions hence-
forth will be made depending on the concrete values in the
branch conditions. Obviously, such “concolic execution”
[15] may or may not reach p, and a path reaching p may or
may not lead to satisfiable P A C as the result of the execu-
tion. If P A C'is satisfied, we say E is polluted, which is equiva-
lent to saying that the given combination is a polluted
combination, or that the combination is polluted (line 2-6).

Algorithm 5. Algorithm of Sparse Symbolic Exploration

Input — E: A set of symbols for currently altered values
assigned by statement instances; P: a set of constraints specify-
ing certain expected properties at program point p.

Constants — tBOUND: an upper bound on time spent on
exploring a given path.

Key Variables — BN: # of branch instances encountered in a
path; pBOUND: an upper bound on the length of paths to
explore, default set to 10"BN; C: a set of path constraints; pc: a
constraint in C; VS: a set of concrete values found by constraint
solver to activate an execution path; DQ: a queue that stores
paths to continue exploration later, represented by the branch
constraints for each path and the index of the first branch to
start next exploration.

Output: True if E is polluted, False otherwise.

1 Rerun the program from the beginning, letting each symbol
in E use its concrete value obtained in the failing trace and
executing all statements that are dependent on E
symbolically;

2 If the given combination contains no assighment statements,
let C be True. Otherwise, C = the set of path constraints col-
lected by the symbolic execution at encountered branches
until reaching p, or, in case p is unreachable, until execution
terminates. In the latter case, skip the following if statement
and jump to L1;

3 if E is empty (i.e., the combination contains only branches)
4  (Pis atautology)? return True: return False;
5 else if C is compataible with P
6  return True;
endif
7 L1: BN = # of branch instances executed in the current run;
8 if Explore(C, 1) return True;
9 while DQ is not empty do
10 Pop the first element (C’, id) from DQ);
11  if Explore(C’, id) return True;
endwhile
12 return False;

Explore (C, id) {/" id is the index of a path constraint in C */
13 pen = # of the path constraints in C;
14 fori=id to pcn do
15  pc = ith path constraint in C;
16 VS =aset of concrete values for E that satifies C[pc/pcl;
17 if VSis empty

18 Let C; include the first i-1 constraints in C;
19 VS = aset of concrete values for E that satisfies C; A pc;
endif

20 if VSis not empty

21 Co=Cl pc/ pcl;

22 Rerun the program from scratch, letting E use the val-
ues in VS and executing statements depending on E
symbolically.

23 Kill the execution if its time cost exceeds tBOUND and
continue to next iteration of the for loop;

24 Let C" be the set of path constraints collected until
reaching p, or, in case p is unreachable, until execution ter-
minates. In the latter case, if Cy is compatible with C’, add
<C’, i+1> to DQ and continue to next iteration of the for
loop; otherwise, skip the following if statement and jump
toL2;

25 if P is a tautology or C’ is compatible with P

26 return True;

27 L2: bn = # of branch instances executed in the current
rerun;

28 if bn > pBOUND continue;
29 if Explore(C’, i+1) return True;
endif
endfor
30 return False;}

If E is not found to be polluted after exploring a chosen
path, we use a constraint solver to find a set of concrete val-
ues for E to satisfy Clpc/pcl], which is C with exactly one of
the constraints, pc, negated (line 16). If such concrete values
do not exist, we then try to find a set of concrete values to
simultaneously satisfy the set of constraints in C that are
already fixed (i.e., the alternatives are already explored
without success) and the constraint pc, as listed in line
18-19. Once the set of concrete values is found, we rerun the
program from scratch, letting E use the values in the set and
executing each statement instance depending on E symboli-
cally (line 22). This rerun is monitored by an external script
and will be killed automatically if its time cost exceeds a
predefined bound (line 23). In our experiments, we set the
bound to 10 seconds.

If the execution reaches p within the time limit and the
set of constraints C’ generated at p is compatible with P, the
algorithm termintes after marking E as a polluted
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combination; otherwise, it will continue path exploration
(line 24-26).

Note that, in a recently published program repair approach
known as Angelix [16], concolic execution is used in conjunc-
tion with constraint solution to automatically repair expres-
sions that are suspected to be erroneous. Like Algorithm 5,
Angelix introduces new symbols to represent the values of
instances of such expressions during concolic execution. The
most important distinction, however, is that Angelix exhaus-
tively explores all paths in order to allow the repairs to be syn-
thesized through constraint solving. In contrast, the
statements whose instances (in E) are subjected to our algo-
rithm are usually not faulty themselves. Instead, they may
have obtained faulty values through propagation. With the
MDFS approach, we simply need to determine whether the
state is polluted and, therefore, we can short-circuit the path
exploration as soon as the state is found to be faulty.

Another important novelty of Algorithm 5 is the way it
selects the next path to explore and performs concolic exe-
cution. Notice that only those paths that reach p are useful
for finding polluted entities. Therefore, if our algorithm
finds it unlikely to obtain new paths that can reach p by per-
forming constraint negation on a certain path, such a path is
stored in a deferred queue. The algorithm then switch to
exploring other paths that are more likely to reach p. The
deferred queue will not be checked or explored unless all
other paths have been explored without E being marked as
polluted. Due to these important short cuts, we call the
approach in Algorithm 5 sparse symbolic exploration.

In Algorithm 5, if the current path fails to mark E as pol-
luted, several steps are taken to select the next set of paths that
are most likely to reach p. If the current path reaches p, C’ will
be explored first. Otherwise, the algorithm makes choice by
testing the compatibility of C and C, (line 24). If the last exe-
cuted path (i.e., the one C is collected from) reaches p and the
current path C’' does not, then the compatibility of C" and C
implies that the latter path does not encounter any of the
branch instance in C after negating pc (Otherwise, there would
exist a subpath in C’ that satisfies a subsequence of path con-
straints in C, making the path reach p. which is a contradic-
tion.) In this case, there exists a chain of control dependence
edges (in the static PDG) from the branch statement associated
with pc to p. Therefore, any path generated from C' by making
a different branch decision after pc would either fail to reach p
or must take mutiple iterations of the enclosing loops (if any)
before reaching p. We put C' in a queue (DQ) to defer its fur-
ther exploration. We store the branch constraints of C’ as well
as the index of the first branch constraint that follows the
negated pc. After this, we continue by checking to see whether
by negating the remaining path constraints in C we can find a
path toreach p.

If neither C nor C' reaches p, then the compatilities
between C" and C, implies that C’' contains either all or none
of the branch instances in C after the node associated with
the negated pc. In the former case, any path generated from
C’ by making a different branch decision after pc can also be
generated by making a different descison for the corre-
sponding branch instance in C, and the algorithm will per-
form further exploration on C first. In the latter case, the
branch instance that pc corresponds to is not a direct domi-
nator of p. The algorithm will perform further explorations

on C' if it finds no path to reach p and make P compitible by
negating the remaining path constraints in C.

Another bound, pPBOUND, is imposed on the number of
branch instances executed in the unexplored paths (line
27-28). In our experiment, we set the default value of
pBOUND to be 10 times of the branch number executed by
the original failing execution. If these limits are exceeded,
then the algorithm may miss certain feasible paths and
cause the core algorithm to miss certain polluted combina-
tions. If this happens, then the new correctness properties
formed in Step 3 of the core algorithm will be sufficient con-
ditions for the original correctness property P, but not
guaranteed to be equivalent.

4.3 Extension to Multiple Faults

Suppose a program contains multiple faults, i.e., multiple
faulty statements, and they together cause a failure dur-
ing the execution. In the dynamic dependence graph, we
may find multiple initial faulty program states, each at
the head of a dependence chain that leads to the failing
operation. We discuss how to apply the core algorithm
in this situation.

When we perform state exploration on the statement
instances in the mdfs, we apply Algorithm 5 to find out
whether they contain any polluted entities. If not, then the
program states at the mdfs are considered to be correct, and by
Claim 3.2, our method still determines that all root causes are
located between the mdfs and the failure site. If, however, pol-
luted entities are found, then two possibilities exist. It could
mean that the program state at the mdfs was correct before
altering, hence all initial faulty states exist between the madfs
and the failure site, but the altering makes the failure disap-
pear. The second possibility is that the program state at the
mdfs was faulty but can be corrected by altering of the value
produced by a certain statement instance. Hence at least one
root cause of the failure exists prior to the mdfs. Our algorithm
still accepts the latter possibility.

Immediately before the algorithm terminates, we may
have one of the two following situations:

1)  Allinitial faulty states are located on the same side of

the mdfs in the final iteration;

2)  Some of the initial faulty states are on one side and

the others are on the opposite side of the mdfs.

In the first situation, we would have found all the root
causes for the failure. In the second situation, however, we
would miss those root causes located on the wrongside. To
mitigate this weakness, the programmer can rerun the pro-
gram under the same input after correcting the root causes
found by our technique. If the missed faulty statements
cause a failure again, the MDEFS-based technique can be
reapplied. Further, in order to find latent faulty statements,
it is best for the user of our tool to conduct extensive tests
using various inputs. This would improve the chance that
the missed root causes may be found when debugging other
failures.

Let us revisit the example in Fig. 1, which has two faults
(in statement 2 and statement 6, respectively). Under input
(x,y,2) = (2,1, 3), both faults are triggered, causing the
erroneous value, 1, to be printed by statement 13, when the
correct output is supposed to be 2.
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(a) intial DDG and its mdfs (b) sparse symbolic execution for v2

Fig. 4. An example of locating multiple faults.

In the dynamic dependence graph of the failed run, the
statement instance that produces the erroneous output is
represented by node v;;. Our method calculates an mdfs for
DDG < ENTRY, v1; >, which contains two nodes, v, and
vg, boxed in double-lined rectangles in Fig. 4(a). Altering
the state at v;, the input value of y is replaced with a fresh
symbol sym_y. Sparse symbolic exploration is then per-
formed on sym_y to see if any alternative value exists for
sym_y that makes the execution reaches v;; and obtains a
state at v; that satifies the correctness property “m == 2”.
As shown in Fig. 4(b), the exploration first lets sym_y take
its original value and then symbolically executes all state-
ments that are dependent on sym_y, resulting in a set of
path constraints at v; that consist of PC} (sym, < 3) and
PCy (sym, < = 2). The correctness property “m == 2"
placed at v47, after symbolic substitution, becomes “sym,, =
= 2”. Using a constraint solver, we find that this set of path
constraints is compatible with the correctness property
“sym, = 2”, which makes v, a polluted entity. (Recall that
we assume the input files to be always correct, but the read
statement may constitute a fault.) We do not need to explore
other paths originating at v, (Note that, had we continued
to explore other paths, the path constraints would not have
been compatible with the correctness property, as shown in
Fig. 4(b)). State exploration is next applied to vy, showing it
to also be a polluted entity. Since both v, and vy have been
considered as polluted, no exploration needs to be per-
formed on their combination. By Algorithm 4.1, the analysis
domain is first narrowed to DDG < ENTRY, vy, vy >.
However, since v, depends on user inputs alone, it is
already at the head of a dependence chain leading to the
failure site. Therefore, our method reports vy, i.e., the first
usage of y after the current mdfs, as a root cause. The analy-
sis domain is thus simplified to DDG < ENTRY, vy >
(Fig. 4(c)) with a new correctness property “z > 2” gener-
ated at vg. The search continues towards the entry of the
trace by finding an mdfs for DDG < ENTRY, vy >. This
mdfs contains vs and v;. As shown in Fig. 4(d), neither v5; nor
vy alone is found to be polluted. Next, state alteration is
attempted on the combination of v5 and v7, but negating the
truth value of vs makes v; unreachable. So this combination
does not turn out to be polluted. Since no polluted entity is
found in the second iteration, the current mdfs becomes
Visegin for the next analysis domain, for which we find no fur-
ther cuts. The algorithm terminates after reporting

sym_y<3 Asym_y<=2 A\sym_y==2 |
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PCy:sym_y < PCyisym_y>=3
‘ if 2<sym_y | | if 2>sym_y |
PCs: sym_y > Caisym_y <=2 PCs: sym_y >=2 | |
elseif (2>3)
l m =sym_y ‘ l elseif (2>3) | elseif (2>3) it (tmp2) \
Contradiction Path 1: True

Paht 1/\P:2>3
Contradiction

(c) DDG after 1% iter and its mdfs ~ (d) sparse symbolic execution for v5 and v7 separately

statements 2 and 6 as root causes of the failure observed at
statement 13.

5 IMPLEMENTATION

We implement our method in the framework of Valgrind
[17], which is a suite of tools for debugging and profiling
based on dynamic binary instrumentation. We write a new
plug-in for Valgrind to construct DDGs and to find mdfs.
We add a new module to the Diablo tool [18] to find static
direct control dependence offline, and the results are
mapped to Valgrind by instruction addresses. As Diablo
has limitations in flow analysis, we add the static summary
control dependence analysis' to the Open64 compiler [19].
The analysis results are mapped to Valgrind’s VexIR based
on the line number of source code before the program exe-
cution is traced. When constructing DDGs, interprocedural
summary control dependencies are omitted to save time
and space. Experimental result in Section 6 will show that
computing intra-procedural summary control dependencies
is sufficient for locating faults for the test cases used in our
experiments. For finding mdfs, we use the classical
Edmonds-Karp algorithm to generate minimum cuts, with
time complexity of O(|V| x |E|*). Although slower than the

push-relabel method, which runs in O( [VI*), and other
newly discovered algorithms, this algorithm is advanta-
geous in handling sparse graphs such as those analyzed by
our tool. The number of edges and the number of vertices in
our examined DDGs (or sub-DDGs) are often of the same
order of magnitude. Statement instances in the mdfs are
mapped to their corresponding source code, using the
debugging information generated by the GCC Compiler, to
support the MDFS-based state alteration and exploration.
We turned off GCC optimizations in order to minimize the
differences between the source code and the binary. Algo-
rithm 5 in our sparse symbolic exploration is implemented
on top of Crest-z3 [20], in which Crest [21], a concolic test
generation tool for C, instruments the target program to per-
form symbolic execution concurrently with the concrete
execution, with our own path selection order. The generated
symbolic constraints are translated into an SMT format
before solved by using z3 [22] to generate input that drives

1. Both direct control dependence and summary control dependence
are detected in our previous work [12] without explicit discussion on
implementation.
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TABLE 1
Faults Used for Studies
BugID Program Patch Date Fault Desc. Mutli?
1 grep-2.6  2010-03-25 incorrect goto No
2 grep-2.13  2012-07-08 weak guard No
3 grep-2.18 2014-04-21 strong guard No
4 grep-2.19 2014-05-29 missing assignments ~ Yes
5 gdb-6.8  2008-12-19 missing function calls  Yes
6 gdb-6.8  2008-12-31 design error Yes
7 gdb-6.8.50 2009-09-22 missing branch No
8 gdb-7.0  2010-01-25  mutation operator No
9 sed-4.2  2009-05-11 missing guard No
10 sed-4.2.2 2014-09-06 wrong assignement No
11 tar-1.22  2009-07-30 missing functioncall ~ No
12 tar-1.22  2009-07-30 weak guard No
13 tar-1.22  2009-10-07 design error Yes
14 tar-1.23  2010-03-17 design error No
15 tar-1.23  2010-06-28  call at wrong place Yes
16 tar-1.26  2013-08-04 design error Yes

the test execution along chosen paths. We add several utili-
ties to Crest to provide functionalities needed by Algorithm
5, including support for constraint generations for dynamic
memory operations and simple pointer arithmetic expres-
sions (e.g., malloc, free, “(pointer + constant), pointer -
pointer) when a pointer is marked symbolic [23].

6 EVALUATION

We collect a pool of 16 real bugs of different types that have
been reported in the last decade from several sources,
including Sed, Grep, Tar and Gdb. Characteristics of these
bugs are listed in Table 1. For convenience, we identify each
bug with a number (under Column “BugID”). Column
“Program” shows the name and the version of the program
that each bug belongs to. Columns “Fault Desc.” and “Patch
Date” list the bug type as decribed in the program’s bug-
update mailing list and the date when a patch for the bug is
provided by the developer, respectively. Column “Multi?”
indicates if the bug involves multiple faults. In our experi-
ment, we used the inputs from the bug-update mailing list
to reproduce the failed run.

TABLE 2
Fault Reports for MDFS Methods

Bug  #State Fault Report Time
1D Alter Where Dist  #Stmt (sec)
1 3 dfasearch.c @ 301 1 2 34.27
2 12 dfasearch.c @ 413 1 5 79.61
3 11 dfa.c @ 678-687 2 13 86.08
4 12 dfa.c @ 3979 0,1 3 88.01
5 15 valops.c @ 1921 1 2 149.71
6 10 infrun.c @ 3538 1 2 105.87
7 42 eval.c @ 1516 0 1 378.43
8 2 c-valprint.c @ 189 0 1 70.94
9 8 compile.c @ 505 0 1 35.28
10 4 execute.c @ 1570 0 1 31.18
11 12 create.c @ 1437 1 4 101.10
12 10 create.c @ 1380 0 1 72.62
13 33 create.c @ 1675-1687 0 1 268.16
14 7 unlink.c @ 104, 105 2 4 142.96
15 8 list.c @ 94 1 2 189.45
16 14 buffer.c @ 725,743 0 3 162.88
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Fig. 5. A comparison between our previous work (Baseline = 1) and
sparse symbolic exploration under Algorithm 5.

6.1 Overall result

Table 2 describes the fault report generated by our method
and the time spent on fault localization for each test case.
Column “#StateAlter” shows the number of states automati-
cally altered by our algorithm in order to find the root cause
for each failure. Column “Where” identifies the reported
location of the root cause in the source code. If the fault is
not at the reported location, our tool orders the statements
based on their dynamic dependence distance from the root
cause candidate, so that those statements that are closest to
the reported location can be inspected first. Column “Dist”
shows the distance, measured by the length of dynamic
dependencies, between the suspected root cause and the
true faulty statements. The number of statements needed to
be examined by the programmer before finding the fault is
recorded in Column “#Stmt”, which shows that, for 10 out
of the 16 benchmarks we studied, no more than two state-
ments need to be examined before finding the real faults.
Column “Time” lists the time spent on generating a fault
report for each test case, including the time spent on tracing,
DDG construction, MDFS generation and sparse symbolic
exploration. It also includes the time spent by Crest on
instrumenting the source file and generating the object file
for sparse symbolic exploration. Multiple source files for the
same project are merged into a single source file using CIL
[24] before the instrumentation. For the four test cases from
Gdb, source files whose functionalities have nothing to do
with the tests are excluded from the merged source file in
order to save time of instrumentation. Seven of the test cases
(BuglD 5~8, 14~16) take advantage of the checkpointing
scheme introduced in our previous work [12] during DDG
construction. The construction would otherwise have taken
more than an hour.

Fig. 5 compares time for state exploration under Algo-
rithm 5 against the baseline, which is the time (normalized
to 1) consumed by our previous method [12]. The time for
the baseline is spent on running CBMC and calling Min-
iSAT?2 to solve the constraints generated by CBMC. It, how-
ever, does not include the time spent on manually
extracting and modifying the source code of the current
analysis domain for CBMC. (Since CBMC is not designed
for concolic execution, we needed to modify the program
by hand to make CBMC perform concrete execution on
statement instances that have concrete values for all of their
operands. Symbolic execution is performed on remaining
statement instances.) The time consumed by Algorithm 5 is
spent on instrumentation of the entire code (since we re-run
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from the beginning in each iteration) and on path explora-
tion (including the time to call z3). It, however, does not
include the time spent on merging the whole project into a
single source file. For the test cases that were used in both
this and the previous experiments, the time consumed by
the old method is re-collected using the most recent ver-
sions of CBMC and MiniSAT?2.

Fig. 5 shows that Algorithm 5 outperforms the old state
exploration method in 10 out of the 16 test cases. For BugID
2 and 16, the old method fails to locate the root causes because
CBMC generates constraints that are too complicated for it to
solve. For the remaining four test cases, instrumentation takes
on average 71.99 percent of the total time for state exploration
effort under Algorithm 5, because the analysis domain soon
becomes small, which, however, still takes several iterations
to converge. Therefore, the time to reinstrument the whole
program overshadows the time for path exploration. None-
theless, when cumulated over all test cases, the new method
takes only 29% of the time taken by the old one.

Six of the test cases in our benchmark have multiple
faults that simultaneously cause the individual failures.
These can be divided into three categories:

1) (BugID 15, 16) The failure is triggered by multiple
faulty statements that reside in different functions or
different basic blocks in the same function. (This cat-
egory includes cases of misplaced statements. It also
includes the special case in which fixing one fault
triggers another.)

2)  (BuglID 4) The failure is triggered by multiple faulty
statements that reside in the same basic block. Each
of the faulty statements directly affects a different
value assignment;

3) (BuglID 5, 6, 13) The failure is triggered by multiple
faulty statements in the same basic block and all
these faulty statements directly affect the same value
assignment.

As shown in Table 2 (column “Dist”), our method is able to
locate transitive causes that are one dependence step away
from the real faults for three of the test cases (BuglID 5, 6, 15)
and locate one of the real faults and a transitive cause that is
one dependence step away from the other for another test
case (BuglD 4). In the remaining two cases (BugID 13, 16), all
root causes are found. For BugID 13, all of the statements in
the final analysis domain are reported by our method as root
causes, among them the actual faulty statements. The pro-
gram input for BugID 16 consists of two tar commands. Fixing
the fault that is triggered in the second tar command conse-
quently triggers another fault, making the first command fail.
Both faults must be fixed in order to remove the failure.

6.2 Discussions

Accuracy of Suspected States. In Section 4, our algorithm
determines how to narrow the analysis domain according
to the result of sparse symbolic exeploration. Due to the
lack of information on the correct program state at state-
ment instances belonging to the current mdfs, our method
uses heuristic criteria motivated by Claims 3.2 and 3.3 to
determine the search direction. If a statement instance is
found to be a polluted entity by our sparse symbolic exeplo-
ration, we assume its state to be incorrect. If one or more

TABLE 3
The Frequency to Misjudge a Suspected State

BugID #State #Misjudge-I #Misjudge-II
1 3 - -

2 12 - 1

3 11 1 -

4 12 - -

5 15 1 -

6 10 1 -

7 42 - -

8 2 -

9 8 -
10 4 - -

11 12 - -
12 10 - 4
13 33 3 -
14 7 - -
15 8 - -
16 14 - -
Rate - 3.45% 2.46%

polluted entities are found in the current mdfs, the search
continues towards the entry of the analysis domain. We
now examine how often our tool judges incorrectly about
the state in the experiments.

Table 3 lists the frequency of our method to misjudge a
state for the individual test cases from Table 1. Row “#State”
lists the number of states to be checked by our method. To
collect the frequency data, we compare two versions of each
program, one with the failure corrected and one without.
For each state subject to alteration by our MDFS-based
scheme, we find the correct state information from the suc-
cessful run of the same program with the failure fixed. We
then use the correct state to determine whether the decision
made by our method is correct, i.e., whether our method
misjudges a correct state to be incorrect or vice versa. Note
that, if a state to be checked by our method does not exist in
the fixed run, then such a state is regarded as an incorrect
state. Overall, for the 16 test cases used in our experiments,
of all state instances that are subject to state alteration, the
average rate of our method mislabeling a correct state to be
incorrect is 3.45 percent (“Misjudge-I” in Table 3), and the
average rate of our method mislabeling an incorrect state to
be correct is 2.46 percent (“Misjudge-1I" in Table 3).

There may be two reasons for mislabeling a correct state
as incorrect: (1) A certain statement instance that does not
belong to any propagation chain from an initial faulty state
to the failure happens to have an alternate value that makes
the constraints generated at a certain program point com-
patible with the correctness criteria given at the same point,
causing the statement instance to be identified as a polluted
entity. This scenario occurred with three test cases (BugID
3,9, 13) in our experiment; (2) For faults of missing state-
ments, an unintended reaching definition between two oth-
erwise correct statements may cause a statement instance to
be mislabeled as a polluted entity. This has occurred to two
test cases (BuglID 5, 6). Note that the mislabeling in both sce-
narios can cause a wrong search direction only if it happens
to all of the statement instances in the current mdfs.

There are also two reasons for mislabeling an incorrect
state to be correct: (1) The state alteration causes the
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program execution to take a different path that does not
reach the failure site any more. This has happened to BugID
12; (2) The specification of the correctness property given in
the failure site is incomplete. This has happened to BugID 2
in our experiment. This test case takes two incorrect output
actions. The first one is to produce an output at a wrong
program point but incidentally has the same value as the
expected output. Hence, unless one inspects the execution
trace, the incorrect behavior is hidden. Our MDFS method
identifies polluted entities based on the specification given
at the program point where the second incorrect output
action takes place. This caused a mislabeling during the sec-
ond last iteration, making the analysis domain converge to
the wrong direction and miss the real fault.

Impact of Summary Control Dependences. Detecting sum-
mary control dependences for DDG construction has made
impact on 9 out of 16 test cases in our expriment. The fol-
lowing two positive effects are found:

1) (BuglD 2, 3, 8 9, 16) Detecting summary control
dependences exposes the root cause statement in the
initial analysis domain; and

2) (BuglD 4, 5, 7, 12, 16) Statement instances added to
the initial analysis domain by detecting summary
control dependences play a critical role in obtaining
the correct analysis domain, since these instances
become members of mdfs and they turn out to be the
only polluted entities in a certain iteration.

On the other hand, inclusion of summary  control
dependences can potentially cause mislabeling of a state as
erroneous, especially if these dependencies do not turn out
to be “real” due to the conservative nature of static analysis
(BuglD 3). Table 4 presents details for specific test cases.

Note that, we only detect intra-procedural summary con-
trol dependences when constructing DDGs. Though it is
sufficient for locating the root cause by detecting intra-pro-
cedural summary control dependences in our experiments,
considering inter-procedural summary control dependence
may give us more clues about how the fault propagates. For
BuglID 16, the fault triggered by the second tar command
prevents some statements from being executed, which
results in the erroneous value assigned to record_start-
>buffer. This fact is obscured without inter-procedural sum-
mary control dependence, because record_start is a global
variable. However, detecting inter-procedural summary
control dependence could result in an extremely large and
inaccurate DDG. Considering the trade-off between accu-
racy and efficiency, our tool only considers intra-procedural
summary control dependences when constructing DDGs.

Usage of Additional Information. In the second step of
Algorithm 4, users can provide additional information to
refine the result of state exploration. Additional output that
is known to be correct may be used to serve as additional
correctness criteria to guide analysis-domain narrowing, as
discussed in our previous work [12]. User annotations may
also be helpful. Let us revisit the example in Fig. 1(a). Sup-
pose statements 2 and 6 are corrected as indicated in the
comment lines. Instead, suppose statements 7 and 10 are
exchanged by mistake. The execution under the given input
would still generate the incorrect result of “m = 1”. This
time, the execution trace contains instances of statements

TABLE 4
Impact of Detecting Summary Control Dependences

BugID

2 The detection of summary control dependen-
ces makes the root cause to appear in the ini-
tial analysis domain, although our method
fails to identify it as a polluted entity.

Details

3 The root cause appears in the initial analysis
domain due to summary control dependen-
ces. In 2 iteration, a statement instance
added to the analysis domain due to sum-
mary control dependences is misjudged as a
polluted entity. (However, the mislabeling
makes no effect on the converging direction
as there are other real erroneous states found
in the same iteration.)

4 The only polluted entities found in 3" iter-
taion are added to the analysis domain due
to summary control depenences.

5 The if condition directly affected by the miss-
ing code is added to the initial analysis
domain due to summary control dependen-
ces, and it is then recognized to be the only
polluted entity in the last iteration.

7 Similar to BugID 5.

8 The root cause appears in the initial analysis
domain due to summary congrol dependen-
ces, and it is successfully identified to be the
only polluted entiy in the last iteration.

9 Similar to BugID 8.
12 Similar to BugID 4.
16 Both the root cause and the polluted entities

found in 2™ iteration appear in the initial
analysis domain due to summary control
dependences.

1-4, 6-7, and 13. Suppose the mdfs consists of the instances of
statements 2 and 6. Our algorithm will find the latter to be
polluted, because switching its if condition to false would
cause statement 10 to be executed, which actually causes
the correct output (i.e., m = 2) to be printed. Without addi-
tional information, our method would incorrectly continue
to search towards the program entry, missing the actual
faults. However, had the user marked the if condition to be
true under the given input, our search would have contin-
ued correctly towards the failure site.

6.3 Comparisons
Comparisons with Other State-based Techniques. Among previ-
ous state-based approaches, CT [1], [25] uses delta debug-
ging [26] to study the differences between successful runs
and failing runs in order to identify a chain of variables and
values that causes the observed failure. This method is
time-consuming because the state comparison and alter-
ation must be applied to a large number of trace points
along the failing trace. To mitigate the time complexity, the
predicate switching technique [2] constrains state changes to
predicate instances only, and the value replacement method
[3] constrains the sets of alternate concrete values in order
to make the search space more acceptable.

To compare our technique with predicate switching and
value replacement, we implement both techniques based on
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TABLE 5 TABLE 6
Fault Reports Generated with One Hour Time Limit Fault Reports for Mutation-Based Methods

Dist MDFS  Predicate Switching ~ Value Replacement BugID  #Mutant  #Passed  #Stmt Top-5

0 7 3 - 1 275071 686 2 -

1 7 3 - 2 300641 4 - Unrelated

(1,3) 2 1 - 3 292440 32 - Unrelated

Miss - 9 All 4 286511 1272 155 Rank5: tran. cause
9 79197 - - -
10 135584 - - -

the descriptions in open literature [2], [3], as the source codes 11 4 1 -

for these techniques are not publically available. Minor 12 328956 98 9 -

changes are made to speed up the experiments. For the sake 13 - - - )

of fairness, both these two reference techniques and our 14 353735 y . }

. o 15 96 - Rank2: tran. cause
MDFS method are implemented within the framework of 399445 1 ’ )

Valgrind and they all share the same preprocessing step.

The predicate switching method in reference [2] starts its
search from the failure site and stops when the first “useful
critical predicate” is found. If switching a particular predicate
instance can make the failure disappear, then it is called a
critical predicate. It is the tool user’s responsibility to decide
whether the predicate is useful for locating faults. We sim-
ply find all critical predicates within a pre-determined time
limit. Among these, the one that is closest to the fault is cho-
sen to be the first useful critical predicate. Note that, if
switching a predicate instance can cause an infinite loop,
then that instance is excluded.

For the value replacement method, we implement the
improved version described in [3]. For each failing execu-
tion trace, this improved version starts its search for interest-
ing value mapping pairs from the beginning of the failing
trace. (If replacing the value assigned by a statement
instance can make the failure disappear, then the original
value and the replacing value form an interesting value map-
ping pair, abbr. IVMP.) For each statement instance that
appears in the analysis domain, we try four alternate values,
namely the lowest alternate value possible, the highest alter-
nate value possible, and the two alternate values closest to
the original from each side. In the absence of a training set,
the alternate values for each statement instance are collected
from the other instances of the same statement in the same
failed run. Among all IVMPs found for a certain failing exe-
cution trace, the one that is closest to the fault is reported to
be the root cause.

Table 5 compares the fault reports generated by those
three methods mentioned above within the time frame of
one hour. This time frame includes neither the time spent
on tracing nor that spent on generating alternate sets of val-
ues for each statement instance. Row “Miss” records how
often a method fails to identify any root cause or even a
transitive cause. Without a carefully prepared training set,
the improved value replacement method fails in all test
cases. Predicate switching misses the root cause for 9 of the
test cases within the one hour time frame. However, it is
more efficient than our method for failures that are due to
incorrect branch composition (BugID 12).

Results from the test cases highlight two main advan-
tages of our new method. First, our iterative algorithm con-
verges deterministically and the analysis domain shrinks
quite rapidly. Furthermore, we believe that by using both
dependence information and symbolic analysis to identify
polluted entities, our method is built on a more solid

theoretical foundation than the heuristics used in the other
two methods discussed above. Note that like our method,
predicate switching and value replacement require the
desired state at the failure site, such that the search space
for the faults can be defined by all statement instances that
may affect that program state.

Comparison with mutation-based approaches. Mutation-
based methods [27], [28], [29] can be applied to any combi-
nations of failed and passed test cases. These methods do
not require execution trace or user-provided specifications
on the failure site. They assign a suspicious score for each
statement based on mutation analysis such that a higher
score is assigned if the statement is deemed more likely to
be faulty. The user is to inspect statements in the order of
the suspicious scores. To compare our method with muta-
tion-based methods, we use ProteumIM 2.0 [30], which is
an upgraded version of the mutant generator used in [29],
to generate mutants for each of the buggy program in
Table 1. As in [29], for each mutation point in a statement,
we make the tool generate exactly one mutant for each sup-
ported mutation operator. Scripts are written to collect
mutants that make the failed test case pass. We also modify
the tool to evaluate a suspicious score for each statement in
the faulty program using the formula prescribed in [29].

For all 16 test cases in Table 1, we feed the merged source
file generated by CIL to the mutant generator. By manually
removing or modifying certain syntax (such as removing
the inline keyword and renaming structures, fields and vari-
ables), we are able to make 12 of the test cases acceptable by
the tool. The running time of all these test cases through the
tool takes over a week, and the result is listed in Table 6.

Columns “#Mutant” and “Passed” show the total number
of mutants generated for each buggy program and the num-
ber of mutants that make the failed test case eventually pass,
respectively. Following the inspection order based on the
suspicous scores, column “#Stmt” counts the number of
statements that must be examined before encoutering the
real fault. If the real fault is not included in the list of sus-
pects, one can check column “Top-5” to see in which ways
the top 5 suspicious statements in each test case are related
to the real fault.

Table 6 shows that, for 3 out of 12 test cases we have
studied (BugID 1, 11, 16), using the report given by the
mutation-based method, the user can locate the root cause
by manually examining fewer than two statements, which
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TABLE 7

Comparison with Other Divide-and-Conquer Strategies
BugID Single-Step Bisection MDFS
1 6 17 3*
2 20 10" 12
3 23 12 11"
4 50 8" 12
5 25 37 15*
6 1 39 10
7 2" 30 42
8 16 63 2"
9 13 79 8"
10 6 7 4*
11 36 24 12*
12 4* 21 10
13 1" 35 33
14 24 3" 7
15 22 18 8"
16 25 18 14"
Time 1.43 1.63 1

is a more accurate result than the fault report generated by
the MDFS method. However, for seven of the remaining
test cases, the mutation-based method fails to identify any
root cause. Although it is able to place a transitive cause in
the top 5 suspicious statements for two of the test cases, one
of the reported transitive causes is dozens of dependence
steps away from the real faulty statement and the other is
seven dependence steps away from the real fault. On the
other hand, should additional mutations are generated by
the mutation tool at each mutation point, the mutation-
based method may be able to identify additional faults.

Comparison with Other Divide-and-Conquer Strategies.
MDFES is not the only way to partition the analysis domain
and make it converge deterministically. We compare the
MDFS-based strategy for narrowing the search with two
alternatives that select nodes in the DDG for testing pol-
luted entities based on their distances from the end points
of the current analysis domain. (For fairness, sparse sym-
bolic exploration is performed in all experiments that are
conducted for this comparison.)

The first alternative, called the single-step strategy, first tests
polluted entities on nodes that are one hop away from the fail-
ure site. In each iteration that follows, if the root causes are not
yet found, the number of hops away from the failure site is
incremented by one for choosing the nodes to test polluted
entities. In the best case, the search may be completed in just
one iteration, but in the worst case, it may take as many itera-
tions as the maximum length of the dependence chains in the
DDG with the failure site as the sink point.

The second alternative, called the bisection strategy,
always tests polluted entities on nodes that are exactly the
midpoints between the entry points and the end points of
the current analysis domain, until no further partition is
possible.

Table 7 lists the number of suspected states extracted by
the MDFS-based strategy and the two alternatives, along
with the total time spent under each strategy on state explo-
ration (Row “Time”, with the MDFS strategy normalized to
1). For each test case, the strategy that examines the smallest
set of suspected states is marked by a star on the upper-right

corner of its state number. As we can see, the MDEFS strategy
is the most efficient.

6.4 Limitations

In spite of the accuracy and efficiency demonstrated
through the testing results shown above, our MDFS-based
scheme has a number of weaknesses.

First of all, since our method is centered on the concept of
dynamic dependencies, it does not deal with faults that do
not get propagated through dependence chains, e.g., certain
failures that are due to incorrect type definitions. Also, for
faults due to missing assignment statements, our method
locate only the incorrect reaching definitions, but do not nec-
essarily pinpoint the exact location of the missing statements.

Another potential vulnerability for our dependence-cen-
tric approach concerns the effect of multiple faulty state-
ments in the same dependence chain, giving rise to the
possibilities of two faulty statements canceling the faulty
program state. Although this situation has not caused our
method to fail in our test cases (which cover various fault
types and include cases that have been studied by previous
researchers), more extensive experiments are needed to see
how serious such a situation may be in practice.

Our method shares a weakness with most of the existing
methods that is, if we do not have access to the exact correct-
ness criterion as a reference, our method may suffer from
false negatives as well as false positives.

Lastly, our technique targets failures that can be repro-
duced under the same program input and can be captured
by checking outputs or assertion violations. Therefore, it
does not handle failures such as infinite loops or those pro-
duced by multithread programs.

7 RELATED WORK

Our work is built on several important concepts that have been
developed by the software engineering community. Program
slicing [31], [32] has long been in use for extracting program
entities (e.g., statements and states) that may be responsible for
propagating faults to the failure site. Zhang et al. [33] improve
the inter-procedural dynamic slicing algorithm in order to han-
dle complex real world programs. They also provide a method
to prune dynamic slices [34]. Researchers have also developed
variants of slicing technique [35], [36], [37], [38] for narrowing
the program segments suspected to be associated with failures.
The limitation of these approaches is that they can neither auto-
matically find the causes of failures nor give users guidance on
how to find them.

In addition to the state-based fault localization approaches
mentioned in Section 6.3, another method [6] has been been
known to use dual slicing and a confounding free execution model
to compare a failing run against a successful run (either under
another input or obtained by predicate swiching). This method
helps make the automatically generated failure explanation more
accurate and more concise, although it shares certain shortcom-
ings of predicate switching. Another state-based method,
ANGELINA [4], identifies expressions that are candidates for
error repair. An expression becomes a candidate if changing its
value can fix a failed run while keeping all passing tests
unchanged. Our method also discovers value changes that can
remove the failure under the given input, but it only needs to
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symbolically alter the values written by the statement instances
inan MDFS.

We have discussed mutation-based methods in Section
6.3. Fault localization methods based on statistics can also
be found in literature [39], [40], [41], [42], [43], [44], [45],
[46], [47]. These methods collect execution information from
both successful runs and failed runs in order to generate a
suspiciousness score for each program entity. They assign
the suspicious score based on how frequently a specific pro-
gram entity appears in the failing and passing runs, respec-
tively, and do not need to know where in the program a
failure occurs. These characteristics are in contrast to our
method, which is applied directly to the trace of a failed
run, without needing information from other runs.

8 CONCLUSION

In this paper, we present an MDFS-based fault-localization
scheme. Algorithms are developed based on a theoretical
analysis on how faults may be propagated through chains
of dependences during program execution. Experimental
results support our main hypotheses that the proposed
MDFS-based scheme for iteratively narrowing the analysis
domain and the accompanying sparse symbolic exporation
method can significantly reduce the time spent on exploring
execution paths and on verifying predicates, while still
being able to catch the faults. For the test cases collected
from real world for this study, our new scheme is shown to
locate faults with a high accuracy within reasonable time.
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