
Compiler Techniques for Concurrent

Multithreading with Hardware Speculation

Support �

Zhiyuan Li� Jenn�Yuan Tsaiy� Xin Wang� Pen�Chung Yew� and Bess Zheng

Department of Computer Science yDepartment of Computer Science
University of Minnesota University of Illinois
Minneapolis� MN ����� Urbana� IL ���	�

Abstract� Recently proposed concurrent multithreading architectures
employ sophisticated hardware to support speculation on control and
data dependences as well as run�time data dependence check� which en�
ables parallelization of program regions such as while�loops which pre�
viously were ignored� The new architectures demand compilers to put
more emphasis on the formation and selection of parallel threads� Com�
pilers also play an important role in reducing the cost of run�time data
dependence check� This paper discusses these new issues�

� Introduction

Increasing density of VISI microprocessors not only continues to shorten the cir�
cuit latency but also provides more transistors on a single chip
 Each new gener�
ation of microprocessors introduces more sophisticated mechanisms to support
instruction�level parallelism
 Future microprocessors will soon be able to issue
and execute more than a dozen instructions per machine cycle
 How to extract
su�cient independent instructions per machine cycle from an ordinary program
has become an increasingly di�cult challenge
 The currently predominant su�
perscalar architectures adopt a single thread of control �ow
 Parallelism can be
extracted only from within a relatively narrow window of consecutive instruc�
tions
 Although independent instructions can be statically reordered and packed
into a window� such code motion is constrained by programs control struc�
tures
 Growing evidences suggest that future processors need to take advantage
of multiple threads of execution in order to �nd su�cient parallel operations
����
 Allowing multiple threads of execution is similar to� but not exactly like�
placing multiprocessors on a single chip or on a multichip�module �MCM� ��	�

� This work was supported in part by NSF CAREER Award CCR������	
� NSF Grant
MIP �	������ a gift from Intel Corporation� and by the U�S� Army Intelligence Center
and Fort Huachuca under Contract DABT������C��
� and ARPA order no� D �	��
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the o�cial policies or endorsements� either
expressed or implied� of the U� S� Army Intelligence Center and Fort Huachuca� or
the U�S� Government�

This approach avoids some di�culties in traditional multiprocessor� such as high
overhead in scheduling and synchronization

Much of the responsibility of forming and scheduling parallel threads to ex�
ecute on multiprocessors traditionally rests on compilers
 There are several as�
pects to this responsibility�

� identifying independent operations�
� selecting and scheduling threads whose parallel execution could result in the
shortest possible execution time� and

� inserting synchronization instructions to observe the dependences� if any�
among parallel threads

For traditional multiprocessors� control dependences greatly limit the compilers
ability to create parallel threads
 For example� a compiler normally does not
know how many iterations of a while�loop will be executed at run time and
hence it cannot safely generate multiple threads to execute di�erent loop iter�
ations simultaneously
 Recently� several hardware mechanisms have been pro�
posed to allow speculative execution of multiple threads ��� ��� �� ���
 A thread�
whose execution may depend on run�time conditions� is allowed to execute be�
fore those conditions are resolved
 Once those conditions are resolved� a correctly
speculated thread can then write its results to the memory
 On the other hand�
an incorrectly speculated thread is squashed
 Such concurrent multithreading
architectures may also provide hardware for run�time data dependence check
���� ���
 These new hardware features create new parallelization opportunities
to the compiler� which may result in a myriad of potential parallel threads
 The
selection and scheduling of parallel threads is expected to have a great impact
on the programs performance

In this paper� we discuss several issues regarding compiler optimizations for
concurrent multithreading architectures with hardware support for speculative
execution and for run�time data dependence check
 We use two particular de�
signs� namely multiscalar���� and superthreaded processors����� as examples to
show the implications of such hardware on compiler techniques
 In the next sec�
tion� we describe these two microarchitectures and their execution models
 In
Section �� we examine how data dependence analysis can be applied to while�
loops and how the removal of loop�carried data dependences can improve the
e�ectiveness of speculative execution of while�loops
 In Section �� we discuss how
static data dependence analysis can reduce the need for synchronization and the
frequency of incorrect speculation
 In Section �� we explore the issue of parallel
threads selection
 In Section �� we describe our current experimentation e�ort

We summarize our discussion in Section �

� Speculative Concurrent Multithreaded Architectures

��� Multiscalar architecture

The multiscalar paradigm ��� ��� exploits thread�level parallelism with aggres�
sive hardware support for both control and data speculation
 The compiler for

the multiscalar processor must partition the control �ow graph of a program
into threads� each to be executed by a processing unit at run�time
 The control
and data �ow information between threads is stored in thread descriptors
 With
the help of the thread descriptors� the hardware of the multiscalar processor
can rapidly traverse the control �ow graph of a program and assign threads to
processing units on the �y

Register File

Instruction Cache

Processing
 Element

Register File

Processing
 Element

Register File

Instruction Cache

Processing
 Element

Register File

Processing
 Element

Register File

Instruction Cache

Processing
 Element

Register File

Processing
 Element

Register File

Instruction Cache

Processing
 Element

Register File

Processing
 Element

A
R

B

D
at

a
C

ac
he

Processing Unit Processing Unit Processing Unit Processing Unit

A
R

B

D
at

a
C

ac
he

A
R

B

D
at

a
C

ac
he

A
R

B

D
at

a
C

ac
he

Interconnect

Data Bank Data Bank Data Bank Data Bank

Sequencer

Fig� �� The microarchitecture of the multiscalar processor ���

Figure � shows the general microarchitecture of a multiscalar processor
 The
processor consists of multiple processing units� which are connected to each other
with a unidirectional ring
 Each processing unit has its own register �le and
functional units
 A processing unit can pass register data to its down�stream
processing units via the unidirectional ring connection
 The sequencer reads
information from the thread descriptors and assigns the threads to the processing
units in the sequential order of the original program

To exploit more potential parallelism between the threads� the multiscalar
processor allows multiple threads to be executed in parallel with speculation
on both control dependences and data dependences
 For control speculation�
the sequencer predicts which thread should be executed next according to the
control �ow and assigns that thread to the next processing unit down�stream
 If
the control speculation later turns out to be incorrect� the processor will squash

the speculative thread and its following threads� and resume the correct thread
sequence
 For data speculation� a thread can load data from a memory location
with the expectation that the concurrent predecessor threads will not store a
value to the same memory location later
 However� if any predecessor thread
executes a store operation to the memory location� i
e
� if a data dependence is
violated� the later thread must be squashed and re�started from the beginning
of the thread

The multiscalar processor uses an Address Resolution Bu�er �or ARB� to
hold the results of the speculative memory operations by the currently active
threads and to detect violations of data dependences
 The store data held in
the ARB can be written back to the data cache only when the thread that
executes the store operation becomes a non�speculative thread
 The ARB also
keeps track of all load and store operations performed by each active thread
 A
data dependence violation is detected if a thread writes to a memory location
whose corresponding ARB entry records an earlier load operation by a successor
thread

��� Superthreaded architecture

The superthreaded processor ���� is similar to the multiscalar processor� but it
does not speculate on data dependences
 Instead� the superthreaded processor
performs run�time data dependence checking for load operations
 If a load op�
eration is detected to be �ow dependent on a store operation by a predecessor
thread� it waits for the stored data from the predecessor thread
 Checking and
enforcing data dependences at run�time can avoid squashing caused by data
dependence violations as in the multiscalar� and it can reduce the hardware
complexity of detecting memory dependence violation

Figure � shows the microarchitecture of a superthreaded processor
 Like a
multiscalar processor� the multiple processing units are connected with a unidi�
rectional ring
 Each processing unit can forward the addresses and the data of its
store operations to the down�stream units via the unidirectional ring connection

Each processing unit has its own memory bu�er to keep the addresses and the
data of its own store operations as well as those sent by the up�stream units

The superthreaded processor uses a thread pipelining execution model to ini�
tiate new threads and to enforce data dependences between concurrent threads

As shown in Figure �� the execution of a thread is partitioned into continu�
ation stage� target�store�address�generation �TSAG� stage� computation stage�
and write�back stage
 The continuation stage is responsible for computing re�
currence variables� such as loop index variables� and forking the next thread

A thread can fork a successor thread with speculation on the control �ow
 The
TSAG stage computes the addresses of store operations upon which the suc�
cessor threads could be data dependent
 Those addresses are called target store
addresses and are forwarded to the memory bu�ers of the successor threads
for run�time dependence checking
 To guarantee the correctness of run�time de�
pendence checking� a thread cannot perform any load operation that may be

Comm. Unit

Thread Processing Unit

Comm. Unit

Thread Processing Unit

Comm. Unit

Thread Processing Unit

Memory
Buffer

Comm. Unit

Instruction Cache

Data Cache

Execution Unit

Thread Processing Unit

Write−Back
 Unit

Register File

LSU ALU FPU

Memory
Buffer

Execution Unit

Write−Back
 Unit

Register File

LSU ALU FPU

Memory
Buffer

Execution Unit

Write−Back
 Unit

Register File

LSU ALU FPU

Memory
Buffer

Execution Unit

Write−Back
 Unit

Register File

LSU ALU FPU

Fig� �� The microarchitecture of the superthreaded processor

dependent on its predecessor threads until the predecessor threads complete the
TSAG stage

The computation stage performs the remaining computation of the thread

When a thread executes a load operation whose address matches that of a target
store entry in the memory bu�er� the thread either reads the data from that entry
if it is available or waits until the data is received by the threads processing unit

The write�back stage is performed by the write�back unit automatically after a
thread completes its execution
 All the data written by the thread to the bu�er
are to be written back to the data cache at this stage
 The write�back stages of
contiguous threads are performed in the program sequential order to preserve
the non�speculative memory state and to honor the output and anti�dependences
between the threads

� Analyzing and Removing Loop�Carried Data

Dependences in While�Loops

Multiscalar and superthreaded architectures automatically squash an incorrectly
speculated thread
 As a result� the compiler can focus on loop�carried data de�
pendences when analyzing the parallelism� leaving the loop�carried control de�
pendence to the speculation hardware
 Loop�carried data dependences penalize

Computation
 Stage

Write−Back
 Stage

Computation
 Stage

Write−Back
 Stage

Computation
 Stage

Write−Back
 Stage

 target store addr.

target store addr.

target store addr.target store
addr. & data

target store
addr. & data

target store
addr. & data

Fork i+1 & forward
continuation variables

Fork i+3 & forward
continuation variables

Fork i+2 & forward
continuation variables

Continuation
 Stage

Continuation
 Stage

Continuation
 Stage

Thread i

Thread i+1

Thread i+2

TSAG_DONE flag

TSAG_DONE flag

TSAG_DONE flag

WB_DONE flag

WB_DONE flag

WB_DONE flag

TSAG
Stage I
(safe)

TSAG
Stage II
(unsafe)

TSAG
Stage I
(safe)

TSAG
Stage I
(safe)

TSAG
Stage II
(unsafe)

TSAG
Stage II
(unsafe)

Fig� �� The pipelined execution of the superthreaded architecture

the speculative execution of while�loops mainly in two ways
 The true depen�
dences� i
e
� �ow dependences between loop iterations� reduce the degree of over�
lap between parallel threads
 No hardware mechanisms alone can eliminate such
a performance bottleneck
 The output and anti�dependences also penalize the
performance of such architectures� because the multiple copies of the same vari�
able at di�erent processing units must be written back to the data cache in the
sequential order� which is a potential performance bottleneck

In this section� we �rst present a technique for pointer arithmetics removal
which enables data dependence analysis on variables referenced through pointer
arithmetics
 At the same time� this technique also removes loop�carried data
dependences due to such pointer arithmetics
 We then discuss the removal of
output and anti�dependences via variable privatization� an issue not examined
previously in the context of while�loops
 In this paper� a while�loop refers to any
loop whose iteration count is not determined before the loop exit condition is
tested true

��� Pointered arrays subscriptization

A central issue in identifying parallel threads is the analysis of loop�carried
data dependences
 Traditional data dependence analysis assumes that arrays
are indexed by subscripts
 In C programs� most often array references are not

indexed by well�formed linear subscripts� but rather are represented by pointers

Pointer arithmetic is used to index through array sections
 If not transformed�
such references would render the traditional algorithms useless
 By rewriting
pointered array references in a subscripted form� a process called subscriptization�
the compiler can apply known algebraic algorithms for the data dependence test
���
 The previous techniques for cleaning up array subscripts do not deal with
array references which are not already in subscripted forms ���

The code segment in Figure �
��a� is from eqntott in SPEC�� benchmarks

For clarity of exposition� we use source programs as examples whenever appro�
priate
 In this example� i and j are pointers to two array sections
 Whether the

for �j � lo � base� �lo �� qsz� � hi��

if ���qcmp��j	 lo�
 ��

j � lo�

if �j �� base�

 �� swap j into place ��

for �i � base	 hi � base � qsz� i � hi��

 c � �j�

�j�� � �i�

�i�� � c�

�

�

�a�

for �arr�j � lo � base� �lo �� qsz� � hi��

if ���qcmp��arr�j	 lo�
 ��

arr�j � lo�

if �arr�j �� base�

 for �inew � �� inew � qsz� inew���

 c � arr�j�inew��

arr�j�inew� � arr�i�inew��

arr�i�inew� � c�

�

�

�b�

Fig� �� Transforming a code segment from eqntott�

same array elements are modi�ed and used in di�erent loop iterations deter�
mines whether parallel threads should be created to execute di�erent iterations

For this case� we �rst perform symbolic and predicate analysis to determine
that� within the second for�loop� the two array sections addressed by i and j

are separate� because their beginning positions are apart by at least the value
of qsz
 We then create two new array names� arri and arrj � to represent these
two sections
 In order to apply traditional data dependence test algorithms� we

transform the code segment as shown in Figure �
��b�
 Note that� if the compiler
cannot determine whether array sections addressed by di�erent pointers overlap�
the above transformation is still valid
 However� arri and arrj will be potential
aliases in this case
 Since we have determined that arri and arrj are separate� we
can safely apply traditional data dependence test algorithms to these two arrays
separately� which show that the array references do not cause loop�carried data
dependences

Pointer arithmetics removal also serves as one way� among others� to eliminate
arti�cial loop�carried �ow dependences caused by updates to pointer values
 Such
pointer updates may severely decrease the parallel overlap between successive
loop iterations
 In the example given above� the increments of i and j create
loop�carried �ow dependences which reduce the parallel overlap of successive
iterations
 The increment of i in particular nearly sequentializes the loop because
the i value is used for comparison with hi in every iteration
 After we transform
the array references to subscripted forms� the updates to i and j are removed

The values of i and j are dead after the second for�loop
 So� their last values
need not be saved
 After c is privatized �c�f� next subsection�� inew�� becomes
the only sequential portion of the second for�loop

Both multiscalar and superthreaded processors provide run�time data de�
pendence check to guarantee safe computation
 Moreover� their synchronization
hardware allows parallel threads to have loop�carried data dependences
 The de�
gree of parallelism is the main concern
 Hence� even if certain loop�carried data
dependences due to array references do exist� pointer arithmetics removal may
still contribute to the elimination of sequential bottlenecks

Our general strategy for the elimination of pointer arithmetics is as follows�

�
 Identify pointers whose values are incremented or decremented in the loop
body

�
 Analyze the address range of these pointers for their degree of overlap� which
a�ects the pro�tability of the transformation

�
 Designate a primary induction variable� say i� whose initial value is 	

�
 Apply induction variable recognition algorithms to the pointers identi�ed

above to see whether they are induction variables whose values can be written
in closed forms in terms of i

�
 If the last step succeeds and the transformation is estimated as pro�table� a
new array name is created for each pointer variable identi�ed above
 Each
pointer dereference in the loop body is replaced by array references indexed
by the closed forms computed above

�
 Insert code after the loop to save last values of pointers if they are live

��� Variable privatization

If a variables updated value in one iteration of the while�loop can never reach
a later iteration� then a distinct copy of the variable can be created for each
processing unit� either by register allocation or by renaming
 Loop�carried out�
put and anti�dependences can thus be eliminated
 Both multiscalar and su�
perthreaded hardware dynamically rename variables in their bu�ers� i
e
� the

memory bu�er in the superthreaded processor and the address resolution bu�er
�ARB� in the multiscalar
 Hence� unlike traditional multiprocessors� loop�carried
output and anti�dependences do not require explicit synchronization on su�
perthreaded and multiscalar architectures

Nonetheless� variable privatization by compilers is still desirable for both
architectures
 When a compiler privatizes a variable� it can be stored in a register
instead of in the ARB or the memory bu�er with a much faster access time
 In
order to simplify the hardware for run�time dependence check� the bu�er sizes
should be kept small
 However� too small a bu�er size will incur too frequent
bu�er over�ows
 When a bu�er over�ow occurs� the thread must be stalled until
all early threads are completed because the run�time dependence check will no
longer function properly
 Therefore� the less demand on memory bu�er or ARB�
the less frequently the bu�er will over�ow
 Moreover� any data that are updated
in the bu�er must eventually be written back to the memory
 This write�back
by di�erent threads is sequentialized to guarantee program correctness
 In order
to reduce the write�back overhead� we also need to keep the size of the memory
bu�er and the ARB small
 By allocating the private variables to registers� the
bu�er size can be reduced

The following code segment is from program eqntott in SPEC��

int cmppt �a� b�

PTERM �a��� �b���

register int i� aa� bb�

for �i 	
� i � ninputs� i���

aa 	 a�
���ptand�i��

bb 	 b�
���ptand�i��

if �aa 		 ��

aa 	
�

if �bb 		 ��

bb 	
�

if �aa �	 bb�

if �aa � bb�

return �����

�

else

return ����

�

�

�

return �
��

�

The above for�loop contains premature exits� which is considered as a while�loop
in this paper
 By speculating on aa �	 bb being false� both the superthreaded
processor and the multiscalar can create parallel threads to execute the loop

iterations
 The variables aa and bb are privatizable and� hence� they can be
allocated to registers on di�erent processing units

If the compiler allocates a privatized variable to a register� it must examine
whether the variable is live after the termination of the while�loop
 If so� then
the last value must be written back to the memory location
 If the variable is
unconditionally updated in every iteration� then the last thread� which aborts all
successive speculated threads� is responsible for the store
 The store instruction
can be inserted in the beginning of the branch which is executed when the exit
condition is tested true

If the variable is conditionally updated in each iteration� then it is better not
to privatize the variable
 The following code segment from program compress

in SPEC�� shows such an example
 Variable p is not suitable for privatization�
although it is only involved in output dependences

char � rindex�s� c�

register char �s� c�

char �p�

for �p 	 NULL� �s� s���

if ��s 		 c�

p 	 s�

return�p��

�

� Reducing Synchronization and Misspeculation

Penalties

In the superthreaded processor� data synchronization is done by forwarding tar�
get store addresses to succeeding threads in the target�store�address�generation
stage
 If a succeeding thread issues a read reference whose address matches a
forwarded target store address� then the thread must wait until data is forwarded
or until the preceding thread is completed
 If the preceding thread updates the
data more than once� only the last updated value needs to be forwarded
 Here we
see two potential sources of performance penalties due to synchronization
 One
is the cost of forwarding target store addresses and the other is the data waiting
time
 However� if the succeeding threads do not have matches of the target store
addresses at run�time� then no data waiting penalty will occur

On the multiscalar� data synchronization for �ow dependences between threads
can be done in two forms� either by waiting at ARB or by register forwarding

There are no synchronization instructions to force a thread to wait
 Instead� the
ARB hardware can speculate� based on memory reference history� that a �ow
dependence may occur at a particular memory address ���
 The hardware then
forces the thread which may be the sink of the dependence to wait for a �ag
associated with that memory address
 As soon as a preceding thread stores data
to that address� the �ag is raised� which permits the waiting thread to proceed

Note that if a preceding thread must store the data several times to the memory
address� the �ag may be raised before the last store is completed
 The ARB
will detect the violation of �ow dependence and the processing unit will squash
the thread which is the sink of the dependence
 Also note that if the ARB
speculates a synchronization incorrectly� the waiting thread will wait until its
preceding thread �nishes execution and is released
 Both incorrect speculations
and premature �ag�raising can potentially be costly

Synchronization can also be done via register forwarding
 On the multiscalar�
each processing unit has its own register �le
 Each registers content is forwarded
from one processing unit to the next� using the same register number
 Each
register has a bit which is automatically set and tested by the hardware to
indicate the availability of the forwarded value
 These bits are transparent to
the software
 The registers of a processing unit can be dynamically con�gured at
the thread creation time� with creation masks� as �ltered and non�ltered registers

A �ltered register is forwarded when the register is written within the current
thread
 A non�ltered register is forwarded without being modi�ed
 The compiler
can use the register �les to satisfy a loop�carried �ow dependence as follows
 The
thread which writes a variable which is to be read by a later thread writes the
value to a �ltered register� say r�
 The thread that uses that value then reads r�
instead of reading from the ARB
 If the threads which execute the source and
the sink are not immediately adjacent to each other� those threads in between
should mark r� as non�ltered
 Using this form of synchronization� the compiler
must precisely analyze the loop�carried �ow dependence� and the dependence
distance must be calculated
 Also� if the variable causing the dependence can
potentially be updated several times before it is read by the dependence sink�
then the register should not be forwarded before the last update is done

The problem of identifying last writes for the purpose of synchronization has
previously been discussed ��� ��
 Analysis of last writes has also been proposed
to support array privatization and other optimizations ��� When it is not clear
which writes are last writes� the compiler needs to �nd a program point that
post�dominates all potential last writes in order to safely forward the data
 The
following code segment serves as an example

for �i 	
� i���

if ��c��� break�

���

c� 	 ���

���

if �c�� c� 	 ���

�� place to forward c� ��

���

�

For the superthreaded processor� the general compiler strategy for data for�
warding is as follows�

�
 Identify stores that are potential sources of loop�carried �ow dependences

between threads
 Mark them as target stores

�
 Group those stores which access the same location

�
 For each group� identify the program point for forwarding the data

�
 Insert code in the target�store�address�generation stage to forward target

store addresses

�
 Insert code to forward target store data at the selected program points

In the example above� there are two target stores to c�
 The address of c�
is a target store address that should be forwarded in the target�store�address�
generation stage
 The data of c� is forwarded at the marked program point

For the multiscalar� the general compiler strategy for data forwarding is as
follows�

�
 Identify stores that are potential sources of loop�carried �ow dependences
between threads

�
 Group those stores which access the same location

�
 For each group� allocate a register and mark it as �ltered

�
 For that group� identify and mark the program point for forwarding the data

�
 Insert code to write the data to the �ltered register at the marked forwarding

program point

�
 Insert code to read the forwarded register value

In the example above� at the marked forwarding point� an instruction should
be inserted to write c� to a �ltered register� say r�
 The read of c� in the if�
statement is then replaced by a read from r�

� Partitioning Parallel Threads

By combining multiple processing units with hardware speculation� concurrent
multithreading architectures provide many opportunities for parallel execution
which are unavailable to superscalar processors and traditional multiprocessors

Particularly important is their highly e�cient thread creation
 Starting a new
thread can take as few as a couple of instructions� which makes it pro�table to
execute �ne�grain threads
 The low thread start�up overhead also makes loop�
carried data dependences more tolerable
 Loops with a modest amount of overlap
among the iterations may still be speeded up by having the iterations executed
in parallel
 Still� in order to maximize the performance� it is important that pro�
cessing units spend less time on synchronization
 Moreover� it is essential that
the idle time of the processing units is minimized
 A processing unit becomes
idle if its current thread is forced to wait for the completion of the previous
thread
 Such waiting may be either due to a bu�er over�ow� the presence of �ow
dependences between threads� or load unbalancing between threads
 On the mul�
tiscalar� when the hardware detects that two threads violate data dependences�
the succeeding thread must be squashed� which increases the units idle time

Clearly� the partitioning and scheduling of parallel threads will have an im�
pact on both the synchronization overhead and the idle time of processing units

In order to explore this issue further� we review the thread creation models of
the multiscalar and superthreaded processors

On the superthreaded processor� each thread is created by an explicit fork
�address� instruction
 Correspondingly� an explicit abort instruction squashes
all future threads
 This instruction is inserted by the compiler at the program
points where branching decisions are made and an incorrect speculation can be
detected
 On the multiscalar� a task tag is inserted at the program point where a
thread may begin its execution
 A task tag contains several control targets which
the current program point may potentially lead to
 At run time� the sequencer�
using a prediction table� picks one of the targets at which it starts a new thread

Figure � shows an example� in which thread � and thread � will run in parallel�
but which branch becomes thread � is determined by hardware using execution
history as a guide
 Thread squashing is also done by the sequencer when it �nds
a branch prediction is incorrect
 In Figure �� suppose target t� was speculated
but t� is actually the branch target� then the sequencer automatically squashes
thread � starting at t�

Thread 1

<targets: t1, t2>

instruction 1

instruction 2

instruction n

branch to t2 if < 0

t1:

<targets: t3, t4>

instruction m1

instruction m2

t2:

Possible thread 2

Possible thread 2

Fig� �� Multiple potential thread targets on the multiscalar processor

From the above� it is clear that for the superthreaded processor� the compiler
is responsible for both thread partitioning and thread speculation� while for the
multiscalar� the compiler is responsible only for thread partitioning
 Insertion of
target tags is straightforward once the thread boundaries are identi�ed

On both multiscalar and superthreaded processor� each thread can fork only
one successor thread during its lifetime
 This restriction� a clear distinction from
traditional multiprocessing models� is imposed so that the speculation hardware
can be implemented e�ciently
 Due to the speculation support� virtually any
kinds of program segments can be executed as individual threads� subject to

the single successor rule mentioned above
 The followings are several common
examples�

� parallel sections�
� loop iterations� including while�loops� and
� function calls

In the above� parallel sections can take a variety of forms
 A section can be as
small as a basic block� or as large as a function call or a whole loop
 A section
can also be one branch of a conditional statement

The single successor rule� however� has a few important implications�

� A thread cannot simultaneously speculate both branches of a branch instruc�
tion

� For a nested loop� once an outer loop iteration forks a new thread from the
outer loop� it will not fork new threads to execute inner loop iterations

� For a loop which contains function calls� once a loop iteration forks a new
thread to execute the next iteration� it cannot fork a new thread to execute
any section of the loop body� e
g
 a function call

� If threads are forked to execute function calls� then these threads cannot
fork new threads to execute loops which may be recognized as parallel

These restrictions are imposed as a tradeo� for e�cient thread start�up and
speculation
 Due to these restrictions� how threads are partitioned may have
a signi�cant impact on a programs performance
 For example� if the compiler
knows that the inner loop has more parallelism than the outer loop� then threads
should be created for the inner loop instead of the outer loop� and vice versa

Thread partitioning is perhaps the most complex issue in compilation for the
multiscalar and superthreaded processors as in multiprocessors
 Currently we
are pursuing the following studies�

� Estimating the working set size of a thread to allow the working set to �t in
the memory bu�er or the ARB�

� Estimating the amount of parallelism based on the data dependence graph�
� Constructing a hierarchical task graph ��� which re�ects speculation possi�
bilities�

� A�rming the existence of data dependences in addition to a�rming data
independences� which is important for parallelism estimate and for avoiding
excessive incorrect data speculation on the multiscalar

� Interprocedural analysis to support the above studies

� An Integrated Compiler for Experimentation

Since concurrent multithreaded processors� such as the multiscalar and the su�
perthreaded processors� are basically microprocessors which allow a large number
of instructions issued per machine cycle� it is important to compare their per�
formance against superscalars and VLIW architectures
 Interestingly� the mul�
tiscalar and superthreaded architectures also have a strong resemblance to a

small�scale� tightly�coupled multiprocessor with additional support for thread�
level speculation
 Hence� many traditional compilation techniques for both su�
perscalars� VLIW and multiprocessors could be used for such architectures as
well

In general� traditional compilation techniques for superscalars and VLIW
focus primarily on exploiting instruction�level parallelism in the back end com�
pilers
 On the other hand� traditional compilation techniques for multiprocessors
focus primarily on exploiting loop�iteration level parallelism in the front end par�
allelizing compilers
 To allow both loop�iteration level and instruction�level par�
allelism to be exploited on concurrent multithreaded architectures� we need an
integrated compiler that has at least the capability of both the front end paral�
lelizing compilers and the back end compilers that deal with the instruction�level
parallelism

GCC

RTL

Optimization

Optimization

Parallelizing
Compiler

HLI

G77

Analysis

Analysis
HLI Utility
Libraries

Export HLI

Optimized
C Program

Optimized
Fortran
Program

Fortran ProgramC Program

Fig� �� The Agassiz compiler system

Because it is a major e�ort� and also very time consuming� to develop such an
integrated compiler from scratch that can match todays state�of�the�art paral�
lelizing compilers and back end compilers� we instead leverage existing compilers

for our purpose
 The Agassiz compiler project is an e�ort to integrate state�of�
the�art parallelizing compilers to back end compilers
 A data structure that can
store high�level information �HLI� is developed which allows the results of elab�
orate program analysis in the front end parallelizing compiler to be exported
and used in the back end compiler to exploit instruction�level parallelism and
machine�speci�c optimizations

The current Agassiz prototype �Figure �� targets both Fortran and C
 It
leverages gcc�g�� common back ends and a parallelizing compiler that can deal
with both C and Fortran
 The HLI data structure includes loop�carried data
dependences� array data�ow information� and alias information for high�level
program structures such as loops and procedures
 It can be easily exported from
any parallelizing compilers and imported into the gcc�g�� back end compiler

The front end parallelizing compiler and the gcc�g�� back end compiler
are modi�ed to include compiler techniques speci�c to the multiscalar and su�
perthreaded architectures as described earlier

� Conclusion

The multiscalar and superthreaded architectures provide hardware speculation
support for concurrent multithreading
 The multiscalar relies more on hardware
for data dependence check and for thread speculation� while the superthreaded
processor relies more on compiler information
 The followings are a list of com�
piler techniques which can bene�t both architectures

� Pointered array subscriptization to convert pointered arrays to subscripted
arrays

� Pointer arithmetics removal to reduce loop�carried data dependences

� Variable privatization to reduce bu�er over�ow and write�backs

� Last�write identi�cation for e�cient data forwarding between successive threads

� Program parallelism and workload analysis to assist thread partitioning

Since the superthreaded architecture does not rely on hardware to speculate
on data dependences� it requires more compiler analysis on data dependences
for synchronization
 A more precise data dependence analysis at compile time
will also allow more parallel threads to be created
 On the other hand� the
multiscalar aggressively speculates on data dependences and thus aggressively
creates parallel threads
 A more precise data dependence analysis at compile
time can lead to better thread partitioning and reduced thread squashing

Lastly� several of the compiler techniques presented in this paper can poten�
tially bene�t superscalar processors
 It is interesting to compare the impact of
these techniques on concurrent multithreading versus superscalars

References

� Randy Allen and Steve Johnson� Compiler C for vectorization� parallelization� and
inline expansion� In Prof� of SIGPLAN ��� Conference on Programming Language
Design and Implementation� pages �	
��	�� June
����

�� Pradeep K� Dubey� Kevin O�Brien� Kathryn O�Brien� and Charles Barton� Single�
program speculative multithreading �SPSM� architecture� Compiler�assisted �ne�
grained multithreading� In Proceedings of the IFIP WG ���� Working Conference
on Parallel Architectures and Compilation Techniques� PACT �	
� pages
���
�
�
June �����
����

�� Manoj Franklin and Gurindar S� Sohi� The expandable split window paradigm for
exploiting �ne�grained parallelism� In Proceedings of the �	th Annual International
Symposium on Computer Architecture� pages ����� May
���
�
����

	� M� Girkar and C� Polychronopoulos� The HTG� An intermediate representation
for programs based on control and data dependences� CSRD Technical Report
No�
�	�� Univ� of Illinois at Urbana�Champaign�
��
�

�� Justiani and L� J� Hendren� Supporting array dependence testing for an opti�
mizing�parallelizing c compiler� In Proc� of the �		� International Conference
on Compiler Construction� Volume ��	 of Lecture Notes in Computer Science�
Springer Verlag� April
��	�

�� Z� Li� Compiler algorithms for event variable synchronization� In Proc� of the Fifth
International Conference on Supercomputing ACM�� June
��
�

� D�E� Maydan� S�P� Amarasinghe� and M�S� Lam� Array data��ow analysis and
its use in array privatization� In Proc� of the ��th ACM Symp� on Principles of
Programming Languages� pages ��
�� January
����

�� S� P� Midki� and D� A� Padua� Compiler algorithms for synchronization� IEEE
Transactions on Computers� C����
���
	���
	��� December
���

�� Andreas I� Moshovos� Scott E� Breach� T� N� Vijaykumar� and Guri� S� Sohi� Sub�
mitted for a blind review to a conference�

�� B� A� Nayfeh and K� Olukotun� Exploring the design space for a shared�cache
multiprocessor� In Proceedings of the ��st Annual International Symposium on
Computer Architecture� pages
���
�� April
��	�

� Gurindar S� Sohi� Scott E� Breach� and T� N� Vijaykumar� Multiscalar proces�
sors� In Proceedings of the ��nd Annual International Symposium on Computer
Architecture� pages 	
	�	��� June ����	�
����

�� Jenn�Yuan Tsai and Pen�Chung Yew� The superthreaded architecture� Thread
pipelining with run�time data dependence checking and control speculation� In
Proceedings of International Conference on Parallel Architectures and Compilation
Techniques� PACT �	�� October
����

