

A Compiler-automated Array Compression Scheme
for Optimizing Memory Intensive Programs

Lixia Liu
Department of Computer Science

Purdue University, West Lafayette, IN 7907

liulixia@cs.purdue.edu

Zhiyuan Li
Department of Computer Science

Purdue University, West Lafayette, IN 7907

li@cs.purdue.edu

ABSTRACT
This paper proposes a compiler-automated array compression
scheme to reduce the memory bandwidth consumption of
programs and thereby to improve their execution speed. Three
encoding methods are developed for such compression. Formulas
are derived to analyze the cost and benefit of such methods. To
ease the programmer’s effort for writing and maintaining complex
source code that utilizes compression, we implement our
technique in a compiler which automatically transforms the
program into different versions corresponding to different
encoding methods. The compiler also inserts operations to
adaptively invoke the preferred version at run time, including the
original version which performs no compression. Results show
that our compiler-automated adaptive scheme improves the
execution speed over the original version by an average of 9% for
a set of benchmark programs which perform memory-intensive
sparse matrix-vector multiplications (SpMV). These results take
into account of overhead to make the adaptive decision. When
tested separately, the individual encoding methods speed up
program execution by as high as 41%, which compares favorably
against previous compression methods manually applied to
SpMV.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors-Optimization

General Terms
Algorithms, Performance, Design

Keywords
Compression, memory intensive programs, adaptive code
selection, bandwidth consumption reduction, compiler
implementation

1. INTRODUCTION
Research has shown that the memory bus on multicore chips is a
major performance bottleneck for many numerical applications
[7][10][11]. In this paper, we propose a compiler-automated
compression scheme to reduce memory bandwidth consumed by
integer or pointer arrays. Several previous studies manually

applied compression to index arrays used in sparse matrix-vector
multiplication (SpMV) [1][2][6]. Experiments showed that, while
the bandwidth reduction can be quite high in many cases, the
overhead introduced by the compression operations can also be
significant. Branch mispredictions and loop overhead may also be
increased. Performance of numerical kernels can be sensitive to
these factors. In certain cases, compression may actually degrade
the performance [6]. Thus, it is important to understand the
benefit and the cost of compression quantitatively when one
designs an efficient compression method. Ideally, the compression
decision must be made adaptively, based on the cost-benefit
analysis with parameters obtained at run time.
To pursue such an adaptive scheme, we develop three encoding
methods for array compression. We show by experiments that,
when applied separately, these methods compare favorably with
previous methods that were manually applied. More importantly,
we are able to develop formulas to quantify the benefit and cost of
each of the encoding methods based on parameters available at
run time. The decision on whether to compress and which
encoding method to use can then be made at run time. Since the
adaptive scheme requires the program to incorporate all three
encoding methods in addition to the code without compression,
the program structure can be quite complex. To ease the
programmer’s effort for writing and maintaining the adaptive
program, we implement our technique in a compiler which
automatically transforms the original program (without
compression) into different versions corresponding to different
encoding methods. The compiler also inserts operations to
adaptively invoke the preferred version at run time. This is in
contrast to previous compression methods which require the
special handling of compressed arrays to be programmed
manually, in some cases even in an assembly language [6].
The rest of the paper is organized as follows. In Section 2, three
encoding methods used in our adaptive compression scheme are
introduced. Section 3 describes the framework and benefit model
of our scheme. Experimental results are presented in Section 4 to
demonstrate the effectiveness of the scheme. We discuss related
work in Section 5 and make concluding remarks in Section 6.

2. ENCODING METHODS
In this section, we present three encoding methods used in our
adaptive compression scheme, namely Double Array
Compression (DAC), Delta Double Array Compression (DDAC),
and Special Delta Double Array Compression (SDDAC). These
methods are simple enough to be automated by compiler
transformation and, at the same time, they are highly competitive
so far as the decompression overhead is concerned.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICS'10, June 2-4, 2010, Tsukuba, Ibaraki, Japan.
Copyright 2010 ACM 978-1-4503-0018-6/10/06...$10.00

