
Experience with E�cient Array Data Flow Analysis for Array Privatization�

Junjie Gu Zhiyuan Li Gyungho Leey

Department of Computer Science yElectrical Engineering� Division of Engineering

University of Minnesota University of Texas � San Antonio

��� Union Street S�E� ���� North Loop 	��
 West

Minneapolis� MN ��
�� San Antonio� Texas �
�
������

fgu�lig�cs�umn�edu glee�voyager��eng�utsa�edu

Abstract

Array data �ow analysis is known to be crucial to the success
of array privatization� one of the most important techniques
for program parallelization� It is clear that array data �ow
analysis should be performed interprocedurally and sym�
bolically� and that it often needs to handle the predicates
represented by IF conditions� Unfortunately� such a pow�
erful program analysis can be extremely time�consuming if
not carefully designed� How to enhance the e�ciency of
this analysis to a practical level remains an issue largely un�
touched to date� This paper documents our experience with
building a highly e�cient array data �ow analyzer which is
based on guarded array regions and which runs faster� by
one or two orders of magnitude� than other similarly pow�
erful tools�

� Introduction

By now it is well recognized that array data �ow analysis
is crucial for array privatization� one of the most important
techniques for program parallelization� It is also clear that�
in order to be e�ective� array data �ow analysis must be
performed interprocedurally and symbolically� Moreover�
the predicates represented by IF conditions often need to
be analyzed� The problem of array data �ow analysis has
been examined in various limited forms in the past �c�f� Re�
lated Works below	� Recently� our group
��� and the Illinois
Polaris group

�� have both proposed comprehensive frame�
works for symbolic array data �ow analysis which can handle
IF conditions� While we perform interprocedural analysis by

�This work is sponsored in part by the Army High Performance
Computing Research Center under the auspices of the Department of
the Army� Army Research Laboratory cooperative agreement number
DAAH�����������	
contract number DAAH������C������ the con�
tent of which does not necessarily re�ect the position or the policy
of the government� and no o
cial endorsement should be inferred�
This work is also supported in part by a National Science Foundation
CAREER Award� Grant CCR�������� a National Science Founda�
tion Academic Research Instrumentation Grant� CDA ������� and a
funding� as a part of DICE project� from Samsung Electronics� We
also thank Trung N� Nguyen and Guohua Jin for their important con�
tributions to Panorama�

analyzing the call e�ects� the Polaris group relies on in�lining
to remove the calls�

Because array data �ow analysis must be performed over
a large scope� handling the whole set of the subroutines in
a program� algorithms for information propagation and for
symbolic manipulation must be carefully designed� Other�
wise� this analysis will simply be too time�consuming for
practical compilers� Unfortunately� the e�ciency issue has
not received enough attention to date� SUIF and Polaris�
for example� do not emphasize compiler e�ciency� and they
tend to run very slowly� We believe it is important to demon�
strate that array data �ow analysis can be performed e��
ciently� and we do so in this paper by sharing our experience
of building such an analyzer which runs faster� by one or two
orders of magnitude� than other similarly powerful tools� e�g�
the Polaris analyzer� Through this work� we wish to con�
vince readers that sophisticated array data �ow analysis can
be fast enough to be used in production compilers�

In the next section� we shall �rst introduce the frame�
work of our analyzer� We then present data to show its ef�
fectiveness and to compare its running time with Polaris� In
Section �� we present the main reasons for the high e�ciency
of our analyzer and provide supporting data� Related work
will be brie�y discussed in section �� Finally� we conclude
the paper�

� Array data �ow analysis� E�ectiveness and e�ciency

The need for an array data �ow analyzer which can analyze
call e�ects� symbolic values� and IF conditions has been well
documented previously
�� ��� ���� For readers new to the
�eld� we will brie�y explain the issues through two simple
examples�

Figures ��a	��b	 show an example from ADM in the Per�
fect benchmark suite� Figure ��a	 shows the simpli�ed loop
DCDTZ���� which contains a call to subroutine CPADE
shown in Figure ��b	� DO loop �� can be parallelized if
array HELP is privatizable� In order to prove HELP as
privatizable� the compiler needs to establish that the de�ni�
tions of HELP cover its uses both in DO �� and in routine
CPADE� This can be done by comparing the symbolic up�
per bounds of DO �� and DO �� and by analyzing the call
e�ects of routine CPADE� In addition� the IF condition in
CPADE must be taken into account� Otherwise� array ele�
ment HELP��	 will be mistaken as upwards exposed to the
exterior of DO ��� causing unnecessary data copy�in�

IF conditions may even a�ect the privatizability of
arrays� Figure ��c	 illustrates the simpli�ed loop FIL�

DO �� J���NY
DO �� K���NZ

HELP�K	��
������

��� CONTINUE
������
CALL CPADE�HELP�NZ����	
DO �� K���NZ

� � HELP�K	
������

��� CONTINUE
��� CONTINUE

SUBROUTINE CPADE�HELP� NS����	
������
N� � NS � � ������
DO �� J��� N�

������
IF �J�EQ��	 THEN

� � HELP�J��	
ELSE

� � HELP�J��	
ENDIF

��� CONTINUE
������

END

DO I � �� �
DO J � jlow� jup

A�J	 � �
ENDDO

���
IF ��NOT�p	 THEN

A�jmax	 � �
ENDIF

���
DO J � jlow� jup

� � A�J	 � A�jmax	
ENDDO

ENDDO

�a	 �b	 �c	

Figure �� Examples of Privatizable Arrays�

ERX�DO�� from the ARC
D program� Consider loop I�
Without analyzing the e�ect of the IF condition� the use of
array element A�jmax	 in each iteration of loop I would be
considered as potentially upwards exposed to the write ref�
erences in the previous iterations� This forces the compiler
to assume a loop�carried �ow dependence which prevents
array A from being privatized for loop I� However� by exam�
ining this IF condition� the compiler would recognize that
the array element A�jmax	 takes a value de�ned either out�
side loop I or within the same iteration in which A�jmax	
is used� This assures that A�jmax	 does not cause a loop�
carried �ow dependence� Moreover� it is easy to see that the
use of A�jlow�jup	 in one iteration is not upwards exposed
to the previous iterations either� Hence� A is privatizable
and loop I is a parallel loop�

To handle these issues simultaneously� we have designed
a framework which is described below�

��� Guarded array regions

Our analysis is based on two basic sets which describe array
references� the upwards exposed use set �UE set	 and the
modi�cation set �MOD set	� Given a program segment� its
UE set is the set of all the array elements which are used
within the segment but whose values are written outside the
segment� The MOD set is the set of array elements written
within the program segment�

Our basic unit of array reference representation is a reg�
ular array region� which is also called a bounded regular sec�
tion
���� It is a reduced form of the original regular sections
proposed by Callahan and Kennedy
��� �For simplicity� we
refer to bounded regular sections as regular sections where
this will cause no confusion�	 On the other hand� we ex�
tend the original regular sections in the following ways to
meet our needs in representing UE and MOD sets� First�
since references to an array often cannot be easily repre�
sented by a single regular section� we have used a list of
regular sections for the representation without sacri�cing
exactness� In addition� we annotate regular sections with
predicates which a�ect the array references� resulting in a
guarded array region �GAR	� We presented these concepts in
a previous paper
���� and have since made some important
improvements�
De�nition A regular array region of array A is denoted
by A�r�� r�� � � � � rm	� where m is the dimension of A� ri� i �

�� � � � �m� is a range in the form of �l � u � s	� and l� u� s
are symbolic expressions� The triple �l � u � s	 represents
all values from l to u with step s� which is simply denoted
by �l	 if l � u and by �l � u	 if s � �� An empty array
region is represented by �� and an unknown array region is
represented by �� �
De�nition A guarded array region �GAR	 is a tuple
P� R�
which contains a regular array region R and a guard P �
where P is a predicate that speci�es the condition under
which R is accessed� We use � to denote a guard whose
predicate cannot be written explicitly� i�e� an unknown
guard� If both P � � and R � �� we say that the GAR

P� R� � � is unknown� Similarly� if either P is False or R
is �� we say that
P�R� is �� �

In order to preserve as much precision as possible� we
try to avoid marking a whole array region as unknown� If a
multi�dimensional array region has only one dimension that
is truly unknown� then only that dimension is marked as
unknown� Also� if only one item in a range tuple �l � u � s	�
say u� is unknown� then we write the tuple as �l � unknown �
s	�

Our previous work
��� uses a list of GAR�s for both a
MOD set and a UE set� Since then� we have improved the
representation of a UE set by using a GAR with a di�erence
list �GARWD	� Its contribution to compiler e�ciency will be
discussed in section ��
De�nition A GAR with a di�erence list �GARWD� is a set
de�ned by two components� a source GAR and a di�erence
list� The source GAR is an ordinary GAR as de�ned above�
while the di�erence list is a list of GAR�s� The GARWD set
denotes all the members of the source GAR which are not
in any GAR on the di�erence list� It is written as f source
GAR� �di�erence list� g� �

Figure
 is an example showing the use of GARWD�s�
The right�hand side is the summary result for the body of
the outer loop� where the subscript i in UEi and in MODi

indicates that these two sets belong to an arbitrary iteration
i� UEi is represented by a GARWD� For simplicity� we omit
the guards whose values are true in the example� To recog�
nize array A as privatizable� we need to prove that no loop�
carried data �ow exists� The set of all mods within those
iterations prior to iteration i� denoted by MOD�i� is equal
to MODi� �In theory� MOD�i � � if i � �� which nonethe�
less does not invalidate the analysis�	 Since both GAR�s in

DO I � �� M
A���N��	��
A�N
	 � �
������

� � A�
�N���	
ENDDO

DO I � �� M
MODi� A���N��	� A�N
�N
��	 ���
	

UEi� fA�
�N���	� ��A���N��	� A�N
�N
��	�g �f��� ��
 �g	

ENDDO

Figure
� Example of GARWD�s

the MOD�i list are in the di�erence list of the GARWD for
UEi� it is obvious that the intersection of MOD�i and UEi

is empty� and that therefore array A is privatizable� We im�
plement this by assigning each GAR a unique region number�
shown in parentheses in Figure
� which makes intersection
a simple integer operation�

��� Operations on GAR	s

Set operations for GAR�s are based on set operations for
regular array regions as well as on logical operations for
predicates� The general formula has been given in our pre�
vious work
���� Here� we emphasize our new improvements�
Given two GAR�s� T� �
P�� R�� and T� �
P�� R��� we de�
scribe the set operations below�

� T� � T� �
P� � P�� R� �R��
The intersection operation is needed in array�region�
based data dependence tests� array privatizability tests�
and in the simpli�cation of array regions�

� T� � T�
Two cases of union operations are the most frequent�

� If P� � P�� the union becomes
P�� R� �R��

� If R� � R�� the result is
P� � P�� R��

Since these regions are symbolic� care must be taken
that union operations will not create invalid regions�
For example� given R� �
m � p � �� and R� �
p� � �
n � ��� the union result R� � R� �
m � n � �� is valid if
and only if both R� and R� are valid�

� T� � T� �
P� � P�� R� �R�� �
P� � P�� R��
As described in our previous paper
���� the actual re�
sult of R� �R� may be multiple regular array regions�
making the actual result of T��T� potentially complex�
However� as Figure
 illustrates� di�erence operations
can often be canceled by intersection and union opera�
tions� Therefore� we do not solve the di�erence T��T��
unless the result is a single GAR� or until the last mo�
ment when the actual result must be solved in order
to �nish data dependence tests or array privatizabil�
ity tests� When the di�erence is not yet solved by the
above formula� it is represented by a GARWD�

Operations between two GARWD�s and between a
GARWD and a GAR can be easily derived from the above�
For example� consider a GARWD gwd�fg�� � g� �g and a
GAR g� The result of subtracting g from gwd is the follow�
ing�

�� fg�� � g� �g� if �g� � g	 � g�� or

� fg�� � g� �g� if �g � g�	 � �� or

�� fg�� � g�� g �g otherwise�

Similarly� the intersection of gwd and g is�

�� fg�� � g� �g� if �g� � g	 � g�� or

� �� if �g � g�	 � �� or

�� unknown otherwise�

As shown above� our di�erence operations� which are used
during the calculation of UE sets� do not result in the loss of
information� This helps to improve the e�ectiveness of our
analysis� On the other hand� intersection operations may re�
sult in unknown values� due to the intersections of the sets
containing unknown symbolic terms� A demand�driven sym�
bolic evaluator is invoked to determine the symbolic values
or the relationship between symbolic terms� If the intersec�
tion result cannot be determined by the symbolic evaluator�
it is marked as unknown�

In our array data �ow framework based on GAR�s� in�
tersection operations are performed only at the last step
when our analyzer tries to conduct dependence tests and
array privatization tests� at the point where a conservative
assumption must be made if an intersection result is marked
as unknown� The intersection operations� however� are not
involved in the propagation of the MOD and UE sets� and
therefore they do not a�ect the accuracy of those sets�

��
 Computing UE and MOD sets

The UE and MOD information is propagated backward
from the end to the beginning of a routine or a program
segment� Through each routine� these two sets are summa�
rized in one pass and the results are saved� The summary
algorithm is invoked on demand for a particular routine� so
it will not summarize a routine unless necessary� Parameter
mapping and array reshaping are done when the propaga�
tion crosses routine boundaries�

Figure � shows how the MOD and UE sets are sum�
marized for three basic components of �ow graphs� where
MOD IN�p	 and UE IN�p	 denote MOD and UE sets at the
location p in the �ow graphs� respectively� During the prop�
agation� variables appearing in certain summary sets may
be modi�ed by assignment statements� and therefore their
right�hand side expressions substitute for the variables� For
simplicity� such variable substitutions are not shown in Fig�
ure �� Figure � shows that� when summary sets are propa�
gated to IF branches� IF conditions are put into the guards
by applying function padd�	 to the summary sets whenever
necessary� The whole summary process is quite straight�
forward� except that the computation of UE sets for loops
needs further analysis to support summary expansion�

Given a DO loop with index I� I 	 �l� u� s	� suppose UEi

and MODi are already computed for an arbitrary iteration
i� We want to calculate UE and MOD sets for the entire I
loop� following the formula below�

MOD � �i��l�u�s�MODi

UE � �i��l�u�s��UEi �MOD�i	�

MOD�i � �j��l�u�s���j�i�MODi� MOD�l � �

(a)

S1 S2

~pp

in

out

i=l,u,s

S

Loop

(b) (c)

padd(MOD(S2), ~p) U MOD_IN(out)

out

in

S

UE_IN(in) =
 padd((UE(S1) U (UE_IN(out) - MOD(S1))), p) UUE_IN(in) = UE(S) U (UE_IN(out) - MOD(S))

MOD_IN(in) = MOD(S) U MOD_IN(out)
MOD(Loop) = proj(mod(S))

UE(Loop) = expand(UE(S))

MOD_IN(in) =padd(MOD(S1),p) U

 padd((UE(S2) U (UE_IN(out) - MOD(S2))), ~p)

Figure �� Computing Summary Sets for Basic Control Flow Components

The � summation above is also called a projection� denoted
by proj�	 in Figure �� which is used to eliminate i from the
summary sets� The UE calculation given above� denoted
by expand�	 in Figure �� can be described in two steps�
The �rst step computes �UEi �MOD�i	� which represents
the set of array elements which are used in iteration i and
have been exposed to the outside of the whole I loop� The
second step computes the projection of Step ��s results� The
expansion for a list of GAR�s and a list of GARWD�s consists
of the expansion of each GAR and each GARWD in the lists�

Since a detailed discussion on expansion would be te�
dious� we will provide a guideline only� For a GAR Q�
proj�Q	 is obtained by the following steps�

�� If i appears in the guard of a GAR� we remove the pred�
icate components� which involve i� from the guard� and
we use such components to derive a new domain of i�
Suppose that i in the guard can be solved and repre�
sented as i 	 �l� � u�	� The new domain of i becomes

� d
max�l�� l	� l

s
e � s� l � b

min�u�� u	� l

s
c � s� l � s	

which simpli�es to �max�l�� l	 � min�u�� u		 for s � ��

For example� given i 	 �
 � ��� �
	 and GAR
�

i� A�i	�� we remove the relational expression �
 i from

the guard and form the new domain of i� �dmax�������
�

e�

�
 � ��� �
	 � �� � ��� �
	� Hence� the projection will
be completed by expanding
T� A�i	�� i 	 �� � ��� �
	�
whose result is
T� A�� � ��� �
	��

� Suppose that i appears in only one dimension of Q� If
the result of substituting l
 i
 u� or the new bounds
on i obtained above� into the old range triple in that
dimension can still be represented by a range triple
�l�� � u�� � s��	� then we replace the old range triple by
�l�� � u�� � s��	�

�� If� in the above� the result of substituting l
 i
 u into
the old range can no longer be represented by a range�
or if i appears in more than one dimension of Q� then
these dimensions are marked as unknown� �Tighter
approximation is possible for special cases� but we will
not discuss it in this paper�	

For the expansion of a GARWD� we have the following�

�� For a GARWD� if its di�erence list and its source GAR
cannot be expanded separately� then we must solve the
di�erence list �rst� invoking the symbolic evaluator if
necessary� If the di�erence list cannot be solved� the
expansion result is marked as unknown�

� The computation of �UEi �MOD�i	 and its expan�
sion can be done without expandingMODi toMOD�i

�rst� Instead� �UEi �MOD�i	 is evaluated to UEi�

with a new index variable i�� Consider a special case in
which UEi � fA�I � n	� ��g and MODi � A�I �m	�
We can formulate

�UEi �MOD�i	� i 	 �l � u	 ��
UEi� � i

� 	 �l � l � �m� n	� �	� �m� n	 � �
UEi� � i

� 	 �l � u	� �m� n	
 ��

To be more speci�c� suppose we have i 	 �
 � ��	�
MODi �
T�A�i � �	�� and UEi �
T�A�i	�� which
satis�es �m � n	 � � in the above� The set �UEi �
MOD�i	� with i 	 �
 � ��	� should equal set UEi� �
i� 	 �
 �
	�

Suppose� however� that MODi is
T� A�i � �	�� The
case of �m � n	
 � applies instead� The set �UEi �
MOD�i	� with i 	 �
 � ��	� equals UEi� � with i� 	 �
 �
��	�

In this paper� we leave out the general discussion on the
short�cut computation illustrated above�

��� E�ectiveness and e�ciency

We have implemented our array data �ow analysis in a pro�
totyping parallelizing compiler� Panorama� which is a mul�
tiple pass� source�to�source Fortran program analyzer
� ��
It roughly consists of the phases of parsing� building a hi�
erarchical supergraph�HSG	 and the interprocedural scalar
UD�DU chains
��� performing conventional data depen�
dence tests� array data �ow analysis and other advanced
analyses� and parallel code generation�

Table �� Privatizable Arrays and Privatization Techniques in Loops
Program Routine SA PA IA Privatizable

�Loop Arrays
ADM dcdtz��� Yes Yes Yes HELP� DKS� CONV� HELPA� AN� BN� CN

dtdtz��� Yes Yes Yes UNT� DTM� DKS� CONV� FORC� AN� BN� CN� HELPA
dudtz��� Yes Yes Yes DUM� DKS� CONV� FORC� AN� BN� CN� HELPA
dvdtz��� Yes Yes Yes DVM� DKS� CONV� FORC� AN� BN� CN� HELPA
dkzmh��� Yes No Yes U� T
dkzmh��� Yes No Yes U� T
wcont��� Yes No Yes HELP� AN� BN� CN� HELPA

TRACK nl�lt���� No No Yes XSD� P�� PP�� P
� PP
� P� PP
MDG interf����� Yes Yes Yes RS� XL� YL� ZL� FF� GG

poteng�
��� No No Yes XL� YL� ZL� RS� RL
TRFD olda���� Yes No No XRSIQ� XIJ

olda���� Yes No No XIJKS� XKL
OCEAN ocean�
�� Yes No Yes CWORK

ocean�� � Yes No Yes CWORK� CWORK

ocean���� Yes No Yes CWORK

ARC
D �lerx��� Yes Yes Yes WORK
�lery��� Yes No No WORK
stepfx���� Yes No Yes WORK� LDA� LDB� LDS� LUS
stepfy��
� Yes No Yes WORK

QCD measur�� Yes Yes Yes COORD� DOWN� TOP� UP� BOTTOM� STEMP
BDNA actfor�
�� No Yes No IND� XDT� YDT� ZDT
FLO�
 step�
� Yes No No QSI� CSI� QSJ� CSJ
MG�D migrat�
�� Yes No Yes PD�� PM�� CDPM�� CDPP�
SPEC�� gwater����� No No Yes PLN� PS� QF� DLAM� DLAMF� DPHIF�

B� F� G� TAU
gloop����� No No Yes PLN� PS� QF� DLAM� DLAMF� DPHI�

DPHIF� DER� U�� U
� V�� V
� T�� T
�
Q�� Q
� CG� TAU� A� B� RTG� F� G

Total �! �
! �!
SA� Symbolic Analysis� PA� Predicate Analysis� IA� Interprocedural Analysis�

Table � shows the Fortran loops in the Perfect bench�
mark suite which can be parallelized after our array data
�ow analysis and array privatization and after necessary
transformations such as induction variable substitution� par�
allel reduction� and even synchronization placement� whose
discussions are omitted in this paper� Only the Illinois Po�
laris tool is known to demonstrate equal power
 �� This
table also marks which loops require symbolic analysis� pred�
icate analysis and interprocedural analysis� and privatizable
arrays� respectively�

Table
 and Table � compare the e�ciency of our an�
alyzer with that of Polaris� Both Panorama and Polaris
are compiled by the GNU gcc�g�� compiler� Two versions
are produced� one without gcc�s optimization �Table
	 and
the other with the �O optimization �Table �	� Following
a Polaris term� we call these two versions unoptimized and
optimized� respectively� Table
 also breaks down the tim�
ing for di�erent phases of Panorama� "Parsing time# is the
time to parse the program once� although Panorama cur�
rently parses a program three times� The column "HSG
� DOALL Checking# is the time taken to build the HSG�
UD�DU chains� and conventional DOALL checking� The
column "Array Summary# refers to our array data �ow anal�
ysis which is applied only to loops whose parallelizability
cannot be determined by the conventional DOALL tests�
Figure � shows the percentage of time spent by the array
data �ow analysis and the rest of Panorama� Even though

the time percentage of array data �ow analysis is high �about
��!	� the total execution time is small �� seconds maxi�
mum	� The column marked "Polaris# in Table
 shows the
time spent by Polaris up to the point of array privatization
and data dependence tests� Time spent after this point is
not counted� Our analyzer is shown to be faster by a few
orders of magnitude� �We did not compare our analyzer
with SUIF� because SUIF�s current public version does not
perform array data �ow analysis�	

Table � shows that the speed increase from the unopti�
mized version to the optimized one is more signi�cant for
Polaris than for Panorama� When using a SGI Challenge
machine� which has a large memory� the time gap between
Polaris and Panorama is reduced� This is probably because
Polaris is written in C�� with a huge executable image�
The size of its executable image is about
�MB unoptimized
and ��MB optimized� while Panorama� written in C� has
an executable image of �MB unoptimized and ���MB opti�
mized� Even with a memory size as large as �GB� Panorama
is still faster than Polaris by one or two orders of magnitude�
We believe that several design choices contribute to the ef�
�ciency of Panorama� In the next section� we present some
of these choices made in Panorama�

Table
� Execution Time �in seconds	 Distribution�

Program Parsing HSG � DOALL Array Code Total Polaris�

Checking Summary Generation
ADM ���
 ��

���� ���� � ��� ����
QCD ���� ��

 ����� ���� �����
MDG �� � ���

�� ��
 ��� ����

TRACK ��� ���� ���� ���
 �
�� ���

BDNA
��
 �� � �� �
� �����
� �
OCEAN
��� ����� ���� �� ����� ����
MG�D
�
� ���� ���
��� � ���
ARC
D
��� ����
���

�
� ����� ����
FLO�
 ���� ���� ���� ���� �� � ��
TRFD ���� ���� ���� ��

 ���� ��

SPEC��
� � ���
 ���

�

���� ����

�� Timing is measured on SGI Indy workstations with ���MHz MIPS R�	

 CPU and 	� MBmemory�
�� Polaris is a parallelizing compiler developed at the CSRD of the University of Illinois� The timing
of Polaris is measured without the passes after array privatization and dependence tests� Some
programs cannot be measured because Polaris aborts or takes longer than 	 hours to execute�

Figure �� Time distribution for array data �ow summary

Time Percentage Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
D

M

Q
C

D

M
D

G

TR
A

C
K

BD
N

A

O
C

EA
N

D
Y

FE
SM

M
G

3D

A
R

C
2D

FL
O

52

TR
FD

SP
EC

77

Summary The rest

 What contributes to its e�ciency�

In this section� we will discuss major reasons for the e��
ciency of our analyzer� The foremost reason seems to be
that Panorama computes interprocedural summary with�
out in�lining the routine bodies as Polaris does� If a sub�
routine is called in several places in the program� in�lining
causes the subroutine body to be analyzed several times�
while Panorama only needs to summarize each subroutine
once� The summary result is later mapped to di�erent call
sites� Moreover� for data dependence tests involving call
statements� Panorama uses the summarized array region in�
formation� while Polaris performs data dependences between
every pair of array references in the loop body after in�lining�
Since the time complexity of data dependence tests is O�n�	�
where n is the number of individual references being tested�
in�lining can signi�cantly increase the time for dependence
testing� In our experiments with Polaris� we limit the num�

ber of in�lined executable statements to ��� a default value
used by Polaris� With this modest number� data dependence
tests still account for about ��! of the total time�

We believe that another important reason for
Panorama�s e�ciency is its e�cient computation and
propagation of the summary sets� Although more work
is needed to breakdown the e�ects of individual design
choices� we believe that two design issues are particularly
noteworthy� namely� the handling of predicates and the
di�erence set operations� Next� we discuss these issues in
more details�

�� E�cient handling of predicates

The predicate operations are expensive in general� so com�
pilers often do not analyze them� In fact� the majority of
predicate�handling required for our array data �ow analy�
sis involves simple operations such as checking to see if two

Table �� Elapsed Execution Time �in seconds	

Program SGI Power SGI Indy�

Challenge�

Panorama Polaris Panorama Polaris
ADM ��
� ���
����
���
QCD ���� �����
MDG
��� ����
 ���� ���

TRACK ���� ��� � ����� ��

BDNA �� � �����
 ����� ���
OCEAN
��� ��� ��� ����
MG�D ���� �����
ARC
D ��� ��� �

�� ���
FLO�
 ���� ��� � ����
��
TRFD ���� ����� ����
 �
SPEC�� ���� ��� ����� �� �

Note� Both Polaris and Panorama are compiled with gcc �O�
�SGI Power Challenge with �
��MB memory and �
	MHZ
R�

 CPU� �SGI Indy with ���MHz MIPS R�	

 CPU
and 	� MB memory�

predicates are identical� if they are loop�independent� and
if they contain indices and a�ect shapes or sizes of array
regions� These can be implemented rather e�ciently�

A canonical normal form is used to represent the predi�
cates� Pattern�matching under a normal form is easier than
under arbitrary forms� Both the conjunctive normal form
�CNF	 and the disjunctive normal form �DNF	 have been
widely used in program analysis

�� ��� These cited works
show that negation operations are expensive with both CNF
and DNF� This fact was also con�rmed by our previous ex�
periments using CNF
���� Negation operations occur not
only due to ELSE branches� but also due to GAR and
GARWD operations elsewhere� Hence� we design a new
normal form such that negation operations can often be
avoided�

We use a hierarchical approach to predicate handling�
A predicate is represented by a high level predicate tree�
PT �V�E� r	� where V is the set of nodes� E is the set of
edges� and r is the root of PT � The internal nodes of V are
NAND operators except for the root� which is an AND oper�
ator� The leaf nodes are divided into regular leaf nodes and
negative leaf nodes� A regular leaf node represents a pred�
icate such as an IF condition� while a negative leaf node
represents the negation of a predicate� Theoretically� this
representation is not a normal form because two identical
predicates may have di�erent predicate trees� which may
render pattern�matching unsuccessful� We� however� believe
that such cases are rare and that they happen only when the
program is extremely complicated� Figure � shows a PT �
Each leaf �regular or negative	 is a token which represents
a basic predicate such as an IF condition or a DO condition
in the program� At this level� we keep a basic predicate as a
unit and do not split it� The predicate operations are based
only on these tokens and do not check the details within
these basic predicates� Negation of a predicate tree is sim�
ple this way� A NAND operation� shown in Figure �� may
either increase or decrease by one level in a predicate tree
according to the shape of the predicate tree� If there is only
one regular leaf node �or one negative leaf node	 in the tree�
the regular leaf node is simply changed to a negative leaf
node �or vice versa	� AND and OR operations are also eas�
ily handled� as shown in Figure �� We use a unique token

1st DO J NOT p THEN branch 2nd DO J

1 2 43

F

p1 p2 p3 p4 p5

T

Figure �� The HSG of the Body of the Outer Loop for Figure
��c	

for each basic predicate so that simple and common cases
can be easily handled without checking the contents of the
predicates� The content of each predicate is represented in
CNF and is examined when necessary� Columns � and in
Table � shows that over ��! of the total predicate opera�
tions are the high level ones� where a negation or a binary
predicate operation on two basic predicates is counted as
one operation�

The numbers shown in Table � are dependent on the
strategy used to handle the predicates� Currently� we defer
the checking of predicate contents until the last step� so that
only a few low level predicate operations are needed� Our
results show that this strategy works well for array priva�
tization� since almost all privatizable arrays in our tested
programs can be recognized� Some cases� such as those that
need to handle guards containing loop indices� do need low
level predicate operations�

�� Reducing unnecessary di�erence operations

We do not solve the di�erence of T� � T� using the general
formula presented in Section
 unless the result is a single
GAR� When the di�erence cannot be simpli�ed to a single
GAR� the di�erence is represented by a GARWD instead
of by a union of GAR�s� as implied by that formula� This
strategy postpones the expensive and complex di�erence op�
erations until they are absolutely necessary� and it avoids
propagating a relatively complex list of GAR�s� For exam�
ple� let a GARWD G� be f�� � m	� � �k � n	� �
 � n�	 �g and
G� be �� � m	� We have G� � G� � �� and two di�erence
operations represented in G� are reduced �i�e� no need to
perform them	� In Table �� the total number of di�erence
operations and the total number of reduced di�erence oper�
ations are illustrated in columns � and �� respectively� The
result shows that di�erence operations overall are reduced
by about ��!�

Let us use the example in Figure ��c	 to further illustrate
this fact� A simpli�ed control �ow graph of the body of the
outer loop is shown in Figure �� �For more information
about our control �ow graph� please consult our paper
����	
Suppose that each node has been summarized and that the
summary results are listed below�

MOD��	 �
T� �jlow � jup	�� UE��	 � �
MOD�
	 � �� UE�
	 � �
MOD��	 �
T� �jmax	�� UE��	 � �
MOD��	 � �� UE��	 �
T� �jlow � jup	�

�
T� �jmax	�

Following the description given in Section
��� we will prop�
agate the summary sets of each node in the following steps
to get the summary sets for the body of the outer loop�

�� MOD IN�p�	 �MOD��	 � �
UE IN�p�	 � UE��	 �
T� �jlow � jup	� �
T� �jmax	�

NAND

 AND

NAND

A B

C D E

F G H

 negative leaf

 operator

regular leaf
 NAND

A � �C �D	 � B � �E � �F �G �H		

Figure �� High level representation of predicates

AND

A

A B

B

AND

NAND

Negation, increase by 1

Negation, decrease by 1

AND AND

Sub Tree 2Sub Tree 1 Sub Tree 1 Sub Tree 2

ANDAND

AND AND

Sub Tree 1 Sub Tree 2

AND

NAND

NANDNAND

OR

(a)

(b)

(c)

Sub Tree 2Sub Tree 1

Figure �� Predicate operations

Table �� Measurement of key parameters
Program $ Array Ave $ Ave $ Di�erence Ops $ Predicate Ops

Summarized GAR�s GARWD�s Total $ Di� Ops Total $ High
Reduced Level Ops

ADM ��� ��

��� ��� ��
 ���� ����
QCD �
� ���� ���� ��

� ����� �����
MDG ��� ���� ���� ��� �� � �

TRACK ��� ���� ����
�� � �� ��
BDNA
 � ���� ����
� � �� ���
OCEAN �
��� ���� ��
 � �
MG�D � � ��
� ���� ��
 �� ��� ���
ARC
D ��� ����
�
� ���� ��� � � � �
FLO�
 �� ����
��� � � � �
TRFD ��
��

��� � � �� ��
SPEC�� �� �� ���� ��� � �
��

Total
� �
�
� ���� ��� ��� ��
��
 ��

� MOD IN�p�	 �MOD��	 �MOD IN�p�	
�
T� �jmax	�

UE IN�p�	 � UE��	 � �UE IN�p�	�MOD��		
� f
T� �jlow � jup	�� �
T� �jmax	� �g

This di�erence operation is kept in the GARWD and
will be reduced at step ��

�� MOD IN�p
	 �
p� �jmax	�
UE IN�p
	 � f
p� �jlow � jup	�� �
p� �jmax	� �g

�
p� �jlow � jup	� �
p� �jmax	�

In the above� p is inserted into the guards of the GAR�s�
which are propagated through the TRUE edge� and p is
then inserted into the guards propagated through the
FALSE edge�

�� MOD IN�p�	 �
T� �jlow � jup	� �
p� �jmax	�
UE IN�p�	 � UE IN�p
	�MOD��	

� f
p� �jmax	�� �
T� �jlow � jup	� �g

At this step� the computation of UE IN�p�	 removes
one di�erence operation because �f
p� �jlow � jup	�� �

p� �jmax	� �g �
T� �jlow � jup	�	 is equal to �� In
other words� there is no need to perform the di�erence
operation represented by GARWD f
p� �jlow � jup	�� �

p� �jmax	� �g� An advantage of the GARWD repre�
sentation is that a di�erence can be postponed rather
than always performed� Without using a GARWD� the
di�erence operation at step
 always has to be per�
formed� which should not be necessary and which thus
increases execution time�

Therefore� the summary sets of the body of the outer loop
�DO I	 should be�

MODi � MOD IN�p�	 �
T� �jlow � jup	� �
p� �jmax	�

UEi � UE IN�p�	 �

f
p� �jmax	�� �
T� �jlow � jup	� �g

To determine if array A is privatizable� we have to prove
that there exists no loop�carried �ow dependence for A� We
�rst calculate MOD�i� the set of array elements written in
iterations prior to iteration i� giving us MOD�i � MODi�
The intersection of MOD�i and UEi is conducted by two
intersections� each of which is formed by one mod each from

MOD�i and UEi� The �rst mod�
T� �jlow � jup	�� appears
in the di�erence list of UEi� and thus the result is obvi�
ously empty� Similarly� the intersection of
p� �jmax	� and
the second mod�
p� �jmax	�� is empty because their guards
are contradictory� Because the intersection of MOD�i and
UEi is empty� array A is privatizable� In both intersections�
we avoid performing the di�erence operation in UEi� and
therefore improve e�ciency�

�
 E�cient summary sets

Our GAR�s and GARWD�s are based on the regular regions�
which represent summary sets more e�ciently than the con�
vex regions used in several other works� Slightly di�erently
from the regular sections originally proposed by Callahan
and Kennedy and later enhanced by Havlak
�� ���� we use
a list of GAR�s or GARWD�s to keep a precise summary set�
Keeping a long list potentially can be ine�cient� because the
time complexity of set operations of two region lists with
lengths n and m is in the order of �n � m	� In our previ�
ous work
���� we merged two regions whenever possible by
adding conditions to the guards� This treatment guarantees
that no invalid regions are created due to invalid inequali�
ties in the region limits� and it also shortens the length of a
region list� However� at the same time� this treatment pro�
duces additional predicates to be handled� which we want to
avoid� In our current design� we keep regions in an unmerged
list unless the merged result is known to be valid without
adding conditions to the guard� Fortunately� the average
lengths of a MOD and a UE list are not long� as shown in
Table � by the two columns marked "ave $ GAR�s# and
"ave $ GARWD�s#�

� Related works

There are a number of approaches to array data �ow analy�
sis� As far as we know� no work has particularly addressed
the e�ciency issue or presented e�ciency data� One school
of thought attempts to gather �ow information for each ar�
ray element and to acquire an exact array data �ow analysis�
This is usually done by solving a system of equalities and in�
equalities� Feautrier
�� calculates the source function to in�
dicate detailed �ow information� Maydan et al�
��� ��� sim�
plify Feautrier�s method by using a Last�Write�Tree�LWT	�

Duesterwald et al�
�� compute the dependence distance for
each reaching de�nition within a loop� Pugh and Wonna�
cott
��� use a set of constraints to describe array data �ow
problems and solve them basically by the Fourier�Motzkin
variable elimination� Maslov
���� as well as Pugh and Won�
nacott
���� also extend the previous work in this category by
handling certain IF conditions� Generally� these approaches
are intraprocedural and do not seem easily extended inter�
procedurally� The other group analyzes a set of array el�
ements instead of individual array elements� Early work
uses regular sections
�� ���� convex regions

�
��� data
access descriptors

�� etc� to summarize MOD�USE sets
of array accesses� They are not array data �ow analyses�
Recently� array data �ow analyses based on these sets were
proposed �Gross and Steenkiste
���� Rosene

��� Li
����
Tu and Padua

��� Creusillet and Irigoin
��� and M� Hall
et al�
�
�	� Of these� ours is the only one using conditional
regions�GAR�s	� even though some do handle IF conditions
using other approaches� Although the second group does
not provide as many details about reaching�de�nitions as
the �rst group� it handles complex program constructs bet�
ter and can be easily performed interprocedurally�

Array data �ow summary� as a part of the second group
mentioned above� has been a focus in the parallelizing com�
piler area� The most essential information in array data �ow
summary is the upwards exposed use set� These summary
approaches can be compared in two aspects� set represen�
tation and path sensitivity� For set representation� convex
regions are highest in precision� but they are also expensive
because of their complex representation� Bounded regular
sections �or regular sections	 have the simplest representa�
tion� and thus are most inexpensive� Early work tried to use
a single regular section or a single convex region to summa�
rize one array� Obviously� a single set can potentially lose
information� and it may be not useful in some cases� Tu and
Padua

��� and Creusillet and Irigoin
�� seem to use a single
regular section and a single convex region� respectively� M�
Hall et al�
�
� use a list of convex regions to summarize all
the references of an array� It is unclear if this representation
is more precise than a list of regular sections� upon which
our approach is based�

Regarding path sensitivity� the commonality of these pre�
vious methods is that they do not distinguish summary sets
of di�erent control �ow paths� Therefore� these methods
are called path�insensitive� and have been shown to be inad�
equate in real programs� Our approach� as far as we know�
is the only path�sensitive array data �ow summary approach
in the parallelizing compiler area� It distinguishes summary
information from di�erent paths by putting IF conditions
into guards� Some other approaches do handle IF condi�
tions� but not in the context of array data �ow summary�

 Conclusion

This paper presents an e�cient design of array data �ow
analysis which handles interprocedural� symbolic� and pred�
icate analyses all together� As far as we know� this is the
�rst time the e�ciency issue has been addressed and data
presented for such a powerful analysis� The e�ciency is im�
proved by several design considerations such as GARWD�s
and a hierarchical predicate handling scheme� Our prelim�
inary results show that our approach is much faster than
similarly powerful tools�

References

��� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers� Prin�
ciples� Techniques� and Tools� Addison�Wesley� Reading�
Mass�� �
�	�

��� V� Balasundaram� A mechanism for keeping useful internal
information in parallel programming tools� The data access
descriptor� Journal of Parallel and Distributed Computing�

�������
� �

�

��� W� Blume and R� Eigenmann� Symbolic analysis techniques
needed for the e�ective parallelization of Perfect bench�
marks� Technical report� Dept� of Computer Science� Uni�
versity of Illinois� �

��

��� D� Callahan and K� Kennedy� Analysis of interprocedural
side e�ects in a parallel programming environment� In ACM
SIGPLAN ��� Symp� Compiler Construction� pages �	��
���� June �
�	�

��� Lori A� Clarke and Debra J� Richardson� Applications of
symbolic evaluation� The Journal of Systems and Software�
����������� �
���

�	� B�eatrice Creusillet and F� Irigoin� Interprocedural array
region analyses� Int� Journal of Parallel Programming�
���	��������	� December �

	�

��� E� Duesterwald� R� Gupta� and M�L� So�a� A practical data
�ow framework for array reference analysis and its use in
optimizations� In ACM SIGPLAN �	
 Conf� on Program�
ming Language Design and Implementation� pages 	�����
June �

��

��� R� Eigenmann� J� Hoe�inger� and D� Padua� On the auto�
matic parallelization of the perfect benchmarks� Technical
Report TR ��
�� CSRD� University of Illinois at Urbana�
Champaign� November �

��

�
� Paul Feautrier� Data�ow analysis of array and scalar ref�
erences� International Journal of Parallel Programming�
����������� February �

��

��
� T� Gross and P Steenkiste� Structured data�ow analysis for
arrays and its use in an optimizing compiler� Software �
Practice and Experience� �
������������ February �

�

���� J� Gu� Z� Li� and G� Lee� Symbolic array data�ow analy�
sis for array privatization and program parallelization� In
Supercomputing� December �

��

���� M�W� Hall� B�R� Murphy� S�P� Amarasinghe� S��W� Liao�
and M�S� Lam� Interprocedural analysis for parallelization�
In Proceedings of the �th Workshop on Languages and Com�
pilers for Parallel Computing� No� �

� In Lecture Notes
in Computer Science� Springer�Verlag� Berlin� pages 	���
�
August �

��

���� P� Havlak and K� Kennedy� An implementation of interpro�
cedural bounded regular section analysis� IEEE Trans� on
Parallel and Distributed Systems� �������
��	
� �

��

���� Z� Li� Array privatization for parallel execution of loops�
In ACM Int� Conf� on Supercomputing� pages �������� July
�

��

���� Vadim Maslov� Lazy array data��ow dependence analysis�
In Proceedings of Annual ACM Symposium on Principles of
Programming Languages� pages �������� Jan� �

��

��	� D�E� Maydan� S�P� Amarasinghe� and M�S� Lam� Array data�
�ow analysis and its use in array privatization� In Proc� of the
�
th ACM Symp� on Principles of Programming Languages�
pages ����� January �

��

���� Dror E� Maydan� Accurate Analysis of Array References�
PhD thesis� Stanford University� October �

��

���� T� Nguyen� J� Gu� and Z� Li� An interprocedural paralleliz�
ing compiler and its support for memory hierarchy research�

In Lecture Notes in Computer Science �

� �th Interna�
tional Workshop on Languages and Compilers for Parallel
Computing� pages
	���
� Columbus� Ohio� August �

��
Springer�Verlag�

��
� William Pugh and David Wonnacott� An exact method for
analysis of value�based array data dependences� In Lecture
Notes in Computer Science ���� Sixth Annual Workshop on
Programming Languages and Compilers for Parallel Com�
puting� Portland� OR� August �

�� Springer�Verlag�

��
� Carl Rosene� Incremental dependence analysis� Technical
Report CRPC�TR

��� PhD thesis� Computer Science De�
partment� Rice University� March �

�

���� Jr T�E� Cheatham� G�H� Holloway� and J�A� Townley� Sym�
bolic evaluation and the analysis of programs� IEEE
Trans�on Software Engineering� ������
������ July �
�
�

���� R� Triolet� F� Irigoin� and P� Feautrier� Direct paralleliza�
tion of CALL statments� In ACM SIGPLAN��� Sym� on
Compiler Construction� pages ��	����� July �
�	�

���� Remi Triolet� Interprocedural analysis for program restruc�
turing with parafrase� Technical Report CSRD Rpt� No�����
Center for Supercomputing Research and Development� Uni�
versity of Illinois at Urbana�Champaign� December �
���

���� P� Tu and D� Padua� Gated ssa�based demand�driven sym�
bolic analysis for parallelizing compilers� In International
Conference on Supercomputing� pages �������� July �

��

���� Peng Tu and David Padua� Automatic array privatization�
In Proceedings of Sixth Workshop on Languages and Com�
pilers for Parallel Computing� pages �

����� August �

��

