Experience with Efficient Array Data Flow Analysis for Array Privatization

Junjie Gu

Zhiyuan Li

1

Gyungho Leef

Department of Computer Science 'Electrical Engineering, Division of Engineering

University of Minnesota
200 Union Street S.E.

Minneapolis, MN 55455
{gu,li}@cs.umn.edu

Abstract

Array data flow analysis is known to be crucial to the success
of array privatization, one of the most important techniques
for program parallelization. It is clear that array data flow
analysis should be performed interprocedurally and sym-
bolically, and that it often needs to handle the predicates
represented by IF conditions. Unfortunately, such a pow-
erful program analysis can be extremely time-consuming if
not carefully designed. How to enhance the efficiency of
this analysis to a practical level remains an issue largely un-
touched to date. This paper documents our experience with
building a highly efficient array data flow analyzer which is
based on guarded array regions and which runs faster, by
one or two orders of magnitude, than other similarly pow-
erful tools.

1 Introduction

By now it is well recognized that array data flow analysis
is crucial for array privatization, one of the most important
techniques for program parallelization. It is also clear that,
in order to be effective, array data flow analysis must be
performed interprocedurally and symbolically. Moreover,
the predicates represented by IF conditions often need to
be analyzed. The problem of array data flow analysis has
been examined in various limited forms in the past (c.f. Re-
lated Works below). Recently, our group [11] and the Illinois
Polaris group [24] have both proposed comprehensive frame-
works for symbolic array data flow analysis which can handle
IF conditions. While we perform interprocedural analysis by

1This work is sponsored in part by the Army High Performance
Computing Research Center under the auspices of the Department of
the Army, Army Research Laboratory cooperative agreement number
DAAHO04-95-2-0003/contract number DAAHO04-95-C-0008, the con-
tent of which does not necessarily reflect the position or the policy
of the government, and no official endorsement should be inferred.
This work is also supported in part by a National Science Foundation
CAREER Award, Grant CCR-950254, a National Science Founda-
tion Academic Research Instrumentation Grant, CDA 9414015 and a
funding, as a part of DICE project, from Samsung Electronics. We
also thank Trung N. Nguyen and Guohua Jin for their important con-
tributions to Panorama.

University of Texas - San Antonio

6900 North Loop 1604 West

San Antonio, Texas 78249-0665

glee@voyagerl.eng.utsa.edu

analyzing the call effects, the Polaris group relies on in-lining
to remove the calls.

Because array data flow analysis must be performed over
a large scope, handling the whole set of the subroutines in
a program, algorithms for information propagation and for
symbolic manipulation must be carefully designed. Other-
wise, this analysis will simply be too time-consuming for
practical compilers. Unfortunately, the efficiency issue has
not received enough attention to date. SUIF and Polaris,
for example, do not emphasize compiler efficiency, and they
tend to run very slowly. We believe it is important to demon-
strate that array data flow analysis can be performed effi-
ciently, and we do so in this paper by sharing our experience
of building such an analyzer which runs faster, by one or two
orders of magnitude, than other similarly powerful tools, e.g.
the Polaris analyzer. Through this work, we wish to con-
vince readers that sophisticated array data flow analysis can
be fast enough to be used in production compilers.

In the next section, we shall first introduce the frame-
work of our analyzer. We then present data to show its ef-
fectiveness and to compare its running time with Polaris. In
Section 3, we present the main reasons for the high efficiency
of our analyzer and provide supporting data. Related work
will be briefly discussed in section 4. Finally, we conclude
the paper.

2 Array data flow analysis: Effectiveness and efficiency

The need for an array data flow analyzer which can analyze
call effects, symbolic values, and IF conditions has been well
documented previously [3, 11, 17]. For readers new to the
field, we will briefly explain the issues through two simple
examples.

Figures 1(a)&(b) show an example from ADM in the Per-
fect benchmark suite. Figure 1(a) shows the simplified loop
DCDTZ/40, which contains a call to subroutine CPADE
shown in Figure 1(b). DO loop 40 can be parallelized if
array HELP is privatizable. In order to prove HELP as
privatizable, the compiler needs to establish that the defini-
tions of HELP cover its uses both in DO 30 and in routine
CPADE. This can be done by comparing the symbolic up-
per bounds of DO 10 and DO 30 and by analyzing the call
effects of routine CPADE. In addition, the IF condition in
CPADE must be taken into account. Otherwise, array ele-
ment HELP(0) will be mistaken as upwards exposed to the
exterior of DO 40, causing unnecessary data copy-in.

IF conditions may even affect the privatizability of
arrays. Figure 1(c) illustrates the simplified loop FIL-

DO 40 J=1,NY SUBROUTINE CPADE(HELP, NS,...) DOI=1,4
DO 10 K=1NZ .. DO J = jlow, jup
HELP(K)=. NI=NS-1 ... AQ) =.
...... DO 10 J=1, N1 ENDDO

10: CONTINUE ...

...... IF (J.EQ.1) THEN

IF (NOT.p) THEN

CALL CPADE(HELP,\NZ,...) . = HELP(J+1) A(jmax) = .
DO 30 K=1,NZ ELSE ENDIF

. = HELP(K) . = HELP(J-1)

...... ENDIF DO J = jlow, jup

30: CONTINUE 10: CONTINUE
40: CONTINUE .

(a) (b)

. = A(J) + A(jmax)
ENDDO
ENDDO

()

Figure 1: Examples of Privatizable Arrays.

ERX/DO15 from the ARC2D program. Consider loop L
Without analyzing the effect of the IF condition, the use of
array element A(jmax) in each iteration of loop I would be
considered as potentially upwards exposed to the write ref-
erences in the previous iterations. This forces the compiler
to assume a loop-carried flow dependence which prevents
array A from being privatized for loop I. However, by exam-
ining this IF condition, the compiler would recognize that
the array element A(jmax) takes a value defined either out-
side loop I or within the same iteration in which A(jmax)
is used. This assures that A(jmax) does not cause a loop-
carried flow dependence. Moreover, it is easy to see that the
use of A(jlow:jup) in one iteration is not upwards exposed
to the previous iterations either. Hence, A is privatizable
and loop I is a parallel loop.

To handle these issues simultaneously, we have designed
a framework which is described below.

2.1 Guarded array regions

Our analysis is based on two basic sets which describe array
references, the upwards exposed use set (UE set) and the
modification set (M OD set). Given a program segment, its
UE set is the set of all the array elements which are used
within the segment but whose values are written outside the
segment. The MOD set is the set of array elements written
within the program segment.

Our basic unit of array reference representation is a reg-
ular array region, which is also called a bounded reqular sec-
tion [13]. It is a reduced form of the original regular sections
proposed by Callahan and Kennedy [4]. (For simplicity, we
refer to bounded regular sections as regular sections where
this will cause no confusion.) On the other hand, we ex-
tend the original regular sections in the following ways to
meet our needs in representing UE and MOD sets. First,
since references to an array often cannot be easily repre-
sented by a single regular section, we have used a list of
regular sections for the representation without sacrificing
exactness. In addition, we annotate regular sections with
predicates which affect the array references, resulting in a
guarded array region (GAR). We presented these concepts in
a previous paper [11], and have since made some important
improvements.

Definition A regular array region of array A is denoted
by A(ri,r2, - ,"m), where m is the dimension of A, r;, i =

1,---,m, is a range in the form of (I : w : s), and [, u,s
are symbolic expressions. The triple (I : u : s) represents
all values from [to u with step s, which is simply denoted
by (I) if I = w and by (I : w) if s = 1. An empty array
region is represented by 0, and an unknown array region is
represented by Q. O
Definition A guarded array region (GAR) is a tuple [P, R]
which contains a regular array region R and a guard P,
where P is a predicate that specifies the condition under
which R is accessed. We use A to denote a guard whose
predicate cannot be written explicitly, i.e. an unknown
guard. If both P = A and R = Q, we say that the GAR
[P, R] = Q is unknown. Similarly, if either P is False or R
is 0, we say that [P, R] is). O

In order to preserve as much precision as possible, we
try to avoid marking a whole array region as unknown. If a
multi-dimensional array region has only one dimension that
is truly unknown, then only that dimension is marked as
unknown. Also, if only one item in a range tuple (I : u : s),
say u, is unknown, then we write the tuple as (I : unknown :

Our previous work [11] uses a list of GAR’s for both a
MOD set and a UE set. Since then, we have improved the
representation of a UF set by using a GAR with a difference
list (GARWD). Its contribution to compiler efficiency will be
discussed in section 3.
Definition A GAR with a difference list (GARWD) is a set
defined by two components: a source GAR and a difference
list. The source GAR is an ordinary GAR as defined above,
while the difference list is a list of GAR’s. The GARWD set
denotes all the members of the source GAR which are not
in any GAR on the difference list. It is written as { source
GAR, <difference list> }. O

Figure 2 is an example showing the use of GARWD’s.
The right-hand side is the summary result for the body of
the outer loop, where the subscript ¢ in UE; and in M OD;
indicates that these two sets belong to an arbitrary iteration
i. UE; is represented by a GARWD. For simplicity, we omit
the guards whose values are true in the example. To recog-
nize array A as privatizable, we need to prove that no loop-
carried data flow exists. The set of all mods within those
iterations prior to iteration i, denoted by M OD«;, is equal
to MOD;. (In theory, MOD<; = ¢ if i = 1, which nonethe-
less does not invalidate the analysis.) Since both GAR’s in

DOI=1,M

MOD;: A(1:N:1), A(N2:N2:1) (3, 2)

...... ' UE:: {A(2:N1:1), <(A(L:N:1), A(N2N2:1)>} ({1,< 3, 2 >})

. = A(2:N1:1)

ENDDO ENDDO

Figure 2: Example of GARWD’s

the MOD<; list are in the difference list of the GARWD for
UE;, it is obvious that the intersection of MOD<; and UE;
is empty, and that therefore array A is privatizable. We im-
plement this by assigning each GAR a unique region number,
shown in parentheses in Figure 2, which makes intersection
a simple integer operation.

2.2 Operations on GAR'’s

Set operations for GAR’s are based on set operations for
regular array regions as well as on logical operations for
predicates. The general formula has been given in our pre-
vious work [11]. Here, we emphasize our new improvements.
Given two GAR’s, T1 = [Py, R1] and T> = [P, Rs], we de-
scribe the set operations below:

e T'NTy = [Pl APy, Ry ﬂRz]
The intersection operation is needed in array-region-
based data dependence tests, array privatizability tests,
and in the simplification of array regions.

e ThUT,
Two cases of union operations are the most frequent:

— If P = P», the union becomes [Pi, Ri U Rs]
— If Ri = R, the result is [P; V P>, R1]

Since these regions are symbolic, care must be taken
that union operations will not create invalid regions.
For example, given R1 =[m :p: 1] and Ry =[p+1:
n : 1], the union result Ry U Ry = [m : n : 1] is valid if
and only if both R; and R, are valid.

e T1 —T> =[PiAP>,Ri — R2]U[Pi A P>, Ri]

As described in our previous paper [11], the actual re-
sult of Ry — R» may be multiple regular array regions,
making the actual result of 71 —T% potentially complex.
However, as Figure 2 illustrates, difference operations
can often be canceled by intersection and union opera-
tions. Therefore, we do not solve the difference T) —T5,
unless the result is a single GAR, or until the last mo-
ment when the actual result must be solved in order
to finish data dependence tests or array privatizabil-
ity tests. When the difference is not yet solved by the
above formula, it is represented by a GARWD.

Operations between two GARWD’s and between a
GARWD and a GAR can be easily derived from the above.
For example, consider a GARWD gwd={g1, < g2 >} and a
GAR g. The result of subtracting g from gwd is the follow-
ing:

1. {g3, < g>>}, if (g1 —g)=gs, or
2. {g1,<g2>}, if(g—g2)=0,or
3. {91, < g2,9 >} otherwise.

Similarly, the intersection of gwd and g is:

L. {gs, < g2 >}, if(g1Ng)=ga,or
2. wa if (g - 92) = wa or
3. unknown otherwise.

As shown above, our difference operations, which are used
during the calculation of UE sets, do not result in the loss of
information. This helps to improve the effectiveness of our
analysis. On the other hand, intersection operations may re-
sult in unknown values, due to the intersections of the sets
containing unknown symbolic terms. A demand-driven sym-
bolic evaluator is invoked to determine the symbolic values
or the relationship between symbolic terms. If the intersec-
tion result cannot be determined by the symbolic evaluator,
it is marked as unknown.

In our array data flow framework based on GAR’s, in-
tersection operations are performed only at the last step
when our analyzer tries to conduct dependence tests and
array privatization tests, at the point where a conservative
assumption must be made if an intersection result is marked
as unknown. The intersection operations, however, are not
involved in the propagation of the M OD and UFE sets, and
therefore they do not affect the accuracy of those sets.

2.3 Computing UE and MOD sets

The UE and MOD information is propagated backward
from the end to the beginning of a routine or a program
segment. Through each routine, these two sets are summa-
rized in one pass and the results are saved. The summary
algorithm is invoked on demand for a particular routine, so
it will not summarize a routine unless necessary. Parameter
mapping and array reshaping are done when the propaga-
tion crosses routine boundaries.

Figure 3 shows how the MOD and UE sets are sum-
marized for three basic components of flow graphs, where
MOD_IN(p) and UE_IN(p) denote MOD and UE sets at the
location p in the flow graphs, respectively. During the prop-
agation, variables appearing in certain summary sets may
be modified by assignment statements, and therefore their
right-hand side expressions substitute for the variables. For
simplicity, such variable substitutions are not shown in Fig-
ure 3. Figure 3 shows that, when summary sets are propa-
gated to IF branches, IF conditions are put into the guards
by applying function padd() to the summary sets whenever
necessary. The whole summary process is quite straight-
forward, except that the computation of UE sets for loops
needs further analysis to support summary expansion.

Given a DO loop with index I, I € (I, u, s), suppose UE;
and MOD; are already computed for an arbitrary iteration
i. We want to calculate UE and MOD sets for the entire I
loop, following the formula below:

MOD ZJiE(l:u:s)-ZM-ODi
UE ZJiE(l:u:s)(rJE‘i - MOD<1)7
MOD<1 = ZJjE(l:u:s)/\(j<i)]M’O-Di7 MOD<l = ¢

@

out

in

out

©

u,S

;

MOD_IN(in) =padd(MOD(S1),p) U

MOD_IN(in) = MOD(S) U MOD_IN(out)
UE_IN(in) =

UE_IN(in) = UE(S) U (UE_IN(out) - MOD(S))

padd(MOD(S2), ~p) U MOD_IN(out)

padd((UE(SL) U (UE_IN(out) - MOD(S1))), p) U

MOD(Loop) = proj(mod(S))

UE(Loop) = expand(UE(S))

padd((UE(S2) U (UE_IN(out) - MOD(S2))), ~p)

Figure 3: Computing Summary Sets for Basic Control Flow Components

The ¥ summation above is also called a projection, denoted
by proj() in Figure 3, which is used to eliminate i from the
summary sets. The UE calculation given above, denoted
by expand() in Figure 3, can be described in two steps.
The first step computes (UE; — MOD<;), which represents
the set of array elements which are used in iteration 7 and
have been exposed to the outside of the whole I loop. The
second step computes the projection of Step 1’s results. The
expaunsion for a list of GAR’s and a list of GARWD’s consists
of the expansion of each GAR and each GARWD in the lists.

Since a detailed discussion on expansion would be te-
dious, we will provide a guideline only. For a GAR @,
proj(Q) is obtained by the following steps:

1. If i appears in the guard of a GAR, we remove the pred-
icate components, which involve 7, from the guard, and
we use such components to derive a new domain of i.
Suppose that ¢ in the guard can be solved and repre-
sented as ¢ € (I’ : v’). The new domain of i becomes

mazx(l',1) —1 min(v,u) — 1

(f
which simplifies to (maz(l',1) : min(v',u)) for s = 1.
For example, given ¢ € (2 : 100 : 2) and GAR [5 <

i, A(%)], we remove the relational expression 5 < 7 from
(|—maz(5,2)—2-| .
2

T-s+1:] |-s+1:5)

the guard and form the new domain of i:
2+2:100:2) = (6 : 100 : 2). Hence, the projection will
be completed by expanding [T, A()], ¢ € (6 : 100 : 2),
whose result is [T, A(6 : 100 : 2)].

2. Suppose that ¢ appears in only one dimension of @. If
the result of substituting [< ¢ < u, or the new bounds
on ¢ obtained above, into the old range triple in that
dimension can still be represented by a range triple
(1" : u" : §"), then we replace the old range triple by
(1" " - s").

3. If, in the above, the result of substituting I < ¢ < w into
the old range can no longer be represented by a range,
or if ¢ appears in more than one dimension of (), then
these dimensions are marked as unknown. (Tighter
approximation is possible for special cases, but we will
not discuss it in this paper.)

For the expansion of a GARWD, we have the following:

1. For a GARWD, if its difference list and its source GAR,
cannot be expanded separately, then we must solve the
difference list first, invoking the symbolic evaluator if
necessary. If the difference list cannot be solved, the
expansion result is marked as unknown.

2. The computation of (UE; — MOD«;) and its expan-
sion can be done without expanding MOD; to MOD;
first. Instead, (UE; — MOD;) is evaluated to UE;
with a new index variable i’. Consider a special case in
which UE; = {A(I +n),<>} and MOD; = A(I +m).
We can formulate

(UE; — MOD<;),i € (1: u) =

UEy,i7 €(l:1+(m—-n)—1); (m—n)
UE;, i € (1:u);

To be more specific, suppose we have i € (2 : 99),
MOD; = [T,A(i + 1)), and UE; = [T, A(i)], which
satisfies (m — n) > 0 in the above. The set (UE; —
MODc;), with i € (2 : 99), should equal set UE;,
ire (2:2).

Suppose, however, that MOD; is [T, A(i — 1)]. The
case of (m —n) < 0 applies instead. The set (UE; —
MODvc;), with i € (2:99), equals UE;/, with i € (2:
99).

In this paper, we leave out the general discussion on the
short-cut computation illustrated above.

2.4 Effectiveness and efficiency

We have implemented our array data flow analysis in a pro-
totyping parallelizing compiler, Panorama, which is a mul-
tiple pass, source-to-source Fortran program analyzer [18].
It roughly consists of the phases of parsing, building a hi-
erarchical supergraph(HSG) and the interprocedural scalar
UD/DU chains [1], performing conventional data depen-
dence tests, array data flow analysis and other advanced
analyses, and parallel code generation.

Table 1: Privatizable Arrays and Privatization Techniques in Loops

Program Routine SA | PA | IA Privatizable
/Loop Arrays
ADM dedtz/40 Yes | Yes | Yes HELP, DKS, CONV, HELPA, AN, BN, CN
dtdtz/40 | Yes | Yes | Yes | UNT, DTM, DKS, CONV, FORC, AN, BN, CN, HELDA
dudtz/40 Yes | Yes | Yes DUM, DKS, CONV, FORC, AN, BN, CN, HELPA
dvdtz/40 Yes | Yes | Yes DVM, DKS, CONV, FORC, AN, BN, CN, HELPA
dkzmh/30 | Yes | No | Yes U, T
dkzmh/60 | Yes | No | Yes U, T
wcont /40 Yes | No | Yes HELP, AN, BN, CN, HELPA
TRACK nlfilt /300 No | No | Yes XSD, P1, PP1, P2, PP2, P, PP
MDG interf/1000 | Yes | Yes | Yes RS, XL, YL, ZL, FF, GG
poteng/2000 | No | No | Yes XL, YL, ZL, RS, RL
TRFD olda/100 Yes | No No XRSIQ, XI1J
olda/300 Yes | No | No XIJKS, XKL
OCEAN | ocean/270 | Yes | No | Yes CWORK
ocean/480 | Yes | No | Yes CWORK, CWORK?2
ocean/500 | Yes | No | Yes CWORK
ARC2D filerx/15 Yes | Yes | Yes WORK
filery /39 Yes | No | No WORK
stepfx /300 Yes | No | Yes WORK, LDA, LDB, LDS, LUS
stepfy /420 Yes | No | Yes WORK
QCD measur/3 Yes | Yes | Yes COORD, DOWN, TOP, UP, BOTTOM, STEMP
BDNA actfor /240 No | Yes | No IND, XDT, YDT, ZDT
FLO52 step/20 Yes | No No QSI, CSI, QSJ, CSJ
MG3D migrat/200 | Yes | No | Yes PD1, PM1, CDPM1, CDPP1
SPEC77 | gwater/1000 | No | No | Yes PLN, PS, QF, DLAM, DLAMF, DPHIF,
B, F, G, TAU
gloop/T000 | No | No | Yes PLN, PS, QF, DLAM, DLAMF, DPHI,
DPHIF, DER, U1, U2, V1, V2, T1, T2,
Q1, Q2, CG, TAU, A, B, RTG, F, G
[Total | [80% [32% | 80% |

SA: Symbolic Analysis.

Table 1 shows the Fortran loops in the Perfect bench-
mark suite which can be parallelized after our array data
flow analysis and array privatization and after necessary
transformations such as induction variable substitution, par-
allel reduction, and even synchronization placement, whose
discussions are omitted in this paper. Only the Illinois Po-
laris tool is known to demonstrate equal power [8]. This
table also marks which loops require symbolic analysis, pred-
icate analysis and interprocedural analysis, and privatizable
arrays, respectively.

Table 2 and Table 3 compare the efficiency of our an-
alyzer with that of Polaris. Both Panorama and Polaris
are compiled by the GNU gcc/g++ compiler. Two versions
are produced, one without gcc’s optimization (Table 2) and
the other with the -O optimization (Table 3). Following
a Polaris term, we call these two versions unoptimized and
optimized, respectively. Table 2 also breaks down the tim-
ing for different phases of Panorama. “Parsing time” is the
time to parse the program once, although Panorama cur-
rently parses a program three times. The column “HSG
& DOALL Checking” is the time taken to build the HSG,
UD/DU chains, and conventional DOALL checking. The
column “Array Summary” refers to our array data flow anal-
ysis which is applied only to loops whose parallelizability
cannot be determined by the conventional DOALL tests.
Figure 4 shows the percentage of time spent by the array
data flow analysis and the rest of Panorama. Even though

PA: Predicate Analysis.

TA: Interprocedural Analysis.

the time percentage of array data flow analysis is high (about
40%), the total execution time is small (38 seconds maxi-
mum). The column marked “Polaris” in Table 2 shows the
time spent by Polaris up to the point of array privatization
and data dependence tests. Time spent after this point is
not counted. Our analyzer is shown to be faster by a few
orders of magnitude. (We did not compare our analyzer
with SUIF, because SUIF’s current public version does not
perform array data flow analysis.)

Table 3 shows that the speed increase from the unopti-
mized version to the optimized one is more significant for
Polaris than for Panorama. When using a SGI Challenge
machine, which has a large memory, the time gap between
Polaris and Panorama is reduced. This is probably because
Polaris is written in C++ with a huge executable image.
The size of its executable image is about 29MB unoptimized
and 14MB optimized, while Panorama, written in C, has
an executable image of 3MB unoptimized and 1.1MB opti-
mized. Even with a memory size as large as 1GB, Panorama
is still faster than Polaris by one or two orders of magnitude.
We believe that several design choices contribute to the ef-
ficiency of Panorama. In the next section, we present some
of these choices made in Panorama.

Table 2: Execution Time (in seconds) Distribution®

Program | Parsing | HSG & DOALL Array Code Total || Polaris®
Checking Summary | Generation
ADM 3.62 9.82 21.36 3.55 38.36 6319
QCD 1.44 3.22 11.55 1.46 17.67
MDG 0.86 1.72 2.38 0.82 5.78 1149
TRACK 1.78 3.07 6.01 1.62 12.48 1012
BDNA 2.92 6.80 4.85 2.88 17.45 2387
OCEAN 2.41 10.31 5.00 1.88 19.56 5071
MG3D 2.27 5.71 8.33 2.16 18.47
ARC2D 2.43 5.16 27.72 2.26 37.56 1074
FLOb52 1.53 4.09 0.53 1.64 7.80 814
TRFD 0.40 0.49 0.50 0.22 1.61 1082
SPECT7 2.80 7.52 7.02 2.82 20.16 5339

1: Timing is measured on SGI Indy workstations with 134MHz MIPS R4600 CPU and 64 MB memory.

2: Polaris is a parallelizing compiler developed at the CSRD of the University of Illinois. The timing
of Polaris is measured without the passes after array privatization and dependence tests. Some
programs cannot be measured because Polaris aborts or takes longer than 6 hours to execute.

Time Percentage Distribution

L] Summary B The rest

1
0.9
0.8 +
0.7 +
0.6 T
05 7
0.4
0.3
0.2
0.1+

0 1 1 1 1 1 1

ADM
QCD
MDG
TRACK
BDNA
OCEAN

TRFD

DYFESM
MG3D
ARC2D
FLO52
SPEC77

Figure 4: Time distribution for array data flow summary

3 What contributes to its efficiency?

In this section, we will discuss major reasons for the effi-
ciency of our analyzer. The foremost reason seems to be
that Panorama computes interprocedural summary with-
out in-lining the routine bodies as Polaris does. If a sub-
routine is called in several places in the program, in-lining
causes the subroutine body to be analyzed several times,
while Panorama only needs to summarize each subroutine
once. The summary result is later mapped to different call
sites. Moreover, for data dependence tests involving call
statements, Panorama uses the summarized array region in-
formation, while Polaris performs data dependences between
every pair of array references in the loop body after in-lining.
Since the time complexity of data dependence tests is O(n?),
where n is the number of individual references being tested,
in-lining can significantly increase the time for dependence
testing. In our experiments with Polaris, we limit the num-

ber of in-lined executable statements to 50, a default value
used by Polaris. With this modest number, data dependence
tests still account for about 30% of the total time.

We believe that another important reason for
Panorama’s efficiency is its efficient computation and
propagation of the summary sets. Although more work
is needed to breakdown the effects of individual design
choices, we believe that two design issues are particularly
noteworthy, namely, the handling of predicates and the
difference set operations. Next, we discuss these issues in
more details.

3.1 Efficient handling of predicates

The predicate operations are expensive in general, so com-
pilers often do not analyze them. In fact, the majority of
predicate-handling required for our array data flow analy-
sis involves simple operations such as checking to see if two

Table 3: Elapsed Execution Time (in seconds)

Program SGI Power SGI Indy?
Challenge’
Panorama | Polaris | Panorama | Polaris
ADM 7.23 475 23.73 2030
QCD 6.54 10.15
MDG 2.74 90.62 5.07 366
TRACK 7.01 76.89 11.05 332
BDNA 6.84 166.32 15.54 755
OCEAN 2.35 317 9.68 1660
MG3D 6.41 17.01
ARC2D 9.18 75.87 22.58 343
FLO52 3.66 61.86 7.05 290
TRFD 1.05 55.35 1.51 285
SPECT7 4.57 355 15.49 1789

Note: Both Polaris and Panorama are compiled with gcc -O.
ISGI Power Challenge with 1024MB memory and 196MHZ
R10000 CPU. 2SGI Indy with 134MHz MIPS R4600 CPU
and 64 MB memory.

predicates are identical, if they are loop-independent, and
if they contain indices and affect shapes or sizes of array
regions. These can be implemented rather efficiently.

A canonical normal form is used to represent the predi-
cates. Pattern-matching under a normal form is easier than
under arbitrary forms. Both the conjunctive normal form
(CNF) and the disjunctive normal form (DNF) have been
widely used in program analysis [21, 5]. These cited works
show that negation operations are expensive with both CNF
and DNF. This fact was also confirmed by our previous ex-
periments using CNF [11]. Negation operations occur not
only due to ELSE branches, but also due to GAR and
GARWD operations elsewhere. Hence, we design a new
normal form such that negation operations can often be
avoided.

We use a hierarchical approach to predicate handling.
A predicate is represented by a high level predicate tree,
PT(V,E,r), where V is the set of nodes, E is the set of
edges, and r is the root of PT. The internal nodes of V' are
NAND operators except for the root, which is an AND oper-
ator. The leaf nodes are divided into regular leaf nodes and
negative leaf nodes. A regular leaf node represents a pred-
icate such as an IF condition, while a negative leaf node
represents the negation of a predicate. Theoretically, this
representation is not a normal form because two identical
predicates may have different predicate trees, which may
render pattern-matching unsuccessful. We, however, believe
that such cases are rare and that they happen only when the
program is extremely complicated. Figure 5 shows a PT.
Each leaf (regular or negative) is a token which represents
a basic predicate such as an IF condition or a DO condition
in the program. At this level, we keep a basic predicate as a
unit and do not split it. The predicate operations are based
only on these tokens and do not check the details within
these basic predicates. Negation of a predicate tree is sim-
ple this way. A NAND operation, shown in Figure 6, may
either increase or decrease by one level in a predicate tree
according to the shape of the predicate tree. If there is only
one regular leaf node (or one negative leaf node) in the tree,
the regular leaf node is simply changed to a negative leaf
node (or vice versa). AND and OR operations are also eas-
ily handled, as shown in Figure 6. We use a unique token

1 2 3 4
pL p2 p4 p5
. = J

Figure 7: The HSG of the Body of the Outer Loop for Figure
1(c)

for each basic predicate so that simple and common cases
can be easily handled without checking the contents of the
predicates. The content of each predicate is represented in
CNF and is examined when necessary. Columns 7 and 8 in
Table 4 shows that over 90% of the total predicate opera-
tions are the high level ones, where a negation or a binary
predicate operation on two basic predicates is counted as
one operation.

The numbers shown in Table 4 are dependent on the
strategy used to handle the predicates. Currently, we defer
the checking of predicate contents until the last step, so that
only a few low level predicate operations are needed. Our
results show that this strategy works well for array priva-
tization, since almost all privatizable arrays in our tested
programs can be recognized. Some cases, such as those that
need to handle guards containing loop indices, do need low
level predicate operations.

3.2 Reducing unnecessary difference operations

We do not solve the difference of 71 — T> using the general
formula presented in Section 2 unless the result is a single
GAR. When the difference cannot be simplified to a single
GAR, the difference is represented by a GARWD instead
of by a union of GAR’s, as implied by that formula. This
strategy postpones the expensive and complex difference op-
erations until they are absolutely necessary, and it avoids
propagating a relatively complex list of GAR’s. For exam-
ple, let a GARWD G be {(1: m),< (k:n),(2:nl) >} and
G2 be (1 : m). We have G1 — G2 = ¢, and two difference
operations represented in G are reduced (i.e. no need to
perform them). In Table 4, the total number of difference
operations and the total number of reduced difference oper-
ations are illustrated in columns 5 and 6, respectively. The
result shows that difference operations overall are reduced
by about 17%.

Let us use the example in Figure 1(c) to further illustrate
this fact. A simplified control flow graph of the body of the
outer loop is shown in Figure 7. (For more information
about our control flow graph, please consult our paper [11].)
Suppose that each node has been summarized and that the
summary results are listed below:

MOD(1) = [T, (jlow : jup)], UE(1)=0

MOD(2) = 0, UE(2) =0

MOD(3) = [T, (jmaz)], UE3) =10

MOD®4) = 0, UE(4) = [T, (jlow : jup)]
U[T, (jmax)]

Following the description given in Section 2.3, we will prop-
agate the summary sets of each node in the following steps
to get the summary sets for the body of the outer loop.

1. MOD_IN(pd) = MOD(4) = 0
UE_IN(p4) =UE4) = [T, (jlow : jup)| U[T, (jmaz)]

5, f\

Figure 5: High level representation of predicates

.

OR

CﬂD NnBN (EN FﬂGﬂH

Sub Tree 2

O operator

regular leaf

negative leaf

@

Sub Tree 1l

Sub Tree 2

Rl AN

Sub Treel

Sub Tree 2

Sub Tree 1

(b)

Sub Tree 2

Negation, increase by 1 @

E Negation, decrease by 1

(©

(NAnD)

Figure 6: Predicate operations

é

Table 4: Measurement of key parameters

Program # Array Ave # Ave # Difference Ops # Predicate Ops
Summarized || GAR’s | GARWD’s || Total | # Diff Ops || Total # High
Reduced Level Ops
ADM 630 1.82 2.46 630 362 5001 4740
QCD 326 1.93 6.33 942 21 15711 14173
MDG 103 1.79 3.11 177 70 98 98
TRACK 115 1.45 1.46 241 6 938 890
BDNA 284 1.46 1.93 238 83 638 609
OCEAN 18 2.11 1.33 15 2 0 0
MG3D 189 3.25 9.07 132 51 443 139
ARC2D 531 4.93 2.25 1753 137 7883 7883
FLO52 30 1.75 2.75 9 0 84 84
TRFD 57 2.12 2.00 18 4 97 35
SPECT77 398 1.88 4.43 153 8 383 219
[Total | 2681 [223] 3.37 [4308 | 744 [31276 | 28870 |

2. MOD_IN(p3) = MOD(3) U MOD_IN(p4)
= [T, (jmaz)]
UE_IN(p3) = UE(3) U (UE_IN(p4) — MOD(3))
=A{[T, (jlow : jup)], < [T, (jmaz)] >}
This difference operation is kept in the GARWD and
will be reduced at step 4.

3. MOD_IN(p2) = [p, (jmax)]
UE_IN(p2) = {[p, (jlow : jup)}, < [p, (jmaz)] >}
Ulp, (jlow : jup)] U [p, (jmax)]

In the above, P is inserted into the guards of the GAR's,
which are propagated through the TRUE edge, and p is
then inserted into the guards propagated through the
FALSE edge.

4. MOD_IN(pl) = [T, (jlow : jup)] U [B, (jmaz)]
UE_IN(pl) =UE_IN(p2) — MOD(1)
= {lp, (jmaz)], < T, (jlow : jup)] >}

At this step, the computation of UE_IN(pl) removes
one difference operation because ({[p, (jlow : jup)], <
[D, (jmax)] >} — [T, (jlow : jup)]) is equal to @. In
other words, there is no need to perform the difference
operation represented by GARWD {[p, (jlow : jup)], <
[P, (jmax)] >}. An advantage of the GARWD repre-
sentation is that a difference can be postponed rather
than always performed. Without using a GARWD, the
difference operation at step 2 always has to be per-
formed, which should not be necessary and which thus
increases execution time.

Therefore, the summary sets of the body of the outer loop
(DO I) should be:

MOD; =
UE; =

MOD_IN(p1) = [T, (jlow : jup)] U [p, (jmaz)]
UE_IN(pl) =
{Ip, imaz)], < [T, (jlow : jup)] >}

To determine if array A is privatizable, we have to prove
that there exists no loop-carried flow dependence for A. We
first calculate M OD;, the set of array elements written in
iterations prior to iteration i, giving us MOD«; = MOD,;.
The intersection of MOD<; and UE; is conducted by two
intersections, each of which is formed by one mod each from

MOD¢; and UE;. The first mod, [T, (jlow : jup)], appears
in the difference list of UE;, and thus the result is obvi-
ously empty. Similarly, the intersection of [p, (jmaz)] and
the second mod, [p, (jmaz)], is empty because their guards
are contradictory. Because the intersection of M OD«; and
UE; is empty, array A is privatizable. In both intersections,
we avoid performing the difference operation in UE;, and
therefore improve efficiency.

3.3 Efficient summary sets

Our GAR’s and GARWD’s are based on the regular regions,
which represent summary sets more efficiently than the con-
vex regions used in several other works. Slightly differently
from the regular sections originally proposed by Callahan
and Kennedy and later enhanced by Havlak [4, 13], we use
a list of GAR’s or GARWD's to keep a precise summary set.
Keeping a long list potentially can be inefficient, because the
time complexity of set operations of two region lists with
lengths n and m is in the order of (n-m). In our previ-
ous work [11], we merged two regions whenever possible by
adding conditions to the guards. This treatment guarantees
that no invalid regions are created due to invalid inequali-
ties in the region limits, and it also shortens the length of a
region list. However, at the same time, this treatment pro-
duces additional predicates to be handled, which we want to
avoid. In our current design, we keep regions in an unmerged
list unless the merged result is known to be valid without
adding conditions to the guard. Fortunately, the average
lengths of a MOD and a UE list are not long, as shown in
Table 4 by the two columns marked “ave # GAR’s” and
“ave ## GARWD’s”.

4 Related works

There are a number of approaches to array data flow analy-
sis. As far as we know, no work has particularly addressed
the efficiency issue or presented efficiency data. One school
of thought attempts to gather flow information for each ar-
ray element and to acquire an ezact array data flow analysis.
This is usually done by solving a system of equalities and in-
equalities. Feautrier [9] calculates the source function to in-
dicate detailed flow information. Maydan et al. [16, 17] sim-
plify Feautrier’s method by using a Last-Write-Tree(LWT).

Duesterwald et al. [7] compute the dependence distance for
each reaching definition within a loop. Pugh and Wonna-
cott [19] use a set of constraints to describe array data flow
problems and solve them basically by the Fourier-Motzkin
variable elimination. Maslov [15], as well as Pugh and Won-
nacott [19], also extend the previous work in this category by
handling certain IF conditions. Generally, these approaches
are intraprocedural and do not seem easily extended inter-
procedurally. The other group analyzes a set of array el-
ements instead of individual array elements. Early work
uses regular sections [4, 13], convex regions [22, 23], data
access descriptors [2], etc. to summarize MOD/USE sets
of array accesses. They are not array data flow analyses.
Recently, array data flow analyses based on these sets were
proposed (Gross and Steenkiste [10], Rosene [20], Li [14],
Tu and Padua [25], Creusillet and Irigoin [6], and M. Hall
et al. [12]). Of these, ours is the only one using conditional
regions(GAR'’s), even though some do handle IF conditions
using other approaches. Although the second group does
not provide as many details about reaching-definitions as
the first group, it handles complex program constructs bet-
ter and can be easily performed interprocedurally.

Array data flow summary, as a part of the second group
mentioned above, has been a focus in the parallelizing com-
piler area. The most essential information in array data flow
summary is the upwards exposed use set. These summary
approaches can be compared in two aspects: set represen-
tation and path sensitivity. For set representation, convex
regions are highest in precision, but they are also expensive
because of their complex representation. Bounded regular
sections (or regular sections) have the simplest representa-
tion, and thus are most inexpensive. Early work tried to use
a single regular section or a single convex region to summa-
rize one array. Obviously, a single set can potentially lose
information, and it may be not useful in some cases. Tu and
Padua [25], and Creusillet and Irigoin [6] seem to use a single
regular section and a single convex region, respectively. M.
Hall et al. [12] use a list of convex regions to summarize all
the references of an array. It is unclear if this representation
is more precise than a list of regular sections, upon which
our approach is based.

Regarding path sensitivity, the commonality of these pre-
vious methods is that they do not distinguish summary sets
of different control flow paths. Therefore, these methods
are called path-insensitive, and have been shown to be inad-
equate in real programs. Our approach, as far as we know,
is the only path-sensitive array data flow summary approach
in the parallelizing compiler area. It distinguishes summary
information from different paths by putting IF conditions
into guards. Some other approaches do handle IF condi-
tions, but not in the context of array data flow summary.

5 Conclusion

This paper presents an efficient design of array data flow
analysis which handles interprocedural, symbolic, and pred-
icate analyses all together. As far as we know, this is the
first time the efficiency issue has been addressed and data
presented for such a powerful analysis. The efficiency is im-
proved by several design considerations such as GARWD’s
and a hierarchical predicate handling scheme. Our prelim-
inary results show that our approach is much faster than
similarly powerful tools.

References

(1]

2]

(1]

(12]

(13]

[14]

[15]

(16]

A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
Mass., 1986.

V. Balasundaram. A mechanism for keeping useful internal
information in parallel programming tools: The data access
descriptor. Journal of Parallel and Distributed Computing,
9:154-170, 1990.

W. Blume and R. Eigenmann. Symbolic analysis techniques
needed for the effective parallelization of Perfect bench-
marks. Technical report, Dept. of Computer Science, Uni-
versity of Illinois, 1994.

D. Callahan and K. Kennedy. Analysis of interprocedural
side effects in a parallel programming environment. In ACM
SIGPLAN ’86 Symp. Compiler Construction, pages 162—
175, June 1986.

Lori A. Clarke and Debra J. Richardson. Applications of
symbolic evaluation. The Journal of Systems and Software,
5(1):15-35, 1985.

Béatrice Creusillet and F. Irigoin. Interprocedural array
region analyses. Int. Journal of Parallel Programming,
24(6):513-546, December 1996.

E. Duesterwald, R. Gupta, and M.L. Soffa. A practical data
flow framework for array reference analysis and its use in
optimizations. In ACM SIGPLAN ’93 Conf. on Program-
ming Language Design and Implementation, pages 68-77,
June 1993.

R. Eigenmann, J. Hoeflinger, and D. Padua. On the auto-
matic parallelization of the perfect benchmarks. Technical
Report TR 1392, CSRD, University of Illinois at Urbana-
Champaign, November 1994.

Paul Feautrier. Dataflow analysis of array and scalar ref-
erences. International Journal of Parallel Programming,
2(1):23-53, February 1991.

T. Gross and P Steenkiste. Structured dataflow analysis for
arrays and its use in an optimizing compiler. Software —
Practice and Experience, 20(2):133-155, February 1990.

J. Gu, Z. Li, and G. Lee. Symbolic array dataflow analy-
sis for array privatization and program parallelization. In
Supercomputing, December 1995.

M.W. Hall, B.R. Murphy, S.P. Amarasinghe, S.-W. Liao,
and M.S. Lam. Interprocedural analysis for parallelization.
In Proceedings of the 8th Workshop on Languages and Com-
pilers for Parallel Computing, No. 1033, In Lecture Notes
in Computer Science, Springer-Verlag, Berlin, pages 61-80,
August 1995.

P. Havlak and K. Kennedy. An implementation of interpro-
cedural bounded regular section analysis. IEEFE Trans. on
Parallel and Distributed Systems, 2(3):350-360, 1991.

Z. Li. Array privatization for parallel execution of loops.
In ACM Int. Conf. on Supercomputing, pages 313-322, July
1992.

Vadim Maslov. Lazy array data-flow dependence analysis.
In Proceedings of Annual ACM Symposium on Principles of
Programming Languages, pages 331-325, Jan. 1994.

D.E. Maydan, S.P. Amarasinghe, and M.S. Lam. Array data-
flow analysis and its use in array privatization. In Proc. of the
20th ACM Symp. on Principles of Programming Languages,
pages 2-15, January 1993.

Dror E. Maydan. Accurate Analysis of Array References.
PhD thesis, Stanford University, October 1992.

T. Nguyen, J. Gu, and Z. Li. An interprocedural paralleliz-
ing compiler and its support for memory hierarchy research.

20]

21]

(22]

23]

24]

25]

In Lecture Notes in Computer Science 1033: 8th Interna-
tional Workshop on Languages and Compilers for Parallel
Computing, pages 96-110, Columbus, Ohio, August 1995.
Springer-Verlag.

William Pugh and David Wonnacott. An exact method for
analysis of value-based array data dependences. In Lecture
Notes in Computer Science 768: Sixth Annual Workshop on
Programming Languages and Compilers for Parallel Com-
puting, Portland, OR, August 1993. Springer-Verlag.

Carl Rosene. Incremental dependence analysis. Technical
Report CRPC-TR90044, PhD thesis, Computer Science De-
partment, Rice University, March 1990.

Jr T.E. Cheatham, G.H. Holloway, and J.A. Townley. Sym-
bolic evaluation and the analysis of programs. I[EEE
Trans.on Software Engineering, 5(4):402-417, July 1979.

R. Triolet, F. Irigoin, and P. Feautrier. Direct paralleliza-
tion of CALL statments. In ACM SIGPLAN’86 Sym. on
Compiler Construction, pages 176-185, July 1986.

Remi Triolet. Interprocedural analysis for program restruc-
turing with parafrase. Technical Report CSRD Rpt. No.538,
Center for Supercomputing Research and Development, Uni-
versity of Illinois at Urbana-Champaign, December 1985.

P. Tu and D. Padua. Gated ssa-based demand-driven sym-
bolic analysis for parallelizing compilers. In International
Conference on Supercomputing, pages 414-423, July 1995.

Peng Tu and David Padua. Automatic array privatization.
In Proceedings of Sixzth Workshop on Languages and Com-
pilers for Parallel Computing, pages 500-521, August 1993.

