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• We have been using stdin, stdout, and stderr for 
input and output
– As we write more sophisticated programs, we need 

more versatile ways to
• Import information from multiple files
• Export information to multiple files

– The C languages provide ways to 
• “Open” many different files for read and write files
• These are done by making file system calls

• So far, we also have mainly dealt with text files
– We will now discuss I/O for binary data

• “dump” binary data w/o converting to text
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File Systems

• A file may be defined as a physical entity that stores information
– The file system is a part of the operating system
– It specifies how files are organized 

• for retrieval and modification.
• When a file system is organized in a hierarchy (instead of being flat), 

we have
– Directories   (or folders)

• Each directory may contain other directories (i.e. subdirectories)
– Files (contained in directories)

• UNIX takes an extended view of files:
– Peripheral devices (keyboard, screen, etc)
– Pipes (inter process communication) 
– Sockets (communication via computer networks) 



• The OS provides a number of file system calls for
– Creating a file
– Opening an existing file for read, write, append
– Closing a file
– Maintaining the open count for each file

• How many activated programs have opened a specific file

– Moving the next read/write position within a file
– Setting access privilege for each file
– Providing system level buffering
– Etc



5

Files in C

• In Unix, a C program can directly make file system 
calls, but the C file library routines make it easier 
in many situations
– Higher level operations than reading bytes
– User-level buffering
– Automatic data format transformation

• File abstraction by using the FILE type:
• FILE *fp // *fp is a pointer to a file .



• To open a file, call
FILE* fopen(const char* filename, const char* mode)
– mode can be “r” (read), “w” (write), “a” (append)
– Returns a file pointer

• returns NULL on error (e.g., improper permissions)
– filename is a string that holds the name of the file on disk
– Automatically create a new file for write if not existing yet

• We will run a few examples to open files for
– Write (to a new file)
– Read
– Re-write an existing file
– Append to an existing file
– Try to write a read-only file
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Reading formatted text files

• fscanf requires a FILE* for the file to be read
fscanf(ifp, “<format string>”, inputs)

• Returns the number of values read  or EOF on an end of file

• Example: Suppose in.list contains
foo 70
bar 50

• To read elements from this file, we might write
fscanf(ifp, “%s  %d”, name, count)

• We can check against EOF:

while(fscanf(ifp,“%s %d”,name,count)!=EOF);
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Testing EOF

• Ill-formed input may confuse comparison with 
EOF 

fscanf returns the number of successful matched 
items

while(fscanf(ifp,“%s  %d”, name,count)==2)

• We can use feof:
while (!feof(ifp))  {

if (fscanf(ifp,“%s  %d”,name,count)!=2) break;
fprintf(ofp, format, control);

}
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Closing files

• fclose(ifp);
• Why do we need to close a file?
– File systems typically buffer output 
– The buffer is flushed when the file is closed, or when full

• This is called write-back, for efficiency

– If the program aborts or terminates before the file is closed 
or explicitly flushed, then the buffered output might not be 
written back completely or at all
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File pointers

• Three special file pointers:

– stdin (standard input)     /*corresponding to fd 0*/
– stdout (standard output)   /*corresponding to fd 1*/
– stderr (standard error)      /*corresponding to fd 2*/
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Other file operations

• Remove file from the file system:

int remove (const char * filename)

• Rename file

int rename (const char * oldname, 
const char * newname)



Binary file i/o at C level

• In Project 2, we will read and write binary data
• Often we can use fread() and fwrite() for such 

purposes
• Students should read the textbook and man 

page on Unix systems for their definitions
– And do exercises for such uses

• The following is a brief summary
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Binary I/O

• Read at most nobj items of size sz from 
stream into p

• feof and ferror used to test end of file
size_t fread(void* p,size_t sz,size_t nobj,FILE* stream)

• Write at most nobj items of size sz from p onto 
stream

size_t fwrite(void*p,size_t sz,size_t nobj,FILE* stream)
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File position

int fseek(FILE* stream, long offset, int
origin) 

– Set file position in the stream.  Subsequent reads and writes begin at this 
location

– Origin can be SEEK_SET,SEEK_CUR,SEEK_END for binary files

• To find out the current position within 
the stream

long ftell(FILE * stream) 

• To set the file to the beginning of the 
file

void rewind(FILE * stream) 

• see page 247-248 in the text
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Example

#include <stdio.h>
int main() {
long fsize;
FILE *f;

f = fopen(“./log”, “r”);

fseek(f, 0, SEEK_END) ;
fsize =  ftell(f) ;
printf(“file size is: %d\n”, fsize);

fclose(f);
}



Temp files

• Create temporary file (removed when 
program terminates)

FILE * tmpfile (void)

• We show a couple of examples of the use of 
tmpfiles
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Text Stream I/O Read

• Read next char from stream and return it as an unsigned char cast to 
an int, or EOF 

• int fgetc(FILE * stream)

• Reads in at most size-1 chars from the stream and stores them into 
null-terminated buffer pointed s. Stop on EOF or error

• char* fgets(char *s, int size, FILE  *stream)

• Writes c as an unsigned char to stream and returns the char
• int fputc (int c, FILE * stream)

• Writes string s without null termination; returns a non-negative 
number on success, or EOF on error

• int fputs(const char *s, FILE *stream)
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UNIX File System Calls

• File descriptor
– A handle to access a file, like the file pointer in 

streams

– Small non-negative integer used in same open/read-
write/ close ops

– Returned by the open call; all opens have distinct 
file descriptors

– Once a file is closed, fd can be reused

– Same file can be opened several times, with different 
fd’s
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Management functions

• #include <fnctl.h>

• int open(const char *path, int flags);

• int open(char *path, int flags, mode_t mode);

• int creat(const char *pathname, mode_t mode);

– All the above return a function descripter

– creat is equivalent to open with flags equal to 
O_CREAT|O_WRONLY|O_TRUNC. 

• Flags: O_RDONLY, O_WRONLY or O_RDWR bitwise OR with 
O_CREAT, O_EXCL, O_TRUNC, O_APPEND, O_NONBLOCK, O_NDELAY

• Mode:the permissions to use in case a new file is 
created.

• int close(int fd); 
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• #include <unistd.h>

• ssize_t read(int fd, void *buf, size_t cnt);

• ssize_t write(int fd, void *buf, size_t cnt);

• fd is a descriptor, _not_ FILE pointer

• Returns number of bytes transferred, or -1 on error
• Normally waits until operation is enabled (e.g., there are bytes to 

read), except under O_NONBLOCK and O_NDELAY (in which case, 
returns immediately with ‘‘try again’’ error condition)
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Example

#include <fcntl.h>

#include <stdlib.h>

#include <stdio.h>

int main() {

char buf[100];

int f1 = open("log1", O_RDONLY);

int f2 = open("log2", O_RDONLY);

fprintf(stderr, "Log1 file descriptor is: %d\n", f1);

fprintf(stderr, "Log2 file descriptor is: %d\n", f2);

close(f1); close(f2);

f2 = open("log2", O_RDONLY);

fprintf(stderr, "Notice the new file descriptor: %d\n", f2);

close(f2);

}



The issue of data endians

• When we perform binary I/O, it is important 
to understand the endian issue

• We first dump some integer data and then 
examine the layout of the output
– Run two programs  (see next pages)

• dumpint | od –t x1                 compare with
• printint



% dumpint | od -t x1
0000000 ff ff 00 00 00 00 ff ff 01 00 00 00 01 00 00 10
0000020

#include <stdio.h>         /* dumpint.c */
#include <unistd.h>
int main() {
int a[4];
a[0] =0x0000ffff; a[1]=0xffff0000; a[2]=0x00000001; a[3] =0x10000001;

if (write(1, a, 4) < 1) fprintf(stderr, "failed to write a[0]\n");
if (write(1, &a[1], 4) < 1) fprintf(stderr, "failed to write a[1]\n");
if (write(1, &a[2], 4) < 1) fprintf(stderr, "failed to write a[2]\n");
if (write(1, &a[3], 4) < 1) fprintf(stderr, "failed to write a[3]\n");

return 0;
}

#include <stdio.h>    /* printint.c */
int main() {
int i=0x0000ffff, j=0xffff0000, k=0x00000001, 

h=0x10000001;
printf("%d%d%d%d",i,j,k,h);

return 0;
}

%printint
65535-655361268435457

Next, compare to fwrite() result



#include <stdio.h>                     /* fwriteint.c */
#include <unistd.h>
int main() {
int a[4]; FILE *fp;
a[0] =0x0000ffff; a[1]=0xffff0000; a[2]=0x00000001;
a[3] =0x10000001;

if ((fp = fopen("./fwriteout", "w")) == NULL) {
fprintf(stderr, "failed to open file\n");
return(1);

}
if (fwrite(&a, 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[0]\n"); return(1);}
if (fwrite(&a[1], 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[1]\n"); 

return(1);}
if (fwrite(&a[2], 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[2]\n"); 

return(1);}
if (fwrite(&a[3], 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[3]\n"); 

return(1);}
return 0;

}
od -t x1 fwriteout

0000000 ff ff 00 00 00 00 ff ff 01 00 00 00 01 00 00 10
0000020

Same as the write() result



Data transfer between machines of 
different data representation

From the above result, we see that if we port data from a little-endian 
machine to a big-endian machine, we must convert the endian before 
using the data as operands on the big-endian machine

However, on a machine of the same endian, we won’t have this problem

Let us run a program to read back the dumped data



• Next we discuss floating point number representation, 
which will also be covered by Project 2

#include <stdio.h>
#include <unistd.h>
int main() {
int a[4]; FILE *fp;

if ((fp = fopen("./fwriteout", "r")) == NULL) {
fprintf(stderr, "failed to open file\n");
return(1);

}
if (fread(&a, 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[0]\n"); return(1);}
if (fread(&a[1], 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[1]\n"); return(1);}
if (fread(&a[2], 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[2]\n"); return(1);}
if (fread(&a[3], 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[3]\n"); return(1);}
printf("%d%d%d%d",a[0],a[1],a[2],a[3]);

return 0;
}

% freadint
65535-655361268435457

This is exactly the numbers we dumped earlier



Floating point numbers

RPU: A Programmable Ray Processing Unit for Realtime Ray Tracing
Sven Woop, jörg Schmittler, Philipp Slusallek, ACM Transactions on Graphics (TOG)
- Proceedings of ACM SIGGRAPH 2005

• Used extensively in 
scientific and engineering 
numerical computation & 
computer graphics 
(including game software)

• Graphics algorithms, e.g. 
ray tracing

• Global positioning systems 
(GPS)

• … …



GPS algorithms

#define tropical_year ((double)365.2421910)
#define ut_to_st ((double)1.00273790934)
#define st_to_ut ((double)0.9972695663399999)

#define emajor ((double)6378137.0)
#define eflat ((double)0.00335281068118 )
#define erate ((double)7.292115855228083e-5)
#define soem ((double)328900.550)
#define eom ((double)81.3005870)
#define soe (soem*((double)1.0 + (double)1.0/eom) )

#define L1_frequency    ((double)1575.420e+6)
#define L2_frequency    ((double)1227.600e+6)
#define L1_wavelength   ((double)cee/L1_frequency)
#define L2_wavelength   ((double)cee/L2_frequency)

#define ghadot ((double) 7.292117855228083e-5 )
#define xmu ((double) 3.986008e+14 



IEEE Floating Point

• IEEE Standard 754
– Estabilished in 1985 as uniform standard for 

floating point arithmetic
• Before that, many idiosyncratic formats

– Supported by all major CPUs

• Driven by Numerical Concerns
– Standards for rounding, overflow, underflow
– Design principles: need both precisions and wide 

range



Fractional Binary Numbers

• Representation
– Bits to right of “binary point” represent fractional powers of 2
– Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •

• • •
1/2
1/4
1/8

2–j

bk ⋅2k

k=− j

i
∑



Fractional Binary Number Examples

• Value Representation
5-3/4 101.112
2-7/8 10.1112
63/64 0.1111112

• Observation
– Divide by 2 by shifting right
– Numbers of form 0.111111…2 just below 1.0

• Use notation 1.0 – ε
• Limitation

– Can only exactly represent numbers of the form x/2k

– Other numbers have repeating bit representations
• Value Representation

1/3 0.0101010101[01]…2
1/5 0.001100110011[0011]…2
1/10 0.0001100110011[0011]…2



• Numerical Form
– –1s M  2E

• Sign bit s determines whether number is negative or positive
• Significand M  normally a fractional value in range [1.0,2.0).
• Exponent E weights value by power of two

• Encoding

– MSB is sign bit
– exp field encodes E
– frac field encodes M

• Sizes
– Single precision: 8 exp bits, 23 frac bits

• 32 bits total
– Double precision: 11 exp bits, 52 frac bits

• 64 bits total

Floating Point Representation
s exp frac

This is however not 
the end of the story



“Normalized” Numeric Values

• Under the condition
– exp ≠ 000…0 and exp ≠ 111…1

• Exponent coded as biased value
E  = Exp – Bias

• Exp : unsigned value denoted by exp
• Bias : Bias value

– Single precision: 127 (Exp: from 1 to 254, E:from  -126 to 127)
– Double precision: 1023 (Exp: from 1 to 2046, E: from  -1022 to 1023
– in general: Bias = 2m-1 - 1, where m is the number of exponent bits

• Significand coded with implied leading 1
m  = 1.xxx…x2

• xxx…x: bits of frac
• Minimum when 000…0 (M = 1.0)
• Maximum when 111…1 (M = 2.0 – ε)
• Get extra leading bit for “free”



Normalized Encoding Example
• Value

Float F = 15213.0;
1521310 = 111011011011012  = 1.11011011011012 X 213

• Significand
M = 1.11011011011012
frac = 110110110110100000000002

• Exponent
E = 13
Bias = 127
Exp = 140 = 100011002

Floating Point Representation:
Hex: 4    6    6    D    B    4    0    0    
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0

15213: 1110 1101 1011 01



Special (Denormalized) Values
• Under the condition

– exp = 000…0
• Value

– Exponent value E = –Bias + 1
– Significand value m = 0.xxx…x2

• xxx…x: bits of frac
• Cases

– exp = 000…0, frac = 000…0
• Represents value 0
• Note that have distinct values +0 and –0

– exp = 000…0, frac ≠ 000…0
• Numbers very close to 0.0
• Lose precision as get smaller
• “Gradual underflow”



Interesting Numbers

• Description exp frac Numeric Value
• Zero 00…00 00…00 0.0
• Smallest Pos. Denorm. 00…00 00…01 2– {23,52} X 2– {126,1022}

– Single ≈ 1.4 X 10–45

– Double ≈ 4.9 X 10–324

• Largest Denormalized 00…00 11…11 (1.0 – ε) X 2– {126,1022}

– Single ≈ 1.18 X 10–38

– Double ≈ 2.2 X 10–308

• Smallest Pos. Normalized 00…01 00…00 1.0 X 2– {126,1022}

– Just larger than largest denormalized
• One 01…11 00…00 1.0
• Largest Normalized 11…10 11…11 (2.0 – ε) X 2{127,1023}

– Single ≈ 3.4 X 1038

– Double ≈ 1.8 X 10308



Special Values

• Condition
– exp = 111…1

• Cases
– exp = 111…1, frac = 000…0

• Represents value ∞ (infinity)
• Operation that overflows
• Both positive and negative
• E.g., 1.0/0.0 = −1.0/−0.0 = +∞,  1.0/−0.0 = −∞

– exp = 111…1, frac ≠ 000…0
• Not-a-Number (NaN)
• Represents case when no numeric value can be determined
• E.g., sqrt(–1), ∞ − ∞



Summary of Floating Point 
Real Number Encodings

NaNNaN

+∞-∞ -0 +0 +Denorm +Normalized-Denorm-Normalized



Floating Point Operations

• Conceptual View
– First compute exact result
– Make it fit into desired precision

• Possibly overflow if exponent too large
• Possibly round to fit into frac

• Rounding Modes (illustrate with $ rounding)
• $1.40 $1.60 $1.50 $2.50 –$1.50

– Zero (truncate) $1.00 $1.00 $1.00 $2.00 –$1.00
– Round down (-∞) $1.00 $1.00 $1.00 $2.00 –$2.00
– Round up (+∞) $2.00 $2.00 $2.00 $3.00 –$1.00
– Nearest Even (default) $1.00 $2.00 $2.00 $2.00 –$2.00

Note:
1.  Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result. 



A Closer Look at Round-To-Even

• Default Rounding Mode
– Hard to get any other kind without dropping into assembly
– All others are statistically biased

• Sum of set of positive numbers will consistently be over- or under-
estimated

• Applying to Other Decimal Places
– When exactly halfway between two possible values

• Round so that least signficant digit is even
– E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)



Rounding Binary Numbers

• Binary Fractional Numbers
– “Even” when least significant bit is 0
– Half way when bits to right of rounding position = 100…2

• Examples
– Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2-3/32 10.00011210.002 (<1/2—down) 2
2-3/16 10.00110210.012 (>1/2—up) 2-1/4
2-7/8 10.11100211.002 (1/2—up) 3
2-5/8 10.10100210.102 (1/2—down) 2-1/2



FP Multiplication

• Operands
(–1)s1 M1  2E1

(–1)s2 M2  2E2

• Exact Result
(–1)s M  2E

– Sign s: s1 ^ s2
– Significand M: M1 * M2
– Exponent E: E1 + E2

• Fixing
– If M ≥ 2, shift M right, increment E
– If E out of range, overflow 
– Round M to fit frac precision

• Implementation
– Biggest chore is multiplying significands



FP Addition

• Operands
(–1)s1 M1  2E1

(–1)s2 M2  2E2

– Assume E1 > E2
• Exact Result

(–1)s M  2E

– Sign s, significand M: 
• Result of signed align & add

– Exponent E: E1
• Fixing

– If M ≥ 2, shift M right, increment E
– if M < 1, shift M left k positions, decrement E by k
– Overflow if E out of range
– Round M to fit frac precision

(–1)s1 m1 

(–1)s2 m2 

E1–E2

+

(–1)s m 



Mathematical Properties of FP Add

• Compare to those of Abelian Group
– Closed under addition? YES

• But may generate infinity or NaN
– Commutative? YES
– Associative? NO

• Overflow and inexactness of rounding
– 0 is additive identity? YES
– Every element has additive inverseALMOST

• Except for infinities & NaNs
• Montonicity

– a ≥ b ⇒ a+c ≥ b+c? ALMOST
• Except for infinities & NaNs



Algebraic Properties of FP Mult

• Compare to Commutative Ring
– Closed under multiplication? YES

• But may generate infinity or NaN
– Multiplication Commutative? YES
– Multiplication is Associative? NO

• Possibility of overflow, inexactness of rounding
– 1 is multiplicative identity? YES
– Multiplication distributes over addtion? NO

• Possibility of overflow, inexactness of rounding
• Montonicity

– a ≥ b & c ≥ 0  ⇒ a *c ≥ b *c? ALMOST
• Except for infinities & NaNs



Floating Point in C

• C Supports Two Levels
float single precision
double double precision

• Conversions
– Casting between int, float, and double changes numeric values
– Double or float to int

• Truncates fractional part
• Like rounding toward zero
• Not defined when out of range

– Generally saturates to TMin or TMax

– int to double
• Exact conversion, as long as int has ≤ 54 bit word size

– int to float
• Will round according to rounding mode



Answers to Floating Point Puzzles

• x == (int)(float) x No: 24 bit significand

• x == (int)(double) x Yes: 53 bit significand

• f == (float)(double) f Yes: increases precision

• d == (float) d No: loses precision

• f == -(-f); Yes: Just change sign bit

• 2/3 == 2/3.0 No: 2/3 == 1

• d < 0.0  ⇒ ((d*2) < 0.0) Yes!

• d > f  ⇒ -f < -d Yes!

• d * d >= 0.0 Yes!

• (d+f)-d == f No: Not associative

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NAN



Quiz 6 #1

• With the following declarations:
• Unsigned char a = ‘\xff’, b = ‘\x11’, c;
After executing the statements:
c = a ^ b;
Variable c will hold the hexadecimal value 

• (a)  GG
• (b)  EE
• (c)   00
• (d)  10
• (e)  01



• Answer (b)  EE
• Hint:   1111 1111
• 0001 0001   (^
• ---------------------
• 1110 1110
• Which is EE



Quiz 6 #2

• With the following declarations:
• Unsigned char a = ‘\xff’, b = ‘\x11’, c;
After executing the statements:
c = a + b;
Variable c will hold the hexadecimal value 

• (a)  GG
• (b)  EE
• (c)   00
• (d)  10
• (e)  01



• Answer   (d) 10

• Method 1 – directly do binary add
– After promoting both unsigned chars to int

• 0000 0000 1111 1111
• 0000 0000 0001 0001   (+
• ------------------------

0000 0001 0001 0000
Written back to unsigned c, we have 0001 0000 

• Method 2 – convert to decimal first, we have
• 255 + 17 = 272 divided by 16 is 17 exact, which is hexadecimal 

“110”, dropping the carry bit 1 we have “10” hexadecimal
• Method 1 is clearly more straightforward here.



Quiz 6 #3
• With the following declarations:

• char a = ‘\xff’;
• int x;
After executing the statements:
x  =  a << 1;
Variable x will hold the hexadecimal value 

• (a)   FF
• (b)   F0
• (c)   FF0
• (d)  1FE
• (e)  FFFE



• Answer (e)  FFFE for 16 bit int or FFFFFFFE for 
32 bit int

• Hint: char is signed. When performing a << 1, 
a is first promoted to integer FFFF  and the left 
shift result is FFFE, written back to int x.


