# CS 24000 - Programming In C

Week Nine: File pointers, data format, floating point numbers

**Zhiyuan Li** Department of Computer Science Purdue University, USA

- We have been using *stdin*, *stdout*, and *stderr* for input and output
  - As we write more sophisticated programs, we need more versatile ways to
    - Import information from multiple files
    - Export information to multiple files
  - The C languages provide ways to
    - "Open" many different files for read and write files
    - These are done by making file system calls
- So far, we also have mainly dealt with text files
  - We will now discuss I/O for binary data
    - "dump" binary data w/o converting to text

# File Systems

- A file may be defined as a physical entity that stores information
  - The file system is a part of the operating system
  - It specifies how files are organized
    - for retrieval and modification.
- When a file system is organized in a hierarchy (instead of being flat), we have
  - Directories (or folders)
    - Each directory may contain other directories (i.e. subdirectories)
  - Files (contained in directories)
- UNIX takes an extended view of files:
  - Peripheral devices (keyboard, screen, etc)
  - Pipes (inter process communication)
  - Sockets (communication via computer networks)

- The OS provides a number of file system calls for
  - Creating a file
  - Opening an existing file for read, write, append
  - Closing a file
  - Maintaining the open count for each file
    - How many activated programs have opened a specific file
  - Moving the next read/write position within a file
  - Setting access privilege for each file
  - Providing system level buffering
  - Etc

# Files in C

- In Unix, a C program can directly make file system calls, but the C file library routines make it easier in many situations
  - Higher level operations than reading bytes
  - User-level buffering
  - Automatic data format transformation
- File abstraction by using the **FILE** type:

• FILE \*fp // \*fp is a pointer to a file.

- To open a file, call
   FILE\* fopen(const char\* filename, const char\* mode)
  - mode can be "r" (read), "w" (write), "a" (append)
  - Returns a file pointer
    - returns NULL on error (e.g., improper permissions)
  - filename is a string that holds the name of the file on disk
  - Automatically create a new file for write if not existing yet
- We will run a few examples to open files for
  - Write (to a new file)
  - Read
  - Re-write an existing file
  - Append to an existing file
  - Try to write a read-only file

# Reading formatted text files

- fscanf requires a FILE\* for the file to be read
   fscanf(ifp, "<format string>", inputs)
- Returns the number of values read or EOF on an end of file
- Example: Suppose in.list contains foo 70 bar 50
- To read elements from this file, we might write fscanf(ifp, "%s %d", name, count)
- We can check against EOF:

```
while(fscanf(ifp, "% s %d", name, count)!=EOF);
```

# Testing EOF

Ill-formed input may confuse comparison with EOF

fscanf returns the number of successful matched
items
while(fscanf(ifp, "% % %d", name,count)==2)

• We can use **feof**:

while (!feof(ifp)) {
 if (fscanf(ifp, "% % % d", name, count)!=2) break;
 fprintf(ofp, format, control);

# **Closing files**

# • fclose(ifp);

- Why do we need to close a file?
  - File systems typically buffer output
  - The buffer is flushed when the file is closed, or when full
    - This is called write-back, for efficiency
  - If the program aborts or terminates before the file is closed or explicitly flushed, then the buffered output might not be written back completely or at all

# File pointers

- Three special file pointers:
  - stdin (standard input) /\*corresponding to fd 0\*/
  - stdout (standard output) /\*corresponding to fd 1\*/
  - stderr (standard error) /\*corresponding to fd 2\*/

## Other file operations

- Remove file from the file system:
- int remove (const char \* filename)
- Rename file

# Binary file i/o at C level

- In Project 2, we will read and write binary data
- Often we can use fread() and fwrite() for such purposes
- Students should read the textbook and man page on Unix systems for their definitions

And do exercises for such uses

• The following is a brief summary

# Binary I/O

- Read at most nobj items of size sz from stream into p
- **feof** and **ferror** used to test end of file

size\_t fread(void\* p,size\_t sz,size\_t nobj,FILE\* stream)

 Write at most nobj items of size sz from p onto stream

size t fwrite(void\*p,size t sz,size t nobj,FILE\* stream)

## File position

# int fseek(FILE\* stream, long offset, int origin)

- Set file position in the stream. Subsequent reads and writes begin at this location
- Origin can be **SEEK\_SET**, **SEEK\_CUR**, **SEEK\_END** for binary files
- To find out the current position within the stream

#### long ftell(FILE \* stream)

To set the file to the beginning of the file

void rewind(FILE \* stream)

• see page 247-248 in the text

# Example

```
#include <stdio.h>
int main() {
  long fsize;
  FILE *f;
```

```
f = fopen("./log", "r");
```

```
fseek(f, 0, SEEK_END) ;
fsize = ftell(f) ;
printf("file size is: %d\n", fsize);
```

```
fclose(f);
}
```

# Temp files

Create temporary file (removed when program terminates)

#### FILE \* tmpfile (void)

• We show a couple of examples of the use of tmpfiles

# Text Stream I/O Read

- Read next char from stream and return it as an unsigned char cast to an int, or EOF
- int fgetc(FILE \* stream)
- Reads in at most size-1 chars from the stream and stores them into null-terminated buffer pointed s. Stop on EOF or error
- char\* fgets(char \*s, int size, FILE \*stream)
- Writes c as an unsigned char to stream and returns the char
- int fputc (int c, FILE \* stream)
- Writes string s without null termination; returns a non-negative number on success, or EOF on error
- int fputs(const char \*s, FILE \*stream)

# **UNIX File System Calls**

- File descriptor
  - A handle to access a file, like the file pointer in streams
  - Small non-negative integer used in same open/readwrite/ close ops
  - Returned by the open call; all opens have distinct file descriptors
  - Once a file is **closed**, fd can be reused
  - Same file can be opened several times, with different fd's

#### **Management functions**

- #include <fnctl.h>
- int open(const char \*path, int flags);
- int open(char \*path, int flags, mode t mode);
- int creat(const char \*pathname, mode t mode);
  - All the above return a function descripter
  - creat is equivalent to open with flags equal to O\_CREAT | O\_WRONLY | O\_TRUNC.
- Flags: O\_RDONLY, O\_WRONLY or O\_RDWR bitwise OR with O\_CREAT, O\_EXCL, O\_TRUNC, O\_APPEND, O\_NONBLOCK, O\_NDELAY
- Mode: the permissions to use in case a new file is created.
- int close(int fd);

- #include <unistd.h>
- ssize\_t read(int fd, void \*buf, size\_t cnt);
- ssize\_t write(int fd, void \*buf, size\_t cnt);
- fd is a descriptor, \_not\_ FILE pointer
- Returns number of bytes transferred, or -1 on error
- Normally waits until operation is enabled (e.g., there are bytes to read), except under O\_NONBLOCK and O\_NDELAY (in which case, returns immediately with "try again" error condition)

## Example

```
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
int main() {
    char buf[100];
    int f1 = open("log1", O RDONLY);
    int f2 = open("log2", O RDONLY);
    fprintf(stderr, "Log1 file descriptor is: %d\n", f1);
    fprintf(stderr, "Log2 file descriptor is: %d\n", f2);
    close(f1); close(f2);
    f2 = open("log2", O RDONLY);
    fprintf(stderr, "Notice the new file descriptor: %d\n", f2);
    close(f2);
}
```

# The issue of data endians

- When we perform binary I/O, it is important to understand the endian issue
- We first dump some integer data and then examine the layout of the output
  - Run two programs (see next pages)
    - dumpint | od –t x1 compare with
    - printint

```
#include <stdio.h> /* dumpint.c */
#include <unistd.h>
int main() {
int a[4];
a[0] =0x0000ffff; a[1]=0xffff0000; a[2]=0x00000001; a[3] =0x10000001;
```

```
if (write(1, a, 4) < 1) fprintf(stderr, "failed to write a[0]n");
   if (write(1, a[1], 4) < 1) fprintf(stderr, "failed to write a[1]\n");
   if (write(1, &a[2], 4) < 1) fprintf(stderr, "failed to write a[2]\n");
   if (write(1, &a[3], 4) < 1) fprintf(stderr, "failed to write a[3]\n");</pre>
return 0;
                                      % dumpint | od -t x1
}
```

```
0000000 ff ff 00 00 00 00 ff ff 01 00 00 00 01 00 00 10
0000020
```

```
#include <stdio.h> /* printint.c */
                                            %printint
int main() {
                                            65535-655361268435457
int i=0x0000ffff, j=0xffff0000, k=0x0000001,
h=0x1000001;
   printf("%d%d%d%d",i,j,k,h);
                                         Next, compare to fwrite() result
return 0:
```

```
/* fwriteint.c */
#include <stdio.h>
#include <unistd.h>
int main() {
int a[4]; FILE *fp;
a[0] =0x0000ffff; a[1]=0xffff0000; a[2]=0x00000001;
a[3] =0x1000001;
   if ((fp = fopen("./fwriteout", "w")) == NULL) {
        fprintf(stderr, "failed to open file\n");
         return(1);
    }
   if (fwrite(&a, 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[0]\n"); return(1);}
   if (fwrite(&a[1], 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[1]n");
return(1);}
   if (fwrite(a[2], 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[2]\n");
return(1);}
   if (fwrite(&a[3], 4, 1, fp) < 1) {fprintf(stderr, "failed to write a[3]\n");
return(1);}
return 0;
                      od -t x1 fwriteout
}
                     0000000 ff ff 00 00 00 00 ff ff 01 00 00 00 01 00 00 10
                     0000020
```

#### Same as the write() result

# Data transfer between machines of different data representation

From the above result, we see that if we port data from a little-endian machine to a big-endian machine, we must convert the endian before using the data as operands on the big-endian machine

However, on a machine of the same endian, we won't have this problem

Let us run a program to read back the dumped data

```
#include <stdio.h>
#include <unistd.h>
int main() {
int a[4]; FILE *fp;
   if ((fp = fopen("./fwriteout", "r")) == NULL) {
        fprintf(stderr, "failed to open file\n");
         return(1);
    }
   if (fread(\&a, 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[0]\n"); return(1);}
   if (fread(&a[1], 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[1]\n"); return(1);}
   if (fread(&a[2], 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[2]\n"); return(1);}
   if (fread(&a[3], 4, 1, fp) < 1) {fprintf(stderr, "failed to read a[3]\n"); return(1);}
   printf("%d%d%d%d",a[0],a[1],a[2],a[3]);
return 0:
}
                                             This is exactly the numbers we dumped earlier
           % freadint
          65535-655361268435457
```

 Next we discuss floating point number representation, which will also be covered by Project 2

# Floating point numbers



- Used extensively in scientific and engineering numerical computation & computer graphics (including game software)
- Graphics algorithms, e.g. ray tracing
- Global positioning systems (GPS)

• ... ...

RPU: A Programmable Ray Processing Unit for Realtime Ray Tracing Sven Woop, jörg Schmittler, Philipp Slusallek, ACM Transactions on Graphics (TOG) - Proceedings of ACM SIGGRAPH 2005

# GPS algorithms

\* soe Sun / Earth mass ratio

\* soem Sun / (Earth + Moon) mass

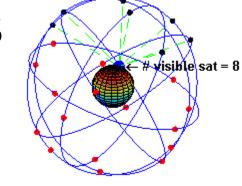
#### ratio

\* tropical\_year tropical year [day]

\* twopi two pi

\* ut\_to\_st conversion factor for UT to siderial time [UT s/sid s]

#define pi ((double)3.14159265358979)
#define pio2 ((double)0.5\*pi)
#define twopi ((double)2.0\*pi)



#define tropical\_year ((double)365.2421910)
#define ut\_to\_st ((double)1.00273790934)
#define st\_to\_ut ((double)0.9972695663399999)

#define emajor ((double)6378137.0)
#define eflat ((double)0.00335281068118 )
#define erate ((double)7.292115855228083e-5)
#define soem ((double)328900.550)
#define eom ((double)81.3005870)
#define soe (soem\*((double)1.0 + (double)1.0/eom) )

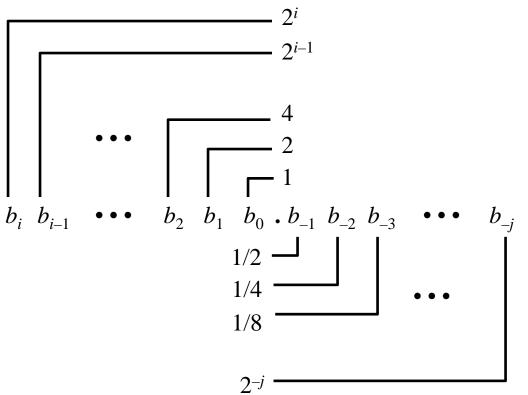
#define L1\_frequency ((double)1575.420e+6)
#define L2\_frequency ((double)1227.600e+6)
#define L1\_wavelength ((double)cee/L1\_frequency)
#define L2\_wavelength ((double)cee/L2\_frequency)

#define ghadot ((double) 7.292117855228083e-5 ) #define xmu ((double) 3.986008e+14

# **IEEE Floating Point**

- IEEE Standard 754
  - Estabilished in 1985 as uniform standard for floating point arithmetic
    - Before that, many idiosyncratic formats
  - Supported by all major CPUs
- Driven by Numerical Concerns
  - Standards for rounding, overflow, underflow
  - Design principles: need both precisions and wide range

# **Fractional Binary Numbers**



- Representation
  - Bits to right of "binary point" represent fractional powers of 2
  - Represents rational number: *i*

$$\sum_{k=-j}^{l} b_k \cdot 2^k$$

# **Fractional Binary Number Examples**

- Value Representation
   5-3/4 101.11<sub>2</sub>
   2-7/8 10.111<sub>2</sub>
   63/64 0.11111<sub>2</sub>
- Observation
  - Divide by 2 by shifting right
  - Numbers of form 0.111111...2 just below 1.0
    - Use notation  $1.0 \varepsilon$
- Limitation
  - Can only exactly represent numbers of the form  $x/2^k$
  - Other numbers have repeating bit representations

| Value | Representation              |
|-------|-----------------------------|
| 1/3   | 0.01010101[01] <sub>2</sub> |
| 1/5   | $0.001100110011[0011]{2}$   |
| 1/10  | 0.0001100110011[0011]2      |

# **Floating Point Representation**

| s exp frac |  |
|------------|--|
|------------|--|

- Numerical Form
  - $-1^{s} M 2^{E}$ 
    - Sign bit s determines whether number is negative or positive
    - Significand *M* normally a fractional value in range [1.0,2.0].
    - Exponent *E* weights value by power of two
- Encoding
  - MSB is sign bit
  - exp field encodes E
  - frac field encodes M
- Sizes
  - Single precision: 8 exp bits, 23 frac bits
    - 32 bits total
  - Double precision: 11 exp bits, 52 frac bits
    - 64 bits total

This is however not the end of the story

# "Normalized" Numeric Values

- Under the condition
  - $\exp \neq 000...0$  and  $\exp \neq 111...1$
- Exponent coded as *biased* value
  - E = Exp Bias
    - *Exp* : unsigned value denoted by **exp**
    - Bias : Bias value
      - Single precision: 127 (*Exp*: from 1 to 254, *E*:from -126 to 127)
      - Double precision: 1023 (*Exp*: from 1 to 2046, *E*: from -1022 to 1023
      - in general:  $Bias = 2^{m-1} 1$ , where m is the number of exponent bits
- Significand coded with implied leading 1
  - $m = 1.xxx...x_2$ 
    - **xxx...x**: bits of frac
    - Minimum when **000...0** (*M* = 1.0)
    - Maximum when  $111...1 (M = 2.0 \epsilon)$
    - Get extra leading bit for "free"

# Normalized Encoding Example

- Value
  - Float F = 15213.0;

 $15213_{10} = 11101101101_2 = 1.1101101101_2 X 2^{13}$ 

• Significand

| M =  | 1. <u>1101101101101<sub>2</sub></u> |                                                           |  |  |
|------|-------------------------------------|-----------------------------------------------------------|--|--|
| frac | =                                   | $\underline{\texttt{1101101101101}}\texttt{0000000000}_2$ |  |  |

• Exponent

| E =   | 13  |     |           |
|-------|-----|-----|-----------|
| Bias  | =   | 127 |           |
| Exp = | 140 | =   | 100011002 |

| Floating Point Representation: |                  |      |             |           |           |           |           |           |
|--------------------------------|------------------|------|-------------|-----------|-----------|-----------|-----------|-----------|
| Hex:<br>Binary:                | <b>4</b><br>0100 | -    | 6<br>0110   | D<br>1101 | B<br>1011 | 4<br>0100 | 0<br>0000 | 0<br>0000 |
| 140:                           | 100              | 0110 | 0           |           |           |           |           |           |
| 15213:                         |                  |      | <b>1110</b> | 1101      | 1011      | 01        |           |           |

# Special (Denormalized) Values

- Under the condition
  - $\exp = 000...0$
- Value
  - Exponent value E = -Bias + 1
  - Significand value  $m = 0 . xxx...x_2$ 
    - **xxx...x:** bits of frac
- Cases
  - $\exp = 000...0, \operatorname{frac} = 000...0$ 
    - Represents value 0
    - Note that have distinct values +0 and -0
  - $\exp = 000...0, \operatorname{frac} \neq 000...0$ 
    - Numbers very close to 0.0
    - Lose precision as get smaller
    - "Gradual underflow"

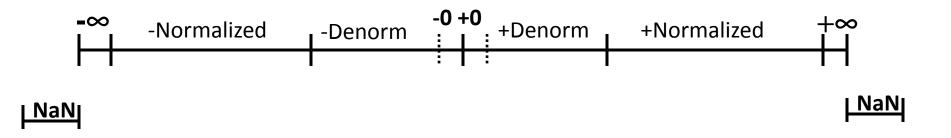
## **Interesting Numbers**

Description frac Numeric Value exp Zero 00...00 00...00 0.0 • • Smallest Pos. Denorm. 00...00 00...01 **7**- {23,52} **X 7**- {126,1022} - Single  $\approx$  1.4 X 10<sup>-45</sup> - Double  $\approx 4.9 \times 10^{-324}$  $(1.0 - \varepsilon) \times 2^{-\{126, 1022\}}$ Largest Denormalized 00...00 11...11 ۲ - Single  $\approx 1.18 \times 10^{-38}$ - Double  $\approx 2.2 \text{ X} 10^{-308}$ 1.0 X 2<sup>- {126,1022}</sup> Smallest Pos. Normalized 00...01 00...00 • Just larger than largest denormalized 01...11 00...00 One 1.0  $(2.0 - \varepsilon) \times 2^{\{127, 1023\}}$ Largest Normalized 11...11 11...10 ۲ - Single  $\approx$  3.4 X 10<sup>38</sup> - Double  $\approx 1.8 \times 10^{308}$ 

#### **Special Values**

- Condition
  - $\exp = 111...1$
- Cases
  - exp = 111...1, frac = 000...0
    - Represents value ∞ (infinity)
    - Operation that overflows
    - Both positive and negative
    - E.g.,  $1.0/0.0 = -1.0/-0.0 = +\infty$ ,  $1.0/-0.0 = -\infty$
  - $-\exp = 111...1, \operatorname{frac} \neq 000...0$ 
    - Not-a-Number (NaN)
    - Represents case when no numeric value can be determined
    - E.g., sqrt(-1),  $\infty \infty$

# Summary of Floating Point Real Number Encodings



#### **Floating Point Operations**

- Conceptual View
  - First compute exact result
  - Make it fit into desired precision
    - Possibly overflow if exponent too large
    - Possibly round to fit into frac
- Rounding Modes (illustrate with \$ rounding)

|                                            | \$1.40 | \$1.60 | \$1.50 | \$2.50 | -\$1.50 |
|--------------------------------------------|--------|--------|--------|--------|---------|
| <ul> <li>Zero (truncate)</li> </ul>        | \$1.00 | \$1.00 | \$1.00 | \$2.00 | -\$1.00 |
| — Round down (-∞)                          | \$1.00 | \$1.00 | \$1.00 | \$2.00 | -\$2.00 |
| — Round up (+∞)                            | \$2.00 | \$2.00 | \$2.00 | \$3.00 | -\$1.00 |
| <ul> <li>Nearest Even (default)</li> </ul> | \$1.00 | \$2.00 | \$2.00 | \$2.00 | -\$2.00 |

Note:

1. Round down: rounded result is close to but no greater than true result.

2. Round up: rounded result is close to but no less than true result.

#### A Closer Look at Round-To-Even

- Default Rounding Mode
  - Hard to get any other kind without dropping into assembly
  - All others are statistically biased
    - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places
  - When exactly halfway between two possible values
    - Round so that least signifcant digit is even
  - E.g., round to nearest hundredth
    - 1.2349999 1.23 (Less than half way)
    - 1.2350001 1.24 (Greater than half way)
    - 1.2350000 1.24 (Half way—round up)
    - 1.2450000 1.24 (Half way—round down)

### **Rounding Binary Numbers**

- Binary Fractional Numbers
  - "Even" when least significant bit is 0
  - Half way when bits to right of rounding position =  $100..._2$

#### • Examples

Round to nearest 1/4 (2 bits right of binary point)

| Value  | Binary   | Rounded             | Action      | Rounded Value |
|--------|----------|---------------------|-------------|---------------|
| 2-3/32 | 10.00011 | 210.00 <sub>2</sub> | (<1/2—down) | 2             |
| 2-3/16 | 10.00110 | 210.01 <sub>2</sub> | (>1/2—up)   | 2-1/4         |
| 2-7/8  | 10.11100 | $_{2}$ 11.00 $_{2}$ | (1/2—up)    | 3             |
| 2-5/8  | 10.10100 | 210.10 <sub>2</sub> | (1/2—down)  | 2-1/2         |

## **FP** Multiplication

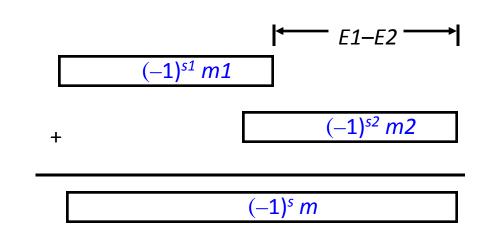
- Operands
  - $(-1)^{s1} M1 2^{E1}$  $(-1)^{s2} M2 2^{E2}$
- Exact Result
  - $(-1)^{s} M 2^{E}$
  - Sign s: s1 ^ s2
  - Significand M: M1 \* M2
  - Exponent *E*: *E*1 + *E*2
- Fixing
  - If  $M \ge 2$ , shift *M* right, increment *E*
  - If *E* out of range, overflow
  - Round *M* to fit frac precision
- Implementation
  - Biggest chore is multiplying significands

# **FP** Addition

• Operands

 $(-1)^{s1} M1 2^{E1}$  $(-1)^{s2} M2 2^{E2}$ 

- Assume E1 > E2
- Exact Result
  - $(-1)^{s} M 2^{E}$
  - Sign *s*, significand *M*:
    - Result of signed align & add
  - Exponent E: E1
- Fixing
  - If  $M \ge 2$ , shift *M* right, increment *E*
  - if M < 1, shift M left k positions, decrement E by k</li>
  - Overflow if *E* out of range
  - Round *M* to fit frac precision



## Mathematical Properties of FP Add

Compare to those of Abelian Group

 Closed under addition?
 But may generate infinity or NaN
 Commutative?
 YES
 Associative?
 Overflow and inexactness of rounding
 0 is additive identity?
 YES
 Every element has additive inverseALMOST

- Except for infinities & NaNs
- Montonicity
  - $-a \ge b \Longrightarrow a+c \ge b+c?$

ALMOST

• Except for infinities & NaNs

#### Algebraic Properties of FP Mult

#### • Compare to Commutative Ring

- Closed under multiplication?
   YES
  - But may generate infinity or NaN
- Multiplication Commutative?
   YES
- Multiplication is Associative?
   NO
  - Possibility of overflow, inexactness of rounding
- 1 is multiplicative identity?YES
- Multiplication distributes over addition?
   NO
  - Possibility of overflow, inexactness of rounding
- Montonicity
  - $-a \ge b \& c \ge 0 \implies a * c \ge b * c$ ? ALMOST
    - Except for infinities & NaNs

# Floating Point in C

- C Supports Two Levels
  - float single precision
  - double double precision
- Conversions
  - Casting between int, float, and double changes numeric values
  - Double or float to int
    - Truncates fractional part
    - Like rounding toward zero
    - Not defined when out of range
      - Generally saturates to TMin or TMax
  - int to double
    - Exact conversion, as long as int has  $\leq$  54 bit word size
  - int to float
    - Will round according to rounding mode

#### **Answers to Floating Point Puzzles**

- int x = ...;
  float f = ...;
  double d = ...;
- x == (int)(float) x
- x == (int) (double) x
- f == (float)(double) f
- d == (float) d
- f == -(-f);
- 2/3 == 2/3.0
- $d < 0.0 \Rightarrow ((d*2) < 0.0)$
- $d > f \Rightarrow -f < -d$
- d \* d >= 0.0
- (d+f)-d == f

Assume neither d nor f is NAN

No: 24 bit significand Yes: 53 bit significand Yes: increases precision No: loses precision Yes: Just change sign bit No: 2/3 == 1 Yes! Yes! Yes! No: Not associative

# Quiz 6 #1

- With the following declarations:
  - Unsigned char a = '\xff', b = '\x11', c;

After executing the statements:

c = a ^ b;

Variable c will hold the hexadecimal value

- (a) GG
- (b) EE
- (c) 00
- (d) 10
- (e) 01

- Answer (b) EE
- Hint: 1111 1111
- 0001 0001 (^
- -----
- 1110 1110
- Which is EE

# Quiz 6 #2

- With the following declarations:
  - Unsigned char a = '\xff', b = '\x11', c;

After executing the statements:

c = a + b;

Variable c will hold the hexadecimal value

- (a) GG
- (b) EE
- (c) 00
- (d) 10
- (e) 01

- Answer (d) 10
- Method 1 directly do binary add
  - After promoting both unsigned chars to int
    - 0000 0000 1111 1111

------

• 0000 0000 0001 0001 (+

0000 0001 0001 0000

Written back to unsigned c, we have 0001 0000

- Method 2 convert to decimal first, we have
  - 255 + 17 = 272 divided by 16 is 17 exact, which is hexadecimal "110", dropping the carry bit 1 we have "10" hexadecimal
- Method 1 is clearly more straightforward here.

# Quiz 6 #3

- With the following declarations:
  - char a = '\xff';
  - int x;

After executing the statements:

x = a << 1;

Variable x will hold the hexadecimal value

- (a) FF
- (b) F0
- (c) FF0
- (d) 1FE
- (e) FFFE

- Answer (e) FFFE for 16 bit int or FFFFFFE for 32 bit int
- Hint: char is signed. When performing a << 1, a is first promoted to integer FFFF and the left shift result is FFFE, written back to int x.