CS 24000 - Programming In C

Week Eight: arithmetic and bit
operations on chars ; C Programming
Tools: GDB, C preprocessor, Makefile

Zhiyuan Li
Department of Computer Science
Purdue University, USA

This week’s lectures

e Arithmetic and bit-wise operations on
characters

— related to Lab 6

e Tools for C program development
— GDB for debugging,
— C preprocessors, and
— Makefile

Char input and output

* In Lab 6, we deal with arbitrary files, not just
text files.

A non-text file may be unformatted, and
therefore may not be suitable for formatted
/O functions such as scantf() and printf().

e Since we are doing byte-level
encryption/decryption in Lab 6, we perform
character I/O by either UNIX read/write calls
or getchar()/putchar() C standard lib routines

UNIX read/write

* |n the first week, we looked at how to do char I/0O
using the UNIX read() and write() system calls.

 For Lab 6, we can do unbufferred read/write
— Not efficient, but simple:

#include <stdio.h>

main()

{
char buf[1];
int n;

unsigned char code, key = ‘\x0f’;

while ((n = read(0, buf, 1)) > 0) {
code = *buf;
buf = code A key; / perform an xor cipher */
write(1, buf, 1);

}

return O;

Use getchar() and putchar()

e Alternatively, we can use C standard library functions
getchar() putchar()

— Must be careful with typecast

#include <stdio.h>
main()
{
unsigned char msg, code, key = "\x0f";
int input;
while ((input = getchar()) != EOF) {
msg = (unsigned char) input;
code = msg " key;
input = (int) code;
putchar(input);
}

return O;

Sign Extension

 The main reason for getchar() to return an
integer (typecast from unsigned char) is
because the EOF number is greater than what
a char can represent

 The leading bits of the typecast integer will be
all zeros because the read char is unsigned

— Note: By default a char is signed. Casting it to int

will result in sign extension, ‘\xff’ will be come
OxffFfffff

 We want to perform byte-level cipher

— Therefore we must recast the integer to unsigned char
— Otherwise, we will be rotating four bytes, e.g.

e Function putchar() takes an integer as parameter,
hence we recast the unsigned char result to
integer, x, before calling putchar(x)

— Again the leading bits will be zero in this integer

— Putchar(x) will automatically convert x back to
unsigned char before writing to the output.

Type Promotion

 The arithmetic unit on the processor hardware
operates on integers.

 Therefore to perform add, subtract, and other
arithmetic operations on bytes
— The operands are promoted to integers first

— If the lvalue (i.e. the variable holding the result) in the
assignment statement is a char (or unsigned char)

— The integer result will be automatically recast to char
(or unsigned char)

— Next, we compare the result of adding unsigned
numbers versus signed numbers

e Pay attention to sign extension and type casting

Adding unsigned chars (byteadd.c)

printf("ux is \t %#X\n", ux);
printf("uy is \t %#X\n", uy);
printf("w is \t %#X\n", w);
printf("z is \t %#X\n", z);

#include <stdio.h>

main() {
unsigned charua =0, ub =-1, ux;
unsigned char uc =0, ud = 1, uy;

int w, z; . |
unsigned char ubig = "\xff', uoverflow, /* The following shows what happens with
ucast: ‘overflow' when adding

*
int ioverflow; bytes together */

/* difference between adding a negative
byte versus subtracting a positive byte
when writing
back to an integer */
ux = ua + ub;

uoverflow = ubig + ubig;

ioverflow = ubig + ubig;

ucast = (unsigned char) ioverflow;
printf("uoverflow is \t %#X\n", uoverflow);
printf("ioverflow is \t %#X\n", ioverflow);

uy = uc - ud; e)
W = ua + ub: printf("icast is \t %#X\n", ucast);
Z =uc-ud;

return O;}

Uux is
uy is
W IS

Z 1S

uoverflow is

0X
0X
0X

OXFFFFFFFF
OXFE
OX1FE

ioverflow is

icast is

OXFE

Results

Adding signed chars (signedadd.c)

#include <stdio.h>

main() { /* The following shows what happens with

chara=0,b=-1, x; 'overflow' when adding
charc=0,d=1,y; bytes together */
intw, z;
char big = "\xff', overflow, bytecast; overflow = big + big;
int ioverflow; ioverflow = big + big;

bytecast = (char) ioverflow;
X=a+b; printf("overflow is \t %#X\n", overflow);
y=c-d; printf("ioverflow is \t %#X\n", ioverflow);
W =a+b; printf("bytecast is \t %#X\n", bytecast);
z =c-d;

return O;

printf("x is \t %#X\n", x);
printf("y is \t %#X\n", y);
printf("w is \t %#X\n", w);
printf("z is \t %#X\n", z);

Results

X is OXFFFFFFFF
vis OXFFFFFFFF
wis OXFFFFFFFF
zis OXFFFFFFFF
overflowis OXFFFFFFFE
loverflow is OXFFFFFFFE
bytecastis OXFFFFFFFE

The Unix “od” command

e Let us run command:

o Od ‘t Xl teXt Text:
e Displays
» 0000000 61 62 63 64 65 66 abcdefg

67 0a 0000010

 We see that the seven
letters are displayed
seven chars in
hexadecimal
representation: 61 to 67.

 Next, we will examine the “od” display of the
result of bit-wise xor, char addition, and bit-
rotation

— These are three cipher operations used in Lab 6

Review the example on bit rotation

/* Purpose: showing result of bit printf("a is \t %#X\n", a);
rotation */ printf("ua is \t %#X\n", ua);
#include <stdio.h> ub = ua >>2;
printf("ub is \t %#X\n", ub);
main() { ucC = ua << 6;
printf("uc is \t %#X\n", uc);
char a = "\xOf'; ua =ub | uc;
charb, c; printf("ua is \t %#X\n", ua);
ua = "\x0f";
unsigned char ua = "\x0f'; ua=ua>>2 | ua<<6;
unsigned char ub, uc; printf("rotation of ua is \t%#X\n", (unsigned
char) ua >> 2 | ua << 6);
printf("a is \t %#X\n", a); }
b=a> 2;
printf("b is \t %#X\n", b);
c=a<<6;

printf("c is \t %#X\n", c);
a=b|c

