
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week Eight: arithmetic and bit
operations on chars ; C Programming
Tools: GDB, C preprocessor, Makefile

• Arithmetic and bit-wise operations on
characters
– related to Lab 6

• Tools for C program development
– GDB for debugging,
– C preprocessors, and
– Makefile

This week’s lectures

Char input and output

• In Lab 6, we deal with arbitrary files, not just
text files.

• A non-text file may be unformatted, and
therefore may not be suitable for formatted
I/O functions such as scantf() and printf().

• Since we are doing byte-level
encryption/decryption in Lab 6, we perform
character I/O by either UNIX read/write calls
or getchar()/putchar() C standard lib routines

UNIX read/write
• In the first week, we looked at how to do char I/O

using the UNIX read() and write() system calls.
• For Lab 6, we can do unbufferred read/write

– Not efficient, but simple:
#include <stdio.h>

main()
{

char buf[1];
int n;
unsigned char code, key = ‘\x0f’;
while ((n = read(0, buf, 1)) > 0) {

code = *buf;
buf = code ^ key; / perform an xor cipher */
write(1, buf, 1);

}
return 0;

}

Use getchar() and putchar()
• Alternatively, we can use C standard library functions

getchar() putchar()
– Must be careful with typecast

#include <stdio.h>
main()
{

unsigned char msg, code, key = '\x0f';
int input;
while ((input = getchar()) != EOF) {

msg = (unsigned char) input;
code = msg ^ key;
input = (int) code;
putchar(input);

}
return 0;

}

• The main reason for getchar() to return an
integer (typecast from unsigned char) is
because the EOF number is greater than what
a char can represent

• The leading bits of the typecast integer will be
all zeros because the read char is unsigned
– Note: By default a char is signed. Casting it to int

will result in sign extension, ‘\xff’ will be come
0xffffffff

Sign Extension

• We want to perform byte-level cipher
– Therefore we must recast the integer to unsigned char
– Otherwise, we will be rotating four bytes, e.g.

• Function putchar() takes an integer as parameter,
hence we recast the unsigned char result to
integer, x, before calling putchar(x)
– Again the leading bits will be zero in this integer
– Putchar(x) will automatically convert x back to

unsigned char before writing to the output.

Type Promotion
• The arithmetic unit on the processor hardware

operates on integers.
• Therefore to perform add, subtract, and other

arithmetic operations on bytes
– The operands are promoted to integers first
– If the lvalue (i.e. the variable holding the result) in the

assignment statement is a char (or unsigned char)
– The integer result will be automatically recast to char

(or unsigned char)
– Next, we compare the result of adding unsigned

numbers versus signed numbers
• Pay attention to sign extension and type casting

Adding unsigned chars (byteadd.c)
#include <stdio.h>
main() {

unsigned char ua = 0, ub = -1, ux;
unsigned char uc = 0, ud = 1, uy;
int w, z;
unsigned char ubig = '\xff', uoverflow,

ucast;
int ioverflow;

/* difference between adding a negative
byte versus subtracting a positive byte

when writing
back to an integer */
ux = ua + ub;
uy = uc - ud;
w = ua + ub;
z = uc - ud;

printf("ux is \t %#X\n", ux);
printf("uy is \t %#X\n", uy);
printf("w is \t %#X\n", w);
printf("z is \t %#X\n", z);

/* The following shows what happens with
'overflow' when adding

bytes together */

uoverflow = ubig + ubig;
ioverflow = ubig + ubig;
ucast = (unsigned char) ioverflow;
printf("uoverflow is \t %#X\n", uoverflow);
printf("ioverflow is \t %#X\n", ioverflow);
printf("icast is \t %#X\n", ucast);

return 0;}

Results

• ux is 0XFF
• uy is 0XFF
• w is 0XFF
• z is 0XFFFFFFFF
• uoverflow is 0XFE
• ioverflow is 0X1FE
• icast is 0XFE

Adding signed chars (signedadd.c)
#include <stdio.h>
main() {

char a = 0, b = -1, x;
char c = 0, d = 1, y;
int w, z;
char big = '\xff', overflow, bytecast;
int ioverflow;

x = a + b;
y = c - d;
w = a + b;
z = c - d;

printf("x is \t %#X\n", x);
printf("y is \t %#X\n", y);
printf("w is \t %#X\n", w);
printf("z is \t %#X\n", z);

/* The following shows what happens with
'overflow' when adding

bytes together */

overflow = big + big;
ioverflow = big + big;
bytecast = (char) ioverflow;
printf("overflow is \t %#X\n", overflow);
printf("ioverflow is \t %#X\n", ioverflow);
printf("bytecast is \t %#X\n", bytecast);

return 0;

Results

• x is 0XFFFFFFFF
• y is 0XFFFFFFFF
• w is 0XFFFFFFFF
• z is 0XFFFFFFFF
• overflow is 0XFFFFFFFE
• ioverflow is 0XFFFFFFFE
• bytecast is 0XFFFFFFFE

The Unix “od” command

• Let us run command:
• od -t x1 text

• Displays
• 0000000 61 62 63 64 65 66

67 0a 0000010

• We see that the seven
letters are displayed
seven chars in
hexadecimal
representation: 61 to 67.

Text:

abcdefg

• Next, we will examine the “od” display of the
result of bit-wise xor, char addition, and bit-
rotation
– These are three cipher operations used in Lab 6

Review the example on bit rotation
/* Purpose: showing result of bit
rotation */
#include <stdio.h>

main() {

char a = '\x0f';
char b, c;

unsigned char ua = '\x0f';
unsigned char ub, uc;

printf("a is \t %#X\n", a);

b = a >> 2;
printf("b is \t %#X\n", b);
c = a << 6;
printf("c is \t %#X\n", c);
a = b | c;

printf("a is \t %#X\n", a);
printf("ua is \t %#X\n", ua);
ub = ua >> 2;
printf("ub is \t %#X\n", ub);
uc = ua << 6;
printf("uc is \t %#X\n", uc);
ua = ub | uc;
printf("ua is \t %#X\n", ua);
ua = '\x0f';
ua = ua >> 2 | ua << 6;

printf("rotation of ua is \t%#X\n", (unsigned
char) ua >> 2 | ua << 6);
}

