
23

Recursive structures
(aka self-referential structures)

• What is the meaning of

struct rec { int i; struct rec r; }

• A structure can not refer itself directly.
• The only way to create a recursive structure is to use

pointers

struct node {
char * word;
int count;
struct node *left,*right;

}
• The tag is useful here

Run recurrence.c
to see the size of
the struct

24

Unions

• typedef union {int units; float kgs;} amount;

• Unions can hold different type of values at different times
• Definition similar to a structure but

– storage is shared between members
– only one field present at a time
– programmers must keep track of what it is stored

• Useful for defining values that range over different types
– Critically, the memory allocated for these types is shared

• Memory layout
– All members have offset zero from the base
– Size is big enough to hold the widest member
– The alignment is appropriate for all the types in the union

25

Union operations

• The same operations as the ones on structures
– Assignment,
– Copying as a unit
– Taking the address
– Accessing a member

• Can be initialized with a value of the type of its first member
• Example

typedef union { int units; float kgs;} amount;

typedef struct {
char item[15]; float price;
int type; amount qty;

} product;

26

Safety

• C provides no guarantees that unions are correctly
accessed (see union.c */

void print(amount x){printf("%d\n", x.units);}

int main () {
product p[10];

memcpy(p[0].item, "toys", strlen("toys")+1);
p[0].price = 2.0;
p[0].type = 2;
p[0].qty.kgs = 3.0;
print(p[0].qty); /* see the garbled print */

}

27

Correct Way
void check(int len, product* store) {

for (int i=0; i<len; i++) {

printf("%s\n",store->item);

switch (store->type) {

case 1:

printf("%d units\n", store->qty.units);

store++;

break;

case 2:

printf("%f kgs\n", store->qty.kgs);

store++;

break;

}

}

}

28

Function Pointers

• C permits functions to be treated like any other
data object
– A function pointer can be

• supplied as an argument
• returned as a result
• stored in any array
• compared

• We’ll use this for Lab 6 (cypher)
• Main caveat:

– *function_pointer does not have an lvalue

29

Example: Operating on a List

• Operating on a list of integers…
union VAL {int i_val;

float f_val;}

struct list {
union VAL v;
struct list * next;

};

typedef struct list List;

30

Creating lists...
#include <stdio.h>

#include <stdlib.h>

List *makeList(int n) {

List *l, *l1 = NULL; int i;

for (i = 0; i < n; i++) {

l = malloc(sizeof(List));

l->v.i_val = 0;

l->next = l1;

l1 = l;

}

return l;

}

Given a number n,
build a list of length n init to
0; (picture)

31

Creating lists… (2)

#include <stdio.h>

#include <stdlib.h>

List *makeList(int n) {

List *l, *l1 = NULL; int i;

for (i = 0; i < n; i++) {

l = malloc(sizeof(List));

l->v.f_val = 1.0;

l->next = l1;

l1 = l;

}

return l;

}

Given a number n,
build a list of length n init to
1 (picture)

32

Creating lists… (3)

• We can imagine many different ways of
populating a list
– The overall control structure remains the same
– Only the computation responsible for producing

the next element changes

• How can we abstract the definition to reuse
the same control structure for the different
kinds of lists we might want?

33

Function pointers

• Supply a pointer to the function that computes
values

void init_i(union VAL *v){
v->i_val = 0;
}

void init_f(union VAL *v) {
v->f_val = 1.0;
}

34

Abstraction revisited

List *makeGenList (int n, void (*f)(union VAL *))
{

List * l, *l1 = NULL; int i;

for (i = 0; i < n; i++) {

l = (List*) malloc(sizeof(List));

(*f)(&(l->v));

l->next = l1;

l1 = l;

};

return l;

}

makeGenList(10,init_i);

makeGenList(10,init_f);

Expects a function
pointer that points to
a function which
yields an int, and
which expects an int
argumentApplies (invokes) the

function pointed to by f
with argument n

Lab 6

• Use function pointers
• Use bit-wise operations
• We now give some examples of bit-wise

operations

3
6

Bitwise operations
• Boolean algebra has basic operations for manipulating sets

• & bit-wise AND: set intersection
• | bit-wise OR: set union
• ^ bit-wise exclusive OR: which members are different?
• ~ set complement

• A set of n element can be represented as vector of n bits
– {0, 1, 4} can be represented 00001011

• Any integral type can be treated as bit vector
– preferably use unsigned values

XOR as a cypher operation

• In data encryption algorithms, the bit wise XOR is
often used as an elementary coding function

• Let D be an n-bit piece of data, K be an n-bit key
• We can have E = D ^ K be the encrypted version

of D.
• Notice that to decrypt such a simple encrypted

data, we can simply do E ^ K to retrieve D

Bit shifting and rotation

• Bit shifting is useful for reading a particular bit
in a word
– E.g. to read the k-th bit of a word x (counting from

the least significant bit position 0), we right shift x
by k bit position, obtain y.

– We then do y & 1 to get z. If z == 1, then the k-th
bit of x is 1. Otherwise it is 0. Why?

• Another elementary cypher operation could
be bit rotation

An example of bit rotation
/* Purpose: showing result of bit
rotation */
#include <stdio.h>

main() {

char a = '\x0f';
char b, c;

unsigned char ua = '\x0f';
unsigned char ub, uc;

printf("a is \t %#X\n", a);

b = a >> 2;
printf("b is \t %#X\n", b);
c = a << 6;
printf("c is \t %#X\n", c);
a = b | c;

printf("a is \t %#X\n", a);
printf("ua is \t %#X\n", ua);
ub = ua >> 2;
printf("ub is \t %#X\n", ub);
uc = ua << 6;
printf("uc is \t %#X\n", uc);
ua = ub | uc;
printf("ua is \t %#X\n", ua);
ua = '\x0f';
ua = ua >> 2 | ua << 6;

/* printf("rotation of ua is \t%#X\n",
(unsigned char) ua >> 2 | ua << 6);

printf("rotation of ua is \t%#X\n", ua);
*/

printf("rotation of ua is \t%#X\n",
(unsigned char) ua >
> 2 | ua << 6);
}

