CS 24000 - Programming In C

Week Seven: More on memory
operations, and structures.
Union, function pointer, and bit
operations

Zhiyuan Li
Department of Computer Science
Purdue University, USA

Any case of cheating will handled by the Dean of students

You are encouraged to discuss problems and approaches but:
— Sharing solution is not allowed.
— Buying solutions is not allowed.
— Copying code from the internet is not allowed.
— Copying code from other students is not allowed.
— Copying partial code from other students is not allowed.

http://homes.cerias.purdue.edu/~spaf/cpolicy
.html

Due to the persistence of cheating cases found in previous labs,
we are applying a new penalty to all cheating cases for the rest
of the semester, starting with Lab 4 and Midterm 1:

A student found involved in a cheating case (concerning
labs/projects/exams), regardless whether it is the first offense
or not, will be given an "F" grade for the entire course.

realloc (void* p,size t s)
- q

e Changes the size of the memory block pointed to by p to s bytes
 Contents unchanged for the T bytes, where T = min (old size, new size)
 Newly alloc’d memory is uninitialized.

e Unless p==NULL, it must come from malloc, calloc or realloc.

e |fp==NULL, equivalenttomalloc (size)

e |f s==0, equivalentto free (ptr)

e Returns pointer to alloc’d memory, may be different from p, or NULL if the request
fails or if s==

e If fails, original block left untouched, i.e. it is not freed or moved

e How do we know it failed?

calloc(size t n, size t s)
- q

e Allocates memory for an array of n elements of s
bytes each and returns a pointer to the allocated
memory.

e The memory content is set to zero

e The value returned is a pointer to the allocated memory or NULL

p = (char*) calloc(10,1); /*alloc
10 bytes */

if (p == NULL) { /* panic */ }

memcpy (void *dest,const void *src,size t n)

1 N
* In GNU Clibrary, declared in string.h
e Copies n bytes from src to dest
* Returns dest

 Does not check for overflow on copy

[*#include <stdlib.h>

*/

#include <stdio.h>

#finclude <string.h>

main () {

char buf[100], *newbuf;

char const *src = "Hi there!";
memcpy(buf, src, 10); /*copy 10 chars */
printf("buf is \t%s\n", buf);

}

5

Another example (memcpy2.c)

[*#include <stdlib.h>
%

/
#include <stdio.h>
#include <string.h>

main () {

char buf[100], *newbuf; Draw a

int type ='a’; o

char retype = 'a’; picture to

char const src[20] = "Hi there!"; show padd|ng

memcpy(buf, &type, 4); /*copy an integer */

memcpy(buf+4, src, 10); /*copy 10 chars */

printf("buf is \t%s\n", buf);

memcpy(buf, &retype, 1); /*copy an integer */

memcpy(buf+1, src, 10); /*copy 10 chars */

printf("buf is \t%s\n", buf); /* display is different from above*/
}

memset (void *s, int c, size t n)
- J ...

e Sets the first n bytes in s to the value of ¢
— (c is converted to an unsigned char)

e Returns s

e Does not check for overflow

o memset (mess, 0, 100);

Use malloc to allocate an array to store
several strings of variable lengths

#include <stdlib.h> /* StringArray.c */
#include <stdio.h> /* Similar to hash tables */
#include <string.h> /* in Project 1 */

main () {

char *buf[4];
char const *srcl = "Hi there!";
char const *src2 = "Hi!"; Draw a picture

char const *src3 = "Howdy!";
char const *src4 = "Holla!"; For hash table

buf[0] = (char *) malloc(strlen(srcl));
memcpy(buf[0], srcl, strlen(srcl));
printf("buf0] is \t%s\n", buf[0]);
buf[3] = (char *) malloc(strlen(src3));
memcpy(buf[3], src3, strlen(src3));
printf("buf3] is \t%s\n", buf[3]);

}

 We now discuss more complex issues of using
structures

Txgedef
]

e Allows us to create new data name types;

. typedef int len;

. len 11, 12;

g typedef struct { len x, y;} pos;
. pos pl, p2;

* Notice the difference. No struct needed when
using the type.

e Use typedef to define pointer types and
function types

10

Structs In structs...
I

A structure can contain a member of another structure

struct pos { int x; int y; };

struct slot {
struct pos p:;
char c;

} s;
e Accessxvia:s.p.x

* The size of slot is exactly the same as if the fields of pos were
written inline in slot

* |n terms of memory consumption and access speed, there is no cost
to nested structures

* Let us look at the next program

11

#include <stdio.h> /* structstruct.c */
struct pos { int x; inty; };
struct slot {
struct pos p;
charc;
} myslot;

main() {
struct slot localslot;

printf("sizeof struct slot\t%d\n", (int) sizeof(struct slot));
printf("sizeof struct pos \t%d\n", (int) sizeof(struct pos));
printf("sizeof local slot \t%d\n", (int) sizeof(localslot));

printf("address of myslot\t%p\n", &myslot);
printf("address of myslot.p\t%p\n", &myslot.p);
printf("address of myslot.p.x\t%p\n", &myslot.p.x);
printf("address of myslot.p.y\t%p\n", &myslot.p.y);
printf("address of myslot.c\t%p\n", &myslot.c);

Structures and functions
1

e Structures can be initialized, copied as any other value
 They can not be compared directly

— instead one must write code to compare members one by one

— Or compare the addresses of the structures, to see whether the same
structure (in the same memory location) has two aliases.

* Functions can return structure instances

— What is the cost in terms of memory allocation, copy, and performance?
* See the next code example

— What’s the difference between arrays and structures in this sense?

struct pt { int x, y; };

struct pt mkpt(int x, int y) {
struct pt t; t.x = x; t.y = y; return t;

struct pt pl = mkpt (0, 0);

13

Compare the locations of two
structures (before and after returning)

#include <stdio.h> /* returnstruct.c */

structpt{intx,vy; };
struct pt mkpt(int x, int y) {
structptt,; tx=xty=y;
printf("Inside mkpt\n");
printf("address of t.x\t%p\n", &t.x);
printf("address of t.y\t%p\n", &t.y);
printf("exiting mkpt\n");
return t;
}
main (){
struct pt p1 = mkpt(0, 0);
printf("address of p1.x\t%p\n", &p1l.x);
printf("address of p1.y\t%p\n", &pl.y);

Structures and functions
I

 What happens when a structures is passed as an
argument

struct Fs { int a; };

typedef struct Fs F;

F doIt(F b) {
b.a = 13; return b;

}

int main () {
F £ ={ 100 }; £ = doIt(f);
printf ("%d\n", f.a);

}

15

Examine the addresses

#include <stdio.h> /* passstruct.c */

struct Fs { int a; };
typedef struct Fs F;
F dolt(F b) {
/* note the difference from using struct tag */
printf("address of structure b\t%p\n", &b);
b.a =13; return b;

}

int main () {
Ff={100};
printf("address of structure f\t%p\n", &f);
printf("f.a before calling dolt \t%d\n", f.a);
f = dolt(f);
printf("f.a after calling dolt \t%d\n", f.a);
printf("address of f \t%p\n", &f);

Copying versus passing pointers

 We see that a lot of copying is involved in
directly passing structures as parameters and
returning structures

— This is potentially quite expensive for large
structures or frequent function calls

e Alternatively one can pass and return point to
a structure

— To save the copying cost

e Alternatively

struct Fs { int a; };

typedef struct Fs F
void doIt(F* b) { b->a = 13; }

int main () {

F £ = { 100 }; doIt(&f);
printf ("%d\n", f£.a);

18

#include <stdio.h> /* passpointer.c */

struct Fs { int a; };

typedef struct Fs F;

void dolt(F* b) {
printf("value of pointer b\t%p\n", b);
b->a =13;

}

int main () {
Ff={100};
printf("address of structure f\t%p\n", &f);
printf("f.a before calling dolt \t%d\n", f.a);
dolt(&f);
printf("f.a after calling dolt \t%d\n", f.a);

}

Dangling pointer dereference

* One must be careful with dangling pointer
dereference after a function returns
— |f a pointer points to a local variable of a function

— After that function returns, the variable may be
overwritten by new function calls

See how dead local variables may be overwritten

#include <stdio.h> /* dangling.c */
structpt{intx,vy; };
struct pt * mkpt(int x, inty) {
structptt, t.x=x,ty=y,
printf("Inside mkpt\n");
printf("address of t.x\t%p\n", &t.x);
printf("address of t.y\t%p\n", &t.y);
printf("exiting mkpt\n");
return &t;
}
int fibo(int a){
if (@a<2)return1;
return fibo(a-1)+fibo(a-2);
}
main (){
struct pt *p1 = mkpt(0, 0);
fibo(10);
printf("p1->x\t%d\n", p1->x);
printf("p1l->y\t%d\n", p1->y);

Memory padding for structures
N

e Data alighment: when the processor accesses the
memory reads more than one byte, usually 4
bytes on a 32-bit platform

 What if the data structure is not a multiple of 4?

— Padding: some unused bytes are inserted in the
structure by the compiler

— Note: memory allocation also needs word alignment

— Let us print out the memory addresses of struct
members

22

