
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week Seven: More on memory
operations, and structures.
Union, function pointer, and bit
operations

2 Academic integrity
• Any case of cheating will handled by the Dean of students
• You are encouraged to discuss problems and approaches but:

– Sharing solution is not allowed.
– Buying solutions is not allowed.
– Copying code from the internet is not allowed.
– Copying code from other students is not allowed.
– Copying partial code from other students is not allowed.

• http://homes.cerias.purdue.edu/~spaf/cpolicy
.html

• Due to the persistence of cheating cases found in previous labs,
we are applying a new penalty to all cheating cases for the rest
of the semester, starting with Lab 4 and Midterm 1:

• A student found involved in a cheating case (concerning
labs/projects/exams), regardless whether it is the first offense
or not, will be given an "F" grade for the entire course.

3

realloc(void* p,size_t s)

• Changes the size of the memory block pointed to by p to s bytes

• Contents unchanged for the T bytes, where T = min (old size, new size)

• Newly alloc’d memory is uninitialized.

• Unless p==NULL, it must come from malloc, calloc or realloc.

• If p==NULL, equivalent to malloc(size)

• If s==0, equivalent to free(ptr)

• Returns pointer to alloc’d memory, may be different from p, or NULL if the request
fails or if s==0

• If fails, original block left untouched, i.e. it is not freed or moved

• How do we know it failed?

4

calloc(size_t n, size_t s)

• Allocates memory for an array of n elements of s
bytes each and returns a pointer to the allocated
memory.

• The memory content is set to zero
• The value returned is a pointer to the allocated memory or NULL

p = (char*) calloc(10,1); /*alloc

10 bytes */

if(p == NULL) { /* panic */ }

5

memcpy(void *dest,const void *src,size_t n)

• In GNU C library, declared in string.h
• Copies n bytes from src to dest
• Returns dest
• Does not check for overflow on copy

/*#include <stdlib.h>
*/
#include <stdio.h>
#include <string.h>
main () {
char buf[100], *newbuf;
char const *src = "Hi there!";
memcpy(buf, src, 10); /*copy 10 chars */
printf("buf is \t%s\n", buf);
}

Another example (memcpy2.c)
/*#include <stdlib.h>
*/
#include <stdio.h>
#include <string.h>
main () {
char buf[100], *newbuf;
int type = 'a';
char retype = 'a';
char const src[20] = "Hi there!";
memcpy(buf, &type, 4); /*copy an integer */
memcpy(buf+4, src, 10); /*copy 10 chars */
printf("buf is \t%s\n", buf);
memcpy(buf, &retype, 1); /*copy an integer */
memcpy(buf+1, src, 10); /*copy 10 chars */
printf("buf is \t%s\n", buf); /* display is different from above*/

}

Draw a
picture to
show padding

7

memset(void *s, int c, size_t n)

• Sets the first n bytes in s to the value of c
– (c is converted to an unsigned char)

• Returns s
• Does not check for overflow

• memset(mess, 0, 100);

Use malloc to allocate an array to store
several strings of variable lengths

#include <stdlib.h> /* StringArray.c */
#include <stdio.h> /* Similar to hash tables */
#include <string.h> /* in Project 1 */
main () {

char *buf[4];
char const *src1 = "Hi there!";
char const *src2 = "Hi!";
char const *src3 = "Howdy!";
char const *src4 = "Holla!";

buf[0] = (char *) malloc(strlen(src1));
memcpy(buf[0], src1, strlen(src1));
printf("buf0] is \t%s\n", buf[0]);
buf[3] = (char *) malloc(strlen(src3));
memcpy(buf[3], src3, strlen(src3));
printf("buf3] is \t%s\n", buf[3]);

}

Draw a picture
For hash table

• We now discuss more complex issues of using
structures

10

Typedef

• Allows us to create new data name types;
• typedef int len;

• len l1, l2;

• typedef struct { len x, y;} pos;

• pos p1, p2;

• Notice the difference. No struct needed when
using the type.

• Use typedef to define pointer types and
function types

11

Structs in structs…

• A structure can contain a member of another structure

struct pos { int x; int y; };

struct slot {
struct pos p;
char c;

} s;

• Access x via: s.p.x

• The size of slot is exactly the same as if the fields of pos were
written inline in slot

• In terms of memory consumption and access speed, there is no cost
to nested structures

• Let us look at the next program

#include <stdio.h> /* structstruct.c */
struct pos { int x; int y; };
struct slot {

struct pos p;
char c;

} myslot;

main() {
struct slot localslot;

printf("sizeof struct slot\t%d\n", (int) sizeof(struct slot));
printf("sizeof struct pos \t%d\n", (int) sizeof(struct pos));
printf("sizeof local slot \t%d\n", (int) sizeof(localslot));

printf("address of myslot\t%p\n", &myslot);
printf("address of myslot.p\t%p\n", &myslot.p);
printf("address of myslot.p.x\t%p\n", &myslot.p.x);
printf("address of myslot.p.y\t%p\n", &myslot.p.y);
printf("address of myslot.c\t%p\n", &myslot.c);

}

13

Structures and functions

• Structures can be initialized, copied as any other value
• They can not be compared directly

– instead one must write code to compare members one by one
– Or compare the addresses of the structures, to see whether the same

structure (in the same memory location) has two aliases.
• Functions can return structure instances

– What is the cost in terms of memory allocation, copy, and performance?
• See the next code example

– What’s the difference between arrays and structures in this sense?

struct pt { int x, y; };

struct pt mkpt(int x, int y) {
struct pt t; t.x = x; t.y = y; return t;

}

struct pt p1 = mkpt(0, 0);

Compare the locations of two
structures (before and after returning)

#include <stdio.h> /* returnstruct.c */

struct pt { int x, y; };
struct pt mkpt(int x, int y) {

struct pt t; t.x = x; t.y = y;
printf("Inside mkpt\n");
printf("address of t.x\t%p\n", &t.x);
printf("address of t.y\t%p\n", &t.y);
printf("exiting mkpt\n");
return t;

}
main (){

struct pt p1 = mkpt(0, 0);
printf("address of p1.x\t%p\n", &p1.x);
printf("address of p1.y\t%p\n", &p1.y);

}

15

Structures and functions

• What happens when a structures is passed as an
argument

struct Fs { int a; };

typedef struct Fs F;

F doIt(F b) {
b.a = 13; return b;

}

int main () {
F f = { 100 }; f = doIt(f);
printf("%d\n", f.a);

}

Examine the addresses
#include <stdio.h> /* passstruct.c */

struct Fs { int a; };
typedef struct Fs F;
F doIt(F b) {

/* note the difference from using struct tag */
printf("address of structure b\t%p\n", &b);
b.a = 13; return b;

}

int main () {
F f = { 100 };

printf("address of structure f\t%p\n", &f);
printf("f.a before calling doIt \t%d\n", f.a);
f = doIt(f);
printf("f.a after calling doIt \t%d\n", f.a);

printf("address of f \t%p\n", &f);
}

Copying versus passing pointers

• We see that a lot of copying is involved in
directly passing structures as parameters and
returning structures
– This is potentially quite expensive for large

structures or frequent function calls

• Alternatively one can pass and return point to
a structure
– To save the copying cost

18

• Alternatively
struct Fs { int a; };

typedef struct Fs F

void doIt(F* b) { b->a = 13; }

int main () {

F f = { 100 }; doIt(&f);

printf("%d\n", f.a);

}

#include <stdio.h> /* passpointer.c */

struct Fs { int a; };
typedef struct Fs F;
void doIt(F* b) {

printf("value of pointer b\t%p\n", b);
b->a = 13;

}

int main () {
F f = { 100 };

printf("address of structure f\t%p\n", &f);
printf("f.a before calling doIt \t%d\n", f.a);

doIt(&f);
printf("f.a after calling doIt \t%d\n", f.a);

}

Dangling pointer dereference

• One must be careful with dangling pointer
dereference after a function returns
– If a pointer points to a local variable of a function
– After that function returns, the variable may be

overwritten by new function calls

See how dead local variables may be overwritten
#include <stdio.h> /* dangling.c */
struct pt { int x, y; };
struct pt * mkpt(int x, int y) {

struct pt t; t.x = x; t.y = y;
printf("Inside mkpt\n");
printf("address of t.x\t%p\n", &t.x);
printf("address of t.y\t%p\n", &t.y);
printf("exiting mkpt\n");
return &t;

}
int fibo(int a){

if (a < 2) return 1;
return fibo(a-1)+fibo(a-2);

}
main (){

struct pt *p1 = mkpt(0, 0);
fibo(10);
printf("p1->x\t%d\n", p1->x);
printf("p1->y\t%d\n", p1->y);

}

22

Memory padding for structures

• Data alignment: when the processor accesses the
memory reads more than one byte, usually 4
bytes on a 32-bit platform

• What if the data structure is not a multiple of 4?

– Padding: some unused bytes are inserted in the
structure by the compiler

– Note: memory allocation also needs word alignment

– Let us print out the memory addresses of struct
members

