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Any case of cheating will handled by the Dean of students

You are encouraged to discuss problems and approaches but:
— Sharing solution is not allowed.
— Buying solutions is not allowed.
— Copying code from the internet is not allowed.
— Copying code from other students is not allowed.
— Copying partial code from other students is not allowed.

http://homes.cerias.purdue.edu/~spaf/cpolicy
.html

Due to the persistence of cheating cases found in previous labs,
we are applying a new penalty to all cheating cases for the rest
of the semester, starting with Lab 4 and Midterm 1:

A student found involved in a cheating case (concerning
labs/projects/exams), regardless whether it is the first offense
or not, will be given an "F" grade for the entire course.



realloc (void* p,size t s)
- q

e Changes the size of the memory block pointed to by p to s bytes
 Contents unchanged for the T bytes, where T = min (old size, new size)
 Newly alloc’d memory is uninitialized.

e Unless p==NULL, it must come from malloc, calloc or realloc.

e |fp==NULL, equivalenttomalloc (size)

e |f s==0, equivalentto free (ptr)

e Returns pointer to alloc’d memory, may be different from p, or NULL if the request
fails or if s==

e If fails, original block left untouched, i.e. it is not freed or moved

e How do we know it failed?



calloc(size t n, size t s)
- q

e Allocates memory for an array of n elements of s
bytes each and returns a pointer to the allocated
memory.

e The memory content is set to zero

e The value returned is a pointer to the allocated memory or NULL

p = (char*) calloc(10,1); /*alloc
10 bytes */

if (p == NULL) { /* panic */ }



memcpy (void *dest,const void *src,size t n)

1 N
* In GNU Clibrary, declared in string.h
e Copies n bytes from src to dest
* Returns dest

 Does not check for overflow on copy

[*#include <stdlib.h>

*/

#include <stdio.h>

#finclude <string.h>

main () {

char buf[100], *newbuf;

char const *src = "Hi there!";
memcpy(buf, src, 10); /*copy 10 chars */
printf("buf is \t%s\n", buf);

}
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Another example (memcpy2.c)

[*#include <stdlib.h>
%

/
#include <stdio.h>
#include <string.h>

main () {

char buf[100], *newbuf; Draw a

int type ='a’; o

char retype = 'a’; picture to

char const src[20] = "Hi there!"; show padd|ng

memcpy(buf, &type, 4); /*copy an integer */

memcpy(buf+4, src, 10); /*copy 10 chars */

printf("buf is \t%s\n", buf);

memcpy(buf, &retype, 1); /*copy an integer */

memcpy(buf+1, src, 10); /*copy 10 chars */

printf("buf is \t%s\n", buf); /* display is different from above*/
}



memset (void *s, int c, size t n)
- J ...

e Sets the first n bytes in s to the value of ¢
— (c is converted to an unsigned char)

e Returns s

e Does not check for overflow

o memset (mess, 0, 100);



Use malloc to allocate an array to store
several strings of variable lengths

#include <stdlib.h> /* StringArray.c */
#include <stdio.h> /* Similar to hash tables */
#include <string.h> /* in Project 1 */

main () {

char *buf[4];
char const *srcl = "Hi there!";
char const *src2 = "Hi!"; Draw a picture

char const *src3 = "Howdy!";
char const *src4 = "Holla!"; For hash table

buf[0] = (char *) malloc(strlen(srcl));
memcpy(buf[0], srcl, strlen(srcl));
printf("buf0] is \t%s\n", buf[0]);
buf[3] = (char *) malloc(strlen(src3));
memcpy(buf[3], src3, strlen(src3));
printf("buf3] is \t%s\n", buf[3]);

}



 We now discuss more complex issues of using
structures



Txgedef
]

e Allows us to create new data name types;

. typedef int len;

. len 11, 12;

g typedef struct { len x, y;} pos;
. pos pl, p2;

* Notice the difference. No struct needed when
using the type.

e Use typedef to define pointer types and
function types
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Structs In structs...
I

A structure can contain a member of another structure

struct pos { int x; int y; };

struct slot {
struct pos p:;
char c;

} s;
e Accessxvia:s.p.x

* The size of slot is exactly the same as if the fields of pos were
written inline in slot

* |n terms of memory consumption and access speed, there is no cost
to nested structures

* Let us look at the next program
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#include <stdio.h> /* structstruct.c */
struct pos { int x; inty; };
struct slot {
struct pos p;
charc;
} myslot;

main() {
struct slot localslot;

printf("sizeof struct slot\t%d\n", (int) sizeof(struct slot));
printf("sizeof struct pos \t%d\n", (int) sizeof(struct pos));
printf("sizeof local slot \t%d\n", (int) sizeof(localslot));

printf("address of myslot\t%p\n", &myslot);
printf("address of myslot.p\t%p\n", &myslot.p);
printf("address of myslot.p.x\t%p\n", &myslot.p.x);
printf("address of myslot.p.y\t%p\n", &myslot.p.y);
printf("address of myslot.c\t%p\n", &myslot.c);



Structures and functions
1

e Structures can be initialized, copied as any other value
 They can not be compared directly

— instead one must write code to compare members one by one

— Or compare the addresses of the structures, to see whether the same
structure (in the same memory location) has two aliases.

* Functions can return structure instances

— What is the cost in terms of memory allocation, copy, and performance?
* See the next code example

— What’s the difference between arrays and structures in this sense?

struct pt { int x, y; };

struct pt mkpt(int x, int y) {
struct pt t; t.x = x; t.y = y; return t;

struct pt pl = mkpt (0, 0);
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Compare the locations of two
structures (before and after returning)

#include <stdio.h> /* returnstruct.c */

structpt{intx,vy; };
struct pt mkpt(int x, int y) {
structptt,; tx=xty=y;
printf("Inside mkpt\n");
printf("address of t.x\t%p\n", &t.x);
printf("address of t.y\t%p\n", &t.y);
printf("exiting mkpt\n");
return t;
}
main (){
struct pt p1 = mkpt(0, 0);
printf("address of p1.x\t%p\n", &p1l.x);
printf("address of p1.y\t%p\n", &pl.y);



Structures and functions
I

 What happens when a structures is passed as an
argument

struct Fs { int a; };

typedef struct Fs F;

F doIt(F b) {
b.a = 13; return b;

}

int main () {
F £ ={ 100 }; £ = doIt(f);
printf ("%d\n", f.a);

}
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Examine the addresses

#include <stdio.h> /* passstruct.c */

struct Fs { int a; };
typedef struct Fs F;
F dolt(F b) {
/* note the difference from using struct tag */
printf("address of structure b\t%p\n", &b);
b.a =13; return b;

}

int main () {
Ff={100};
printf("address of structure f\t%p\n", &f);
printf("f.a before calling dolt \t%d\n", f.a);
f = dolt(f);
printf("f.a after calling dolt \t%d\n", f.a);
printf("address of f \t%p\n", &f);



Copying versus passing pointers

 We see that a lot of copying is involved in
directly passing structures as parameters and
returning structures

— This is potentially quite expensive for large
structures or frequent function calls

e Alternatively one can pass and return point to
a structure

— To save the copying cost



e Alternatively

struct Fs { int a; };

typedef struct Fs F
void doIt(F* b) { b->a = 13; }

int main () {

F £ = { 100 }; doIt(&f);
printf ("%d\n", f£.a);
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#include <stdio.h> /* passpointer.c */

struct Fs { int a; };

typedef struct Fs F;

void dolt(F* b) {
printf("value of pointer b\t%p\n", b);
b->a =13;

}

int main () {
Ff={100};
printf("address of structure f\t%p\n", &f);
printf("f.a before calling dolt \t%d\n", f.a);
dolt(&f);
printf("f.a after calling dolt \t%d\n", f.a);

}



Dangling pointer dereference

* One must be careful with dangling pointer
dereference after a function returns
— |f a pointer points to a local variable of a function

— After that function returns, the variable may be
overwritten by new function calls



See how dead local variables may be overwritten

#include <stdio.h> /* dangling.c */
structpt{intx,vy; };
struct pt * mkpt(int x, inty) {
structptt, t.x=x,ty=y,
printf("Inside mkpt\n");
printf("address of t.x\t%p\n", &t.x);
printf("address of t.y\t%p\n", &t.y);
printf("exiting mkpt\n");
return &t;
}
int fibo(int a){
if (@a<2)return1;
return fibo(a-1)+fibo(a-2);
}
main (){
struct pt *p1 = mkpt(0, 0);
fibo(10);
printf("p1->x\t%d\n", p1->x);
printf("p1l->y\t%d\n", p1->y);



Memory padding for structures
N

e Data alighment: when the processor accesses the
memory reads more than one byte, usually 4
bytes on a 32-bit platform

 What if the data structure is not a multiple of 4?

— Padding: some unused bytes are inserted in the
structure by the compiler

— Note: memory allocation also needs word alignment

— Let us print out the memory addresses of struct
members
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