
CS 24000 - Programming In C

Zhiyuan Li
Department of Computer Science

Purdue University, USA

Week Six: Review for Midterm 1

Other Unary operators

• The indirection operator “*” is also called the
“pointer dereference” operator

* E
– E is a pointer to

• a piece of data, e.g. scalar, array, structure, etc
– If E points to a simple variable (i.e. scalar, array element,

structure member that is a scalar, etc, then *E has an lvalue
• or a function

– What is &*p?
– Let’s examine &*p and p and see if they are the

same (run cast.c)

• The ! operator (the negation operator)
– Operand must be of arithmetic type or be a pointer, and

the result is 1 if the value of its operand equal to 0, and 0
otherwise. The type of the result is int.

– Thus, !p has the value of 0 for all non-NULL pointer p.
• Unary + and –

– Their mathematical meaning is obvious
– The nuance concerning the data size of type promotion

will be discussed later in the semester

• What is the value of -(-x) and - - x
• What is the value of !(!x) and !!x

• Multiplicative Operators
*, /, and %
Left associative

• Additive Operators
+, -
Left associative

• Note on pointer arithmetic
– A special kind of addition concerning pointers
– p + int_expression
– int_expression is first converted to an address offset by

multiplying it by the size of the object to which the pointer
points.

– The sum is a pointer of the same type as the original pointer,
and points to another object in the same array, appropriately
offset from the original object.

• We have explained before

Arithmetic binary operations (by precedence levels)

• The next level is Shift Operators
E1 >> E2

E1 (interpreted as a bit pattern) right-shifted E2 bits
E1 << E2

E1 (interpreted as a bit pattern) left-shifted E2 bits
• Left associative
• Integral type for both E1 and E2

• a + b >> c + d
• Both additions are performed first before doing >>

• The impact on the sign bit and the type promotion will
be discussed later in the semester

• We may use shift operations extract control bits from
control words in future labs/projects

6

Relational and Logic operations
Listed by Precedence Levels

• Relational operators: <, <=, >, >=
– Compare any two types and return 1 for true and 0 for

false
• Equality operators ==, !=

a<b == c<d is 1 whenever a<b and c<d have the same
truth-value.

• bit-wise operators
– bit-wise AND
– bit-wise xor
– bit-wise OR

• logical AND OR && higher than ||
– Operands: 0 is false, all other values true
– Result: return 0 or 1

Short-circuit evaluation of logical expressions

• Evaluation order follows the precedence levels and
appropriate associativity

• Evaluation terminates as soon as the final truth value can be
determined, as in Java

• w/o performing the rest of the operations

1 && 0 0 1 || 0 1 !42 0

2 > 10 && (a < b || c < d) 0 Not performing &&, <, ||

a!=0 && c/a > 4 if a is 0, then c/a not performed

p && *p

• If p turns out to be a null pointer, return 0 without evaluation *p

• Next level, conditional operator
E1 ? E2 : E3

• E1 is first evaluated (possibly generating side
effects)

• If E1 evaluates to true then evaluate E2, whose
result will be the result of the entire expression

• If E1 evaluates to false then evaluate E3, whose
result will be the result of the entire expression

• Further lower level, assignment operators
=, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

– These are binary operators
– Left operand must have an lvalue

• E1 op= E2 is equivalent to E1 = E1 op (E2)
except that E1 is evaluated only once
– The equivalence is true only if E1 does not have

any side effect
– Is “*p++ += 1;” same as “*p++ = *p++ + 1;” ?

Statements

• Many statements in C are like those in Java

1
1

Switch

• The switch statement allows multi-way
branching, it takes an integer valued expression
and a number of constant-labeled branches

• Syntax
switch (expression) {

case const-expr: statements

case const-expr: statements

default: statements

}

Without the break, the execution would have
continued to the following statements

Example: use of break and default
#include <stdio.h> /* students should experiment with
overlapping cases and no breaks */

int main() {

int i, odd=0, even=0;
for (i=0;i<10;i++)

switch (i) {
case 0: case 2: case 4: case 6: case 8: case 10:

even++;
break; /* important to break */

case 1: case 3: case 5: case 7: case 9:
odd++;
break; /* important to break */

default: odd++;
}

printf("odd numbers \t%d\n", odd);
printf("even numbers \t%d\n", even);

}

1
3

Break and continue
• break leaves the current loop or switch,
continue goes to the top of the loop

while (1) {

for(int i=0;i<10;i++) {

if (i&1) continue;

if (i==8) break;

}

}

1
4

Goto and labels
goto can jump to any label in the current function

goto should be used very carefully and rarely

while (1) {
for(int i=0;i<10;i++) {

if (i&1) continue;
if (i==8) goto error;

}
}

error:
printf(“oops”);

Revisit a previous example of pointer
expressions (keep track of pointers)

#include <stdio.h>
main() {

int c = 0, in = 0;
char buf[2048]; char *p = buf;
char x[10][10];

while((c = getchar()) != EOF)
*p++=c;

*p++ = '\0';
p = buf;
*(buf + 1) = 'c';
* (x[0] + 1) = 'd';
p[0] = 'a';
*buf = 'b';
printf("*buf is \t %c\n", *buf);

p++[0] = 'b';
p++[0] = 'c';
printf("p[0] is \t %c\n", p[0]);
printf("p[1] is \t %c\n", p[1]);
printf("p[2] is \t %c\n", p[2]);
printf("p[0] address is \t %p\n", p);
printf("x[0][1] is \t %c\n", x[0][1]);
printf("buf address is \t %p\n", buf);
printf("buffer is \t %s\n", buf);

}

• We now continue to discuss malloc() and
related functions

• Lab 4, Lab 5, Project 1 and Project 2 will use
these extensively

What is size_t?
• In malloc(), we request an amount of memory

measured in a number of bytes
• How large can this number, s, be?

– Different system may have a different limit
– To make the program more portable, instead of

declaring s to be of type int or long or any other
primitive type, we use the type size_t

– What is exactly size_t is defined in another header
file

– We can use sizeof(size_t) to see what it is
• E.g. on my machine sizeof(size_t) is 8, i.e. s itself can take 8

bytes

18

malloc(size_t s)

• Allocates s bytes and returns a pointer to the
allocated memory.

• Memory is not cleared (i.e. contents not set to 0)
• Returned value is a pointer to alloc’d memory or
NULL if the request fails

• You must cast the pointer
•

p = (char*) malloc(10); /*
allocated 10 bytes */

if(p == NULL) { /*panic*/ }

19

free(void* p)

• Frees the memory space pointed to by p, which must have been allocated
with a previous call to malloc, calloc or realloc

• If memory was not allocated before, or if free(p)
has already been called before, undefined behavior
occurs.

• If p is NULL, no operation is performed.
• free() returns nothing /* run free.c below */

char *mess = NULL;
mess = (char*) malloc(100);

free(mess); *mess = 43;

FREE DOES NOT SET THE POINTER TO NULL

20

free(void* p)
• Frees the memory space pointed to by p, which must have been

allocated with a previous call to malloc, calloc or realloc

• If memory was not allocated before, or if
free(p) has already been called before,
undefined behavior occurs.

• Let’s compile and run free2.c below.
#include <stdlib.h>
#include <stdio.h>
main () {

char *mess = NULL;
int *mint = NULL;
mess = (char*) malloc(100);
printf("mess is \t%p\n", mess);
printf("&mess is \t%p\n", &mess);

free(&mess);
}

Compile and run free3.c

#include <stdlib.h>
#include <stdio.h>
main () {

char *mess = NULL;
char *mint = NULL;
mess = (char*) malloc(100);
printf("mess is \t%p\n", mess);
printf("&mess is \t%p\n", &mess);
mint = mess;
free(mess);
free(mint);

}

