CS 24000 - Programming In C

Week Six: Review for Midterm 1

Zhiyuan Li
Department of Computer Science
Purdue University, USA

Other Unary operators
 The indirection operator “*” is also called the
“pointer dereference” operator
*E
— EIs a pointer to

e a piece of data, e.g. scalar, array, structure, etc

— If E points to a simple variable (i.e. scalar, array element,
structure member that is a scalar, etc, then *E has an Ivalue

e or a function
— What is &*p?

— Let’s examine &*p and p and see if they are the
same (run cast.c)

The ! operator (the negation operator)

— Operand must be of arithmetic type or be a pointer, and
the result is 1 if the value of its operand equal to 0, and O
otherwise. The type of the result is int.

— Thus, !p has the value of 0 for all non-NULL pointer p.
Unary + and
— Their mathematical meaning is obvious

— The nuance concerning the data size of type promotion
will be discussed later in the semester

What is the value of -(-x) and - - x
What is the value of !(!x) and !lx

Arithmetic binary operations (by precedence levels)

Multiplicative Operators
* [/, and %
Left associative

Additive Operators
+, -
Left associative
Note on pointer arithmetic
— A special kind of addition concerning pointers
— p +int_expression

— int_expression is first converted to an address offset by
multiplying it by the size of the object to which the pointer
points.

— The sum is a pointer of the same type as the original pointer,
and points to another object in the same array, appropriately
offset from the original object.

e We have explained before

The next level is Shift Operators

E1>>E2
E1l (interpreted as a bit pattern) right-shifted E2 bits

E1l<<E2
E1 (interpreted as a bit pattern) left-shifted E2 bits

Left associative
Integral type for both E1 and E2

e a+b>>c+d
* Both additions are performed first before doing >>

The impact on the sign bit and the type promotion will
be discussed later in the semester

We may use shift operations extract control bits from
control words in future labs/projects

Relational and Logic operations

Listed by Precedence Levels
-—

e Relational operators: <, <=, >, >=

—]gcl)mpare any two types and return 1 for true and 0 for
alse

 Equality operators ==, I=

is1 whenever a<b and c<d have the same
truth-value.

e bit-wise operators

e logical AND OR higher than
— Operands: 0 is false, all other values true
— Result: returnOor 1

Short-circuit evaluation of logical expressions

e Evaluation order follows the precedence levels and
appropriate associativity
e Evaluation terminates as soon as the final truth value can be

determined, as in Java
* w/o performing the rest of the operations

18 0 0 1|0 =21 142 -2 0
2 >10 & (a<b || e<d) 2> 0 Not performing &&, <, ||
al=0 && c/a > 4 if a is 0, then c/a not performed
P && *p

e If p turns out to be a null pointer, return 0 without evaluation *p

 Next level, conditional operator

is first evaluated (possibly generating side

effects)

e If-1 eva
result wi

e If-1 eva
result wi

uates to then evaluate =7, whose
| be the result of the entire expression

uates to then evaluate =3, whose

| be the result of the entire expression

 Further lower level, assighment operators

— These are binary operators
— Left operand must have an lvalue
IS equivalent to
except that E1 is evaluated only once

— The equivalence is true only if E1 does not have
any side effect

—Is “p++ +=1," same as “Fp++ = Fp+++ 1,7 ?

Statements

e Many statements in C are like those in Java

Switch
0

 The switch statement allows multi-way
branching, it takes an integer valued expression
and a number of constant-labeled branches

e Syntax

switch (expression) {

case const-expr: statements
case const-expr: statements
default: statements

}

Without the break, the execution would have
continued to the following statements

Example: use of break and default

#include <stdio.h> /* students should experiment with
overlapping cases and no breaks */

int main() {

int i, odd=0, even=0;
for (i=0;i<10;i++)
switch (i) {
case 0: case 2: case 4: case 6: case 8: case 10:
even++;
break; /* important to break */
case 1: case 3: case 5: case 7: case 9:
odd++;
break; /* important to break */
default: odd++;
}
printf("odd numbers \t%d\n", odd);
printf("even numbers \t%d\n", even);

Break and continue

e break leaves the current loop or switch,
continue goes to the top of the loop

while (1) {
for (int i=0;i<10;i++) {
if (i1&l) continue;
if (1i==8) break;

Goto and labels

goto can jump to any label in the current function
goto should be used very carefully and rarely

while (1) {
for (int 1=0;1<10;1++) {
If (1I& 1) continue;
If (1I==8) goto error;
}
}

error:
printf(“ oops’);

Revisit a previous example of pointer
expressions (keep track of pointers)

#include <stdio.h>

main() { p++[0] ='b’;

p++[0] ='c’;

intc=0,in=0; printf("p[0] is \t %c\n", p[0]);

char buf[2048]; char *p = buf; printf("p[1] is \t %c\n", p[1]);

char x[10][10]; printf("p[2] is \t %c\n", p[2]);
printf("p[0] address is \t %p\n", p);

while((c = getchar()) != EOF) printf("x[0][1] is \t %c\n", x[0][1]);

*p++=c; printf("buf address is \t %p\n", buf);
*p++ = "\0'; printf("buffer is \t %s\n", buf);
p = buf; 1

*(buf+1)="c';
*(x[0]+1)="d}

p[0] ="a’;

*buf ='b';

printf("*buf is \t %c\n", *buf);

e We now continue to discuss malloc() and
related functions

e Lab 4, Lab 5, Project 1 and Project 2 will use
these extensively

What is size t7?

* |n malloc(), we request an amount of memory
measured in a number of bytes

e How large can this number, s, be?
— Different system may have a different limit

— To make the program more portable, instead of
declaring s to be of type int or long or any other
primitive type, we use the type size t

— What is exactly size tis defined in another header
file
— We can use sizeof(size t) to see what it is

e E.g. on my machine sizeof(size t)is 8, i.e. s itself can take 8
bytes

| et e d—

Allocates s bytes and returns a pointer to the
allocated memory.

Memory is not cleared (i.e. contents not set to 0)

Returned value is a pointer to alloc’d memory or
NULL if the request fails

You must cast the pointer

p = (char*) malloc(10); /»

allocated 10 bytes */

18

if (p == NULL) { /*panic*/ }

free‘void* BZ
]

* Frees the memory space pointed to by p, which must have been allocated
with a previous call tomalloc, calloc or realloc

e |f memory was not allocated before, or if free (p)
has already been called before, undefined behavior
occurs.

e |f pis NULL, no operation is performed.
e free () returns nothing /* run free.c below */

char *mess = NULL;
mess = (char*) malloc (100);

free (mess) ; *mess = 43;

FREE DOES NOT SET THE POINTER TO NULL

19

free (void* p)
5

* Frees the memory space pointed to by p, which must have been
allocated with a previous call tomalloc, calloc or realloc

* |f memory was not allocated before, or if
free (p) has already been called before,
undefined behavior occurs.

e Let’s compile and run free2.c below.
#include <stdlib.h>
#include <stdio.h>
main () {
char *mess = NULL;
int *mint = NULL;
mess = (char*) malloc(100);
printf("mess is \t%p\n", mess);
printf("&mess is \t%p\n", &mess);

free(&mess);

20

Compile and run free3.c

#include <stdlib.h>

#include <stdio.h>

main () {
char *mess = NULL;
char *mint = NULL;
mess = (char*) malloc(100);
printf("mess is \t%p\n", mess);
printf("&mess is \t%p\n", &mess);
mint = mess;
free(mess);
free(mint);

