
Reminder of midterm 1

• Next Thursday, Feb. 14, in class
• Look at Piazza announcement for rules and

preparations

A New Example to see effect of E++
(better than the one in previous lecture)

• Purpose of showing increment.c
• Compiler error if misuse non-lvalue
• Difference between *p++ and (*p)++

#include <stdio.h>
main() {

int i=0, j[2], *p, *q;
p = &i;
q = j;
printf("i++ = \t %d\n", i++);
printf("i is now \t %d\n", i);
printf("*p is now \t %d\n", *p);

/* (i++)++; */
j[0]=2;
j[1]=3;
*q++ = 0;

printf("j is now \t %p\n", j);
printf("j[0] is now \t %d\n", j[0]);
printf("j[1] is now \t %d\n", j[1]);
printf("q is now \t %p\n", q);

q = j;
printf("q is now \t %p\n", q);
printf("(*q)++ is now \t %d\n", (*q)++);
printf("q is now \t %p\n", q);
printf("(*q)++ is now \t %d\n", (*q)++);
printf("q is now \t %p\n", q);
printf("j[0] is now \t %d\n", j[0]);
printf("j[1] is now \t %d\n", j[1]);

}

• We’ll leave other expressions to next Tuesday’s
review lecture

• Next we discuss more complex way to organize
and address data
– Arrays of arrays

• In future lectures, we discuss
– Nested structures
– Recurrent (i.e. self-referential) structures
– Arrays of structures (AOS)
– Structure of arrays (SOA)

Arrays of arrays

• int ndigit[4][4]
• Declares a 4-element array ndigit[4], in which each

element is another 4-element array of integers
• It is the programmer’s responsibility to not go beyond

the array bound
• The compiler by default does not issue warnings
• Neither does it insert run-time check of array

bound, by default

Arrays of arrays
#include <stdio.h> /* main1.c, local array, going out of bound
*/

main() {

int i, j, ndigit[4][4];
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j)
ndigit[i][j] = i+j;

for (i = 0; i < 10; ++i)
for (j = 0; j < 4; ++j)
printf("ndigit[%d][%d] = \t %d\n", i, j, ndigit[i][j]);

}

Declaring global multiple dimension arrays
#include <stdio.h> /* f.c */
extern int ndigit[][];

void f() {
int i;

for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j)
printf("ndigit[%d][%d] = \t

%d\n", i, j, ndigit[i][j]);

}

/* Purpose: show how different files pass
data through global arrays, main2.c */
int ndigit[4][4];
extern void f();
main() {

int i, j;
for (i = 0; i < 4; ++i) {

for (j = 0; j < 4; ++j) {
ndigit[i][j] = i+j;

}
f();

}

Let us run the following program and
examine the addresses of the array elements

#include <stdio.h> /* main3.c */

main() {
int i, j, ndigit[4][4];
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j)
ndigit[i][j] = i+j;

for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j)
printf("ndigit[%d][%d] is at \t %p\n", i, j, &ndigit[i][j]);

}

Memory Layout of a 2-dim Integer
Array

• In C, the array int i[][] is allocated row-wise
– We call the first index the row index and the second

the column index
– This allocation scheme is known as row-major

allocation
• All elements of an entire row are allocated consecutively
• For good performance, it is important that the program

accesses the array elements in a consecutive way
• We will discuss more on data locality and performance

issues in later lectures

Array of pointers
• Let’s compile and run the following program

#include <stdio.h> /* main4.c *

main() {

int i, j, *ndigit[4][4];
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j)
*ndigit[i][j] = i+j;

}

What happened?

ndigit[i][j] does not have any values yet!

/* examine the contents of arrays of pointers */
#include <stdio.h> /* main5.c */

main() {

int i, j, *ndigit[4][4];
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j)
printf("ndigit[%d][%d] = \t %p\n", i, j, ndigit[i][j]);

}

Bad Memory Addresses
ndigit[0][0] = 0x7f5a52a53000
ndigit[0][1] = 0x400379
ndigit[0][2] = 0xa
ndigit[0][3] = 0x8000
ndigit[1][0] = 0x1
ndigit[1][1] = 0x7fffef9dfc58
ndigit[1][2] = 0x1
ndigit[1][3] = 0x4005b0
ndigit[2][0] = (nil)
ndigit[2][1] = 0x40041b
ndigit[2][2] = 0x7fffef9dfc58
ndigit[2][3] = 0x4005f5
ndigit[3][0] = 0x7f5a524f56e0
ndigit[3][1] = 0x4005b0
ndigit[3][2] = (nil)
ndigit[3][3] = 0x400450

A different example
#include <stdio.h> /* main7.c */
main() {

int i, j, ndigit[4][4], *address[4][4];
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j) {
ndigit[i][j] = i+j;
address[i][j]=&ndigit[i][j];

}

for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j)
printf("ndigit[%d][%d] = \t %d\n", i, j, *address[i][j]);

}

2-dim array viewed as rows of pointers
#include <stdio.h> /* main8.c */
main() {

int i, j, ndigit[4][4], *address[4];
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j) {
ndigit[i][j] = i+j;

/* address[i]=&ndigit[i][0]; */
address[i]=ndigit[i];

}
for (i = 0; i < 4; ++i)

for (j = 0; j < 4; ++j)
printf("ndigit[%d][%d] = \t %d\n", i, j,*address[i]++);

}

3
3

2-dim Array Initialization

• Bracketed initialization: row by row

#include <stdio.h> /* arrayinit.c */
main() {
float y[3][3] = {

{ 1, 3, 5 },
{ 2, 4, 6 },
{ 3, 5, 7 } };

int i, j;
for (i = 0; i < 3; ++i)

for (j = 0; j < 3; ++j)
printf("y[%d][%d] = \t %f\n", i, j, y[i][j]);

}

3
4 Alternatively

#include <stdio.h>

main() {
float y[3][3] = {1, 3, 5 , 2, 4, 6 , 3, 5, 7};

int i, j;
for (i = 0; i < 3; ++i)

for (j = 0; j < 3; ++j)
printf("y[%d][%d] = \t %f\n", i, j,

y[i][j]);
}

3
5

Avoid Modifying Constant Array by Mistake

#include <stdio.h> /* try to compile
constarray.c */

main() {
const float y[3][3] = {1, 3, 5 , 2, 4, 6 , 3, 5, 7};

int i, j;
for (i = 0; i < 3; ++i)

for (j = 0; j < 3; ++j)
y[i][j]=0.0;

} /* Compiler will report the error */

3
6

An array of strings
• char my[2][3] = {
"me", "my" };
– Remember each string literal

has the terminating ‘\0’
– For fixed sized strings, arrays

of arrays of characters work
well

• For variable sized strings,
char pointers must be used

char* you[2] = { "you",
"yours" };

• my[2][3] has 6 bytes
allocated in memory

• you[2] has memory
allocated for two
pointers
– 16 bytes if each
pointer takes 8 bytes

/* size of pointer */
#include <stdio.h>

main() {

int i, *j=&i;

printf("size of pointer j is \t %lu\n",
sizeof(j));
}

For array my[2][3]

• The pointer value of my[i] can be computed by
the compiler
• Because the rows are stored consecutively in

memory

• No need to store a pointer in the memory

Compile and run this program
#include <stdio.h> /* arraystring.c */
main() {
char my[2][3] = { "me", "my" };
char* you[2] = { "you", "yours" };

int i, j;
for (i = 0; i < 2; ++i)

for (j = 0; j < 3; ++j) {
printf("my[%d][%d] code \t %d\n", i, j, my[i][j]);
printf("my[%d][%d] = \t %c\n", i, j, my[i][j]);

}
for (i = 0; i < 2; ++i)

for (j = 0; j < 3; ++j) {
printf("you[%d][%d] code \t %d\n", i, j, *you[i]);
printf("you[%d] string \t %s\n", i, you[i]++);

}
}

• More commonly, a 2-dimensional array may
be formed dynamically by calling memory
management routine such as malloc()

• Consecutive rows may not be neighbors in the
memory

• We discuss malloc() later

4
0

The void type
• The type void is not actually a type. It is rather saying “to be

determined” or “undefined”
– sizeof(void) is undefined

• A pointer of type void* is a generic pointer, that can not be used
without first casting it to an actual type

– The void* type is used by functions that return a pointer to a memory area
• void* malloc(size_t size);

• A typical use of malloc is
int* p = (int*) malloc(sizeof(int));

• Notice the type cast in the above statement

41

The Heap memory
• Heap:

– dynamic memory for variables that are
created with calls to standard C utility
functions malloc, calloc, realloc and are
disposed of with calls to free

Stack

Heap

Code

Data

Virtual
Memory

Address space versus physical memory

• A 64-bit machine provides a range of
addresses from 0x0000000000000000 to
0xffffffffffffffff
– 2^32 is covers 4 GB memory, 2^52 covers 4 peta

bytes … …
• At any given time, not all address ranges are

mapped to physical memory
– Otherwise, with so many processes (i.e., instances

of programs) running or loaded to run, we run out
of physical memory very fast

What is physical memory
• In a simplified view, the physical memory is

– The semiconductor DRAM (dynamic random access memory),
with the backup of

– The (magnetic or semiconductor) secondary storage (often also
known as the disk device)

– The secondary storage is usually several orders of magnitude
larger than the DRAM, but several orders of magnitude slower

• The secondary storage is divided between the file system and the
swap device (to support the program address space)

• The processor executes a program by accessing instructions
and variables in the DRAM
– The OS swaps instructions/data
between DRAM/secondary storage as needed

DRAM
Swap device

• OS uses sophisticated algorithms to allocate
DRAM and the swap device to each running
program

• The allocated swap size is increased as requested
• The UNIX OS allows a C program to directly

request a block of “memory” (i.e. a chunk of
swap storage) through calls to routine such as
sbrk(size)
– The OS automatically round up the requested size to

the size that is suitable for allocation

• How to fit a dynamic data structure, e.g. a graph,
a linked list, to the allocated chunk of memory

• How to keep track of and reuse the freed parts of
the memory

• These will soon become a nightmare to the
programmer

• Hence, we are provided with heap management
utility routines in C standard library via the
header file <stdlib.h>

46

Dynamic memory management interface

• #include <stdlib.h>

• void* calloc(size_t n, size_t s)

• void* malloc(size_t s)

• void free(void* p)

• void* realloc(void* p, size_t s)

• Allocate and free dynamic memory

• Using such C routines, the programmer does not
need to directly interact with the OS

• Instead, these routines implement a “memory
manager” to
– keep track of the “free” areas of the memory (i.e. the

data segment obtained from the swap device)
– find a suitable piece of the “free” areas when

requested
– put back a “freed” piece of memory back to the free

areas
– Various allocation algorithms have been discussed in

literature
– We can see the exact algorithm used in our utility

routines

Warm up your iclickers

• Quizzes 3

Q3.#1
• What number is printed by the following program?

#include <stdio.h>
main() {
int j[2], *q;
q=j;
j[0]=2;
j[1]=3;
*q++ = 0;

printf("%d\n", j[0]); }
• (a) 2
• (b) 3
• (c) 0
• (d) none of the above

• Answer is 0

Q3.#2
• What number is printed by the following program?

#include <stdio.h>
main() {
int j[2], *q;
q=j;
j[0]=2;
j[1]=3;
*++q = 0;

printf("%d\n", j[0]); }
• (a) 2
• (b) 3
• (c) 0
• (d) none of the above

• Answer is 2

Q3.#3
• What number is printed by the following program?

#include <stdio.h>
main() {
int j[2], *q;
q=j;
j[0]=2;
j[1]=3;

printf("%d\n", *q++); }
• (a) 2
• (b) 3
• (c) 0
• (d) none of the above

• Answer is 2

